Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,627)

Search Parameters:
Keywords = power output efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6272 KiB  
Article
Research on Energy-Saving Control of Automotive PEMFC Thermal Management System Based on Optimal Operating Temperature Tracking
by Qi Jiang, Shusheng Xiong, Baoquan Sun, Ping Chen, Huipeng Chen and Shaopeng Zhu
Energies 2025, 18(15), 4100; https://doi.org/10.3390/en18154100 (registering DOI) - 1 Aug 2025
Abstract
To further enhance the economic performance of fuel cell vehicles (FCVs), this study develops a model-adaptive model predictive control (MPC) strategy. This strategy leverages the dynamic relationship between proton exchange membrane fuel cell (PEMFC) output characteristics and temperature to track its optimal operating [...] Read more.
To further enhance the economic performance of fuel cell vehicles (FCVs), this study develops a model-adaptive model predictive control (MPC) strategy. This strategy leverages the dynamic relationship between proton exchange membrane fuel cell (PEMFC) output characteristics and temperature to track its optimal operating temperature (OOT), addressing challenges of temperature control accuracy and high energy consumption in the PEMFC thermal management system (TMS). First, PEMFC and TMS models were developed and experimentally validated. Subsequently, the PEMFC power–temperature coupling curve was experimentally determined under multiple operating conditions to serve as the reference trajectory for TMS multi-objective optimization. For MPC controller design, the TMS model was linearized and discretized, yielding a predictive model adaptable to different load demands for stack temperature across the full operating range. A multi-constrained quadratic cost function was formulated, aiming to minimize the deviation of the PEMFC operating temperature from the OOT while accounting for TMS parasitic power consumption. Finally, simulations under Worldwide Harmonized Light Vehicles Test Cycle (WLTC) conditions evaluated the OOT tracking performance of both PID and MPC control strategies, as well as their impact on stack efficiency and TMS energy consumption at different ambient temperatures. The results indicate that, compared to PID control, MPC reduces temperature tracking error by 33%, decreases fan and pump speed fluctuations by over 24%, and lowers TMS energy consumption by 10%. These improvements enhance PEMFC operational stability and improve FCV energy efficiency. Full article
Show Figures

Figure 1

17 pages, 1546 KiB  
Article
Design and Optimization of Valve Lift Curves for Piston-Type Expander at Different Rotational Speeds
by Yongtao Sun, Qihui Yu, Zhenjie Han, Ripeng Qin and Xueqing Hao
Fluids 2025, 10(8), 204; https://doi.org/10.3390/fluids10080204 (registering DOI) - 1 Aug 2025
Abstract
The piston-type expander (PTE), as the primary output component, significantly influences the performance of an energy storage system. This paper proposes a non-cam variable valve actuation system for the PTE, supported by a mathematical model. An enhanced S-curve trajectory planning method is used [...] Read more.
The piston-type expander (PTE), as the primary output component, significantly influences the performance of an energy storage system. This paper proposes a non-cam variable valve actuation system for the PTE, supported by a mathematical model. An enhanced S-curve trajectory planning method is used to design the valve lift curve. The study investigates the effects of various valve lift design parameters on output power and efficiency at different rotational speeds, employing orthogonal design and SPSS Statistics 27 (Statistical Product and Service Solutions) simulations. A grey comprehensive evaluation method is used to identify optimal valve lift parameters for each speed. The results show that valve lift parameters influence PTE performance to varying degrees, with intake duration having the greatest effect, followed by maximum valve lift, while intake end time has the least impact. The non-cam PTE outperforms the cam-based PTE. At 800 rpm, the optimal design yields 7.12 kW and 53.5% efficiency; at 900 rpm, 8.17 kW and 50.6%; at 1000 rpm, 9.2 kW and 46.8%; and at 1100 rpm, 12.09 kW and 41.2%. At these speeds, output power increases by 18.37%, 11.42%, 11.62%, and 9.82%, while energy efficiency improves by 15.01%, 15.05%, 14.24%, and 13.86%, respectively. Full article
Show Figures

Figure 1

27 pages, 2072 KiB  
Article
Modeling and Characteristic Analysis of Mistuned Series–Series-Compensated Wireless Charging System for EVs
by Weihan Li, Yunhan Han and Chenxu Li
Energies 2025, 18(15), 4091; https://doi.org/10.3390/en18154091 (registering DOI) - 1 Aug 2025
Abstract
Cumulative mistuning effects in electric vehicle wireless charging systems, arising from component tolerances, coil misalignments, and aging-induced drifts, can significantly degrade system performance. To mitigate this issue, this work establishes an analysis model for mistuned series–series-compensated wireless power transfer (WPT) systems. Through equivalent [...] Read more.
Cumulative mistuning effects in electric vehicle wireless charging systems, arising from component tolerances, coil misalignments, and aging-induced drifts, can significantly degrade system performance. To mitigate this issue, this work establishes an analysis model for mistuned series–series-compensated wireless power transfer (WPT) systems. Through equivalent simplification of mistuned parameters, we systematically examine the effects of compensation capacitances and coil inductances on input impedance, output power, and efficiency in SS-compensated topologies across wide load ranges and different coupling coefficients. Results reveal that transmitter-side parameter deviations exert more pronounced impacts on input impedance and power gain than receiver-side variations. Remarkably, under receiver-side inductance mistuning of −20%, a significant 32° shift in the input impedance angle was observed. Experimental validation on a 500 W prototype confirms ≤5% maximum deviation between calculated and measured values for efficiency, input impedance angle, and power gain. Full article
(This article belongs to the Special Issue Wireless Charging Technologies for Electric Vehicles)
19 pages, 10949 KiB  
Article
Segmentation Control in Dynamic Wireless Charging for Electric Vehicles
by Tran Duc Hiep, Nguyen Huu Minh, Tran Trong Minh, Nguyen Thi Diep and Nguyen Kien Trung
Electronics 2025, 14(15), 3086; https://doi.org/10.3390/electronics14153086 (registering DOI) - 1 Aug 2025
Abstract
Dynamic wireless charging systems have emerged as a promising solution to extend the driving range of electric vehicles by enabling energy transfer while the vehicle is in motion. However, the segment-based charging lane structure introduces challenges such as pulsation of the output power [...] Read more.
Dynamic wireless charging systems have emerged as a promising solution to extend the driving range of electric vehicles by enabling energy transfer while the vehicle is in motion. However, the segment-based charging lane structure introduces challenges such as pulsation of the output power and the need for precise switching control of the transmitting segments. This paper proposes a position-sensorless control method for managing transmitting lines in a dynamic wireless charging system. The proposed approach uses a segmented charging lane structure combined with two receiving coils and LCC compensation circuits on both the transmitting and receiving sides. Based on theoretical analysis, the study determines the optimal switching positions and signals to reduce the current fluctuation. To validate the proposed method, a dynamic wireless charging system prototype with a power rating of 3kW was designed, constructed, and tested in a laboratory environment. The results demonstrate that the proposed position-sensorless control method effectively mitigates power fluctuations and enhances the stability and efficiency of the wireless charging process. Full article
Show Figures

Figure 1

25 pages, 2474 KiB  
Article
Performance Analysis of a Novel Directly Combined Organic Rankine Cycle and Dual-Evaporator Vapor Compression Refrigeration Cycle
by Nagihan Bilir Sag and Metehan Isik
Appl. Sci. 2025, 15(15), 8545; https://doi.org/10.3390/app15158545 (registering DOI) - 31 Jul 2025
Abstract
Combining Organic Rankine Cycles (ORC) with cooling cycles offers a promising approach to achieving greater outputs within a single system. In this study, a novel directly combined ORC-VCC system has been designed to not only meet the cooling demand using a geothermal heat [...] Read more.
Combining Organic Rankine Cycles (ORC) with cooling cycles offers a promising approach to achieving greater outputs within a single system. In this study, a novel directly combined ORC-VCC system has been designed to not only meet the cooling demand using a geothermal heat source but also generate power. The proposed novel ORC-VCC system has been analyzed for its energetic performance using four selected fluids: R290, R600a, R601, and R1234ze(E). Parametric analysis has been conducted to investigate the effects of parameters of heat source temperature, heat source mass flow rate, cooling capacities, condenser temperature, ORC evaporator temperature, pinch point temperature difference and isentropic efficiencies on net power production. Among the working fluids, R290 has provided the highest net power production under all conditions in which it was available to operate. Additionally, the results have been analyzed concerning a reference cycle for comparative evaluation. The proposed novel cycle has outperformed the reference cycle in all investigated cases in terms of net power production such as demonstrating an improvement of approximately from 8.7% to 57.8% in geothermal heat source temperature investigations. Similar improvements have been observed over the reference cycle at lower heat source mass flow rates, where net power increases by up to 50.8%. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

10 pages, 2570 KiB  
Article
Demonstration of Monolithic Integration of InAs Quantum Dot Microdisk Light Emitters and Photodetectors Directly Grown on On-Axis Silicon (001)
by Shuaicheng Liu, Hao Liu, Jihong Ye, Hao Zhai, Weihong Xiong, Yisu Yang, Jun Wang, Qi Wang, Yongqing Huang and Xiaomin Ren
Micromachines 2025, 16(8), 897; https://doi.org/10.3390/mi16080897 (registering DOI) - 31 Jul 2025
Abstract
Silicon-based microcavity quantum dot lasers are attractive candidates for on-chip light sources in photonic integrated circuits due to their small size, low power consumption, and compatibility with silicon photonic platforms. However, integrating components like quantum dot lasers and photodetectors on a single chip [...] Read more.
Silicon-based microcavity quantum dot lasers are attractive candidates for on-chip light sources in photonic integrated circuits due to their small size, low power consumption, and compatibility with silicon photonic platforms. However, integrating components like quantum dot lasers and photodetectors on a single chip remains challenging due to material compatibility issues and mode field mismatch problems. In this work, we have demonstrated monolithic integration of an InAs quantum dot microdisk light emitter, waveguide, and photodetector on a silicon platform using a shared epitaxial structure. The photodetector successfully monitored variations in light emitter output power, experimentally proving the feasibility of this integrated scheme. This work represents a key step toward multifunctional integrated photonic systems. Future efforts will focus on enhancing the light emitter output power, improving waveguide efficiency, and scaling up the integration density for advanced applications in optical communication. Full article
(This article belongs to the Special Issue Silicon-Based Photonic Technology and Devices)
Show Figures

Figure 1

28 pages, 13030 KiB  
Article
Meta-Heuristic Optimization for Hybrid Renewable Energy System in Durgapur: Performance Comparison of GWO, TLBO, and MOPSO
by Sudip Chowdhury, Aashish Kumar Bohre and Akshay Kumar Saha
Sustainability 2025, 17(15), 6954; https://doi.org/10.3390/su17156954 (registering DOI) - 31 Jul 2025
Abstract
This paper aims to find an efficient optimization algorithm to bring down the cost function without compromising the stability of the system and respect the operational constraints of the Hybrid Renewable Energy System. To accomplish this, MATLAB simulations were carried out using three [...] Read more.
This paper aims to find an efficient optimization algorithm to bring down the cost function without compromising the stability of the system and respect the operational constraints of the Hybrid Renewable Energy System. To accomplish this, MATLAB simulations were carried out using three optimization techniques: Grey Wolf Optimization (GWO), Teaching–Learning-Based Optimization (TLBO), and Multi-Objective Particle Swarm Optimization (MOPSO). The study compared their outcomes to identify which method yielded the most effective performance. The research included a statistical analysis to evaluate how consistently and stably each optimization method performed. The analysis revealed optimal values for the output power of photovoltaic systems (PVs), wind turbines (WTs), diesel generator capacity (DGs), and battery storage (BS). A one-year period was used to confirm the optimized configuration through the analysis of capital investment and fuel consumption. Among the three methods, GWO achieved the best fitness value of 0.24593 with an LPSP of 0.12528, indicating high system reliability. MOPSO exhibited the fastest convergence behaviour. TLBO yielded the lowest Net Present Cost (NPC) of 213,440 and a Cost of Energy (COE) of 1.91446/kW, though with a comparatively higher fitness value of 0.26628. The analysis suggests that GWO is suitable for applications requiring high reliability, TLBO is preferable for cost-sensitive solutions, and MOPSO is advantageous for obtaining quick, approximate results. Full article
(This article belongs to the Special Issue Energy Technology, Power Systems and Sustainability)
Show Figures

Figure 1

12 pages, 5365 KiB  
Article
A 100 MHz 3 dB Bandwidth, 30 V Rail-to-Rail Class-AB Buffer Amplifier for Base Station ET-PA Hybrid Supply Modulator
by Min-Ju Kim, Donghwi Kang, Gyujin Choi, Seong-Jun Youn and Ji-Seon Paek
Electronics 2025, 14(15), 3036; https://doi.org/10.3390/electronics14153036 - 30 Jul 2025
Abstract
This paper presents the first hybrid supply modulator (HSM) designed for envelope tracking power amplifiers (ET-PAs) in base station applications. The focus is on a rail-to-rail Class-AB linear amplifier (LA) optimized for high-voltage and wide-bandwidth operation. The LA is designed using 130 nm [...] Read more.
This paper presents the first hybrid supply modulator (HSM) designed for envelope tracking power amplifiers (ET-PAs) in base station applications. The focus is on a rail-to-rail Class-AB linear amplifier (LA) optimized for high-voltage and wide-bandwidth operation. The LA is designed using 130 nm BCD technology, utilizing Laterally Diffused Metal-Oxide Semiconductor (LDMOS) transistors for high-voltage operation and incorporating shielding MOSFETs to protect the low-voltage devices. The circuit utilizes dual power supply domains (5 V and 30 V) to improve power efficiency. The proposed LA achieves a bandwidth of 100 MHz and a slew rate of +1003/−852 V/μs, with a quiescent power consumption of 0.89 W. Transient simulations using a 50 MHz bandwidth 5G NR envelope input demonstrate that the proposed HSM achieves a power efficiency of 83%. Consequently, the proposed HSM supports high-output (100 W) wideband 5G NR transmission with enhanced efficiency. Full article
(This article belongs to the Special Issue Analog/Mixed Signal Integrated Circuit Design)
Show Figures

Figure 1

21 pages, 6919 KiB  
Article
Symmetric Optimization Strategy Based on Triple-Phase Shift for Dual-Active Bridge Converters with Low RMS Current and Full ZVS over Ultra-Wide Voltage and Load Ranges
by Longfei Cui, Yiming Zhang, Xuhong Wang and Dong Zhang
Electronics 2025, 14(15), 3031; https://doi.org/10.3390/electronics14153031 - 30 Jul 2025
Viewed by 42
Abstract
Dual-active bridge (DAB) converters have emerged as a preferred topology in electric vehicle charging and energy storage applications, owing to their structurally symmetric configuration and intrinsic galvanic isolation capabilities. However, conventional triple-phase shift (TPS) control strategies face significant challenges in maintaining high efficiency [...] Read more.
Dual-active bridge (DAB) converters have emerged as a preferred topology in electric vehicle charging and energy storage applications, owing to their structurally symmetric configuration and intrinsic galvanic isolation capabilities. However, conventional triple-phase shift (TPS) control strategies face significant challenges in maintaining high efficiency across ultra-wide output voltage and load ranges. To exploit the inherent structural symmetry of the DAB topology, a symmetric optimization strategy based on triple-phase shift (SOS-TPS) is proposed. The method specifically targets the forward buck operating mode, where an optimization framework is established to minimize the root mean square (RMS) current of the inductor, thereby addressing both switching and conduction losses. The formulation explicitly incorporates zero-voltage switching (ZVS) constraints and operating mode conditions. By employing the Karush–Kuhn–Tucker (KKT) conditions in conjunction with the Lagrange multiplier method (LMM), the refined control trajectories corresponding to various power levels are analytically derived, enabling efficient modulation across the entire operating range. In the medium-power region, full-switch ZVS is inherently satisfied. In the low-power operation, full-switch ZVS is achieved by introducing a modulation factor λ, and a selection principle for λ is established. For high-power operation, the strategy transitions to a conventional single-phase shift (SPS) modulation. Furthermore, by exploiting the inherent symmetry of the DAB topology, the proposed method reveals the symmetric property of modulation control. The modulation strategy for the forward boost mode can be efficiently derived through a duty cycle and voltage gain mapping, eliminating the need for re-derivation. To validate the effectiveness of the proposed SOS-TPS strategy, a 2.3 kW experimental prototype was developed. The measured results demonstrate that the method ensures ZVS for all switches under the full load range, supports ultra-wide voltage conversion capability, substantially suppresses RMS current, and achieves a maximum efficiency of 97.3%. Full article
(This article belongs to the Special Issue Advanced Control Techniques for Power Converter and Drives)
Show Figures

Figure 1

16 pages, 3664 KiB  
Article
Wave Prediction Error Compensation and PTO Optimization Control Method for Improving the WEC Power Quality
by Tianlong Lan, Jiarui Wang, Luliang He, Peng Qian, Dahai Zhang and Bo Feng
Energies 2025, 18(15), 4043; https://doi.org/10.3390/en18154043 - 29 Jul 2025
Viewed by 108
Abstract
Reliable wave prediction plays a significant role in wave energy converter (WEC) research, but there are still prediction errors that would increase the uncertainty for the power grid and reduce the power quality. The efficiency and stability of the power take-off (PTO) system [...] Read more.
Reliable wave prediction plays a significant role in wave energy converter (WEC) research, but there are still prediction errors that would increase the uncertainty for the power grid and reduce the power quality. The efficiency and stability of the power take-off (PTO) system are also important research topics in WEC applications. In order to solve the above-mentioned problems, this paper presents a model predictive control (MPC) method composed of a prediction error compensation controller and a PTO optimization controller. This work aims to address the limitations of existing wave prediction methods and improve the efficiency and stability of hydraulic PTO systems in WECs. By controlling the charging and discharging of the accumulator, the power quality is enhanced by reducing grid frequency fluctuations and voltage flicker through prediction error compensation. In addition, an efficient and stable hydraulic PTO system can be obtained by keeping the operation pressure of the hydraulic motor at the optimal range. Thus, smoother power output minimizes grid-balancing penalties and storage wear, and stable hydraulic pressure extends PTO component lifespan. Finally, comparative numerical simulation studies are provided to show the efficacy of the proposed method. The results validate that the dual-controller MPC framework reduces power deviations by 74.3% and increases average power generation by 31% compared to the traditional method. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

19 pages, 2137 KiB  
Article
Optimal Configuration and Empirical Analysis of a Wind–Solar–Hydro–Storage Multi-Energy Complementary System: A Case Study of a Typical Region in Yunnan
by Yugong Jia, Mengfei Xie, Ying Peng, Dianning Wu, Lanxin Li and Shuibin Zheng
Water 2025, 17(15), 2262; https://doi.org/10.3390/w17152262 - 29 Jul 2025
Viewed by 119
Abstract
The increasing integration of wind and photovoltaic energy into power systems brings about large fluctuations and significant challenges for power absorption. Wind–solar–hydro–storage multi-energy complementary systems, especially joint dispatching strategies, have attracted wide attention due to their ability to coordinate the advantages of different [...] Read more.
The increasing integration of wind and photovoltaic energy into power systems brings about large fluctuations and significant challenges for power absorption. Wind–solar–hydro–storage multi-energy complementary systems, especially joint dispatching strategies, have attracted wide attention due to their ability to coordinate the advantages of different resources and enhance both flexibility and economic efficiency. This paper develops a capacity optimization model for a wind–solar–hydro–storage multi-energy complementary system. The objectives are to improve net system income, reduce wind and solar curtailment, and mitigate intraday fluctuations. We adopt the quantum particle swarm algorithm (QPSO) for outer-layer global optimization, combined with an inner-layer stepwise simulation to maximize life cycle benefits under multi-dimensional constraints. The simulation is based on the output and load data of typical wind, solar, water, and storage in Yunnan Province, and verifies the effectiveness of the proposed model. The results show that after the wind–solar–hydro–storage multi-energy complementary system is optimized, the utilization rate of new energy and the system economy are significantly improved, which has a wide range of engineering promotion value. The research results of this paper have important reference significance for the construction of new power systems and the engineering design of multi-energy complementary projects. Full article
(This article belongs to the Special Issue Research Status of Operation and Management of Hydropower Station)
Show Figures

Figure 1

14 pages, 1015 KiB  
Article
Integrating Dimensional Analysis and Machine Learning for Predictive Maintenance of Francis Turbines in Sediment-Laden Flow
by Álvaro Ospina, Ever Herrera Ríos, Jaime Jaramillo, Camilo A. Franco, Esteban A. Taborda and Farid B. Cortes
Energies 2025, 18(15), 4023; https://doi.org/10.3390/en18154023 - 29 Jul 2025
Viewed by 210
Abstract
The efficiency decline of Francis turbines, a key component of hydroelectric power generation, presents a multifaceted challenge influenced by interconnected factors such as water quality, incidence angle, erosion, and runner wear. This paper is structured into two main sections to address these issues. [...] Read more.
The efficiency decline of Francis turbines, a key component of hydroelectric power generation, presents a multifaceted challenge influenced by interconnected factors such as water quality, incidence angle, erosion, and runner wear. This paper is structured into two main sections to address these issues. The first section applies the Buckingham π theorem to establish a dimensional analysis (DA) framework, providing insights into the relationships among the operational variables and their impact on turbine wear and efficiency loss. Dimensional analysis offers a theoretical basis for understanding the relationships among operational variables and efficiency within the scope of this study. This understanding, in turn, informs the selection and interpretation of features for machine learning (ML) models aimed at the predictive maintenance of the target variable and important features for the next stage. The second section analyzes an extensive dataset collected from a Francis turbine in Colombia, a country that is heavily reliant on hydroelectric power. The dataset consisted of 60,501 samples recorded over 15 days, offering a robust basis for assessing turbine behavior under real-world operating conditions. An exploratory data analysis (EDA) was conducted by integrating linear regression and a time-series analysis to investigate efficiency dynamics. Key variables, including power output, water flow rate, and operational time, were extracted and analyzed to identify patterns and correlations affecting turbine performance. This study seeks to develop a comprehensive understanding of the factors driving Francis turbine efficiency loss and to propose strategies for mitigating wear-induced performance degradation. The synergy lies in DA’s ability to reduce dimensionality and identify meaningful features, which enhances the ML models’ interpretability, while ML leverages these features to model non-linear and time-dependent patterns that DA alone cannot address. This integrated approach results in a linear regression model with a performance (R2-Test = 0.994) and a time series using ARIMA with a performance (R2-Test = 0.999) that allows for the identification of better generalization, demonstrating the power of combining physical principles with advanced data analysis. The preliminary findings provide valuable insights into the dynamic interplay of operational parameters, contributing to the optimization of turbine operation, efficiency enhancement, and lifespan extension. Ultimately, this study supports the sustainability and economic viability of hydroelectric power generation by advancing tools for predictive maintenance and performance optimization. Full article
Show Figures

Figure 1

11 pages, 343 KiB  
Article
Endoreversible Stirling Cycles: Plasma Engines at Maximal Power
by Gregory Behrendt and Sebastian Deffner
Entropy 2025, 27(8), 807; https://doi.org/10.3390/e27080807 - 28 Jul 2025
Viewed by 223
Abstract
Endoreversible engine cycles are a cornerstone of finite-time thermodynamics. We show that endoreversible Stirling engines operating with a one-component plasma as a working medium run at maximal power output with the Curzon–Ahlborn efficiency. As a main result, we elucidate that this is actually [...] Read more.
Endoreversible engine cycles are a cornerstone of finite-time thermodynamics. We show that endoreversible Stirling engines operating with a one-component plasma as a working medium run at maximal power output with the Curzon–Ahlborn efficiency. As a main result, we elucidate that this is actually a consequence of the fact that the caloric equation of state depends only linearly on temperature and only additively on volume. In particular, neither the exact form of the mechanical equation of state nor the full fundamental relation are required. Thus, our findings immediately generalize to a larger class of working plasmas, far beyond simple ideal gases. In addition, we show that for plasmas described by the photonic equation of state, the efficiency is significantly lower. This is in stark contrast to endoreversible Otto cycles, for which photonic engines have an efficiency larger than the Curzon–Ahlborn efficiency. Full article
(This article belongs to the Special Issue The First Half Century of Finite-Time Thermodynamics)
Show Figures

Figure 1

27 pages, 3529 KiB  
Article
Coordinated Sliding Mode and Model Predictive Control for Enhanced Fault Ride-Through in DFIG Wind Turbines
by Ahmed Muthanna Nori, Ali Kadhim Abdulabbas and Tawfiq M. Aljohani
Energies 2025, 18(15), 4017; https://doi.org/10.3390/en18154017 - 28 Jul 2025
Viewed by 151
Abstract
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. [...] Read more.
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. The proposed approach integrates a Dynamic Voltage Restorer (DVR) in series with a Wind Turbine Generator (WTG) output terminal to enhance the Fault Ride-Through (FRT) capability during grid disturbances. To develop a flexible control strategy for both unbalanced and balanced fault conditions, a combination of feedforward and feedback control based on a sliding mode control (SMC) for DVR converters is used. This hybrid strategy allows for precise voltage regulation, enabling the series compensator to inject the required voltage into the grid, thereby ensuring constant generator terminal voltages even during faults. The SMC enhances the system’s robustness by providing fast, reliable regulation of the injected voltage, effectively mitigating the impact of grid disturbances. To further enhance system performance, Model Predictive Control (MPC) is implemented for the Rotor-Side Converter (RSC) within the back-to-back converter (BTBC) configuration. The main advantages of the predictive control method include eliminating the need for linear controllers, coordinate transformations, or modulators for the converter. Additionally, it ensures the stable operation of the generator even under severe operating conditions, enhancing system robustness and dynamic response. To validate the proposed control strategy, a comprehensive simulation is conducted using a 2 MW DFIG-WT connected to a 120 kV grid. The simulation results demonstrate that the proposed control approach successfully limits overcurrent in the RSC, maintains electromagnetic torque and DC-link voltage within their rated values, and dynamically regulates reactive power to mitigate voltage sags and swells. This allows the WTG to continue operating at its nominal capacity, fully complying with the strict requirements of modern grid codes and ensuring reliable grid integration. Full article
Show Figures

Figure 1

18 pages, 4643 KiB  
Article
The Effect of Non-Transferred Plasma Torch Electrodes on Plasma Jet: A Computational Study
by Sai Likitha Siddanathi, Lars-Göran Westerberg, Hans O. Åkerstedt, Henrik Wiinikka and Alexey Sepman
Appl. Sci. 2025, 15(15), 8367; https://doi.org/10.3390/app15158367 - 28 Jul 2025
Viewed by 155
Abstract
This study explores how different electrode shapes affect plasma flow in a non-transferred plasma torch. Various cathode geometries—including conical, tapered, flat, and cylindrical—were examined alongside stepped anode designs. A 2D axisymmetric computational model was employed to assess the impact of these shapes on [...] Read more.
This study explores how different electrode shapes affect plasma flow in a non-transferred plasma torch. Various cathode geometries—including conical, tapered, flat, and cylindrical—were examined alongside stepped anode designs. A 2D axisymmetric computational model was employed to assess the impact of these shapes on plasma behavior. The results reveal that different cathode designs require varying current levels to maintain a consistent power output. This paper presents the changes in electric conductivity and electric potential for different input currents across the arc formation path (from the cathode tip to the anode beginning) and relating to Ohm’s law. Significant variations in plasma jet velocity and temperature were observed, especially near the cathode tip. The study concludes by evaluating thermal efficiency across geometry configurations. Flat cathodes demonstrated the highest efficiency, while the anode shape had minimal impact. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

Back to TopTop