Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (400)

Search Parameters:
Keywords = power management circuit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10949 KiB  
Article
Segmentation Control in Dynamic Wireless Charging for Electric Vehicles
by Tran Duc Hiep, Nguyen Huu Minh, Tran Trong Minh, Nguyen Thi Diep and Nguyen Kien Trung
Electronics 2025, 14(15), 3086; https://doi.org/10.3390/electronics14153086 - 1 Aug 2025
Viewed by 163
Abstract
Dynamic wireless charging systems have emerged as a promising solution to extend the driving range of electric vehicles by enabling energy transfer while the vehicle is in motion. However, the segment-based charging lane structure introduces challenges such as pulsation of the output power [...] Read more.
Dynamic wireless charging systems have emerged as a promising solution to extend the driving range of electric vehicles by enabling energy transfer while the vehicle is in motion. However, the segment-based charging lane structure introduces challenges such as pulsation of the output power and the need for precise switching control of the transmitting segments. This paper proposes a position-sensorless control method for managing transmitting lines in a dynamic wireless charging system. The proposed approach uses a segmented charging lane structure combined with two receiving coils and LCC compensation circuits on both the transmitting and receiving sides. Based on theoretical analysis, the study determines the optimal switching positions and signals to reduce the current fluctuation. To validate the proposed method, a dynamic wireless charging system prototype with a power rating of 3kW was designed, constructed, and tested in a laboratory environment. The results demonstrate that the proposed position-sensorless control method effectively mitigates power fluctuations and enhances the stability and efficiency of the wireless charging process. Full article
Show Figures

Figure 1

11 pages, 492 KiB  
Article
Ultra-Small Temperature Sensing Units with Fitting Functions for Accurate Thermal Management
by Samuel Heikens and Degang Chen
Metrology 2025, 5(3), 46; https://doi.org/10.3390/metrology5030046 - 1 Aug 2025
Viewed by 141
Abstract
Thermal management is an area of study in electronics focused on managing temperature to improve reliability and efficiency. When temperatures are too high, cooling systems are activated to prevent overheating, which can lead to reliability issues. To monitor the temperatures, sensors are often [...] Read more.
Thermal management is an area of study in electronics focused on managing temperature to improve reliability and efficiency. When temperatures are too high, cooling systems are activated to prevent overheating, which can lead to reliability issues. To monitor the temperatures, sensors are often placed on-chip near hotspot locations. These sensors should be very small to allow them to be placed among compact, high-activity circuits. Often, they are connected to a central control circuit located far away from the hot spot locations where more area is available. This paper proposes sensing units for a novel temperature sensing architecture in the TSMC 180 nm process. This architecture functions by approximating the current through the sensing unit at a reference voltage, which is used to approximate the temperature in the digital back end using fitting functions. Sensing units are selected based on how well its temperature–current relationship can be modeled, sensing unit area, and power consumption. Many sensing units will be experimented with at different reference voltages. These temperature–current curves will be modeled with various fitting functions. The sensing unit selected is a diode-connected p-type MOSFET (Metal Oxide Semiconductor Field Effect Transistor) with a size of W = 400 nm, L = 180 nm. This sensing unit is exceptionally small compared to existing work because it does not rely on multiple devices at the sensing unit location to generate a PTAT or IPTAT signal like most work in this area. The temperature–current relationship of this device can also be modeled using a 2nd order polynomial, requiring a minimal number of trim temperatures. Its temperature error is small, and the power consumption is low. The range of currents for this sensing unit could be reasonably made on an IDAC. Full article
Show Figures

Figure 1

10 pages, 1855 KiB  
Article
TCAD Design and Optimization of In0.20Ga0.80N/In0.35Ga0.65N Quantum-Dot Intermediate-Band Solar Cells
by Salaheddine Amezzoug, Haddou El Ghazi and Walid Belaid
Crystals 2025, 15(8), 693; https://doi.org/10.3390/cryst15080693 - 30 Jul 2025
Viewed by 273
Abstract
Intermediate-band photovoltaics promise single-junction efficiencies that exceed the Shockley and Queisser limit, yet viable material platforms and device geometries remain under debate. Here, we perform comprehensive two-dimensional device-scale simulations using Silvaco Atlas TCAD to analyze p-i-n In0.20Ga0.80N solar cells [...] Read more.
Intermediate-band photovoltaics promise single-junction efficiencies that exceed the Shockley and Queisser limit, yet viable material platforms and device geometries remain under debate. Here, we perform comprehensive two-dimensional device-scale simulations using Silvaco Atlas TCAD to analyze p-i-n In0.20Ga0.80N solar cells in which the intermediate band is supplied by In0.35Ga0.65N quantum dots located inside the intrinsic layer. Quantum-dot diameters from 1 nm to 10 nm and areal densities up to 116 dots per period are evaluated under AM 1.5G, one-sun illumination at 300 K. The baseline pn junction achieves a simulated power-conversion efficiency of 33.9%. The incorporation of a single 1 nm quantum-dot layer dramatically increases efficiency to 48.1%, driven by a 35% enhancement in short-circuit current density while maintaining open-circuit voltage stability. Further increases in dot density continue to boost current but with diminishing benefit; the highest efficiency recorded, 49.4% at 116 dots, is only 1.4 percentage points above the 40-dot configuration. The improvements originate from two-step sub-band-gap absorption mediated by the quantum dots and from enhanced carrier collection in a widened depletion region. These results define a practical design window centred on approximately 1 nm dots and about 40 dots per period, balancing substantial efficiency gains with manageable structural complexity and providing concrete targets for epitaxial implementation. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

25 pages, 4048 KiB  
Article
Grid Stability and Wind Energy Integration Analysis on the Transmission Grid Expansion Planned in La Palma (Canary Islands)
by Raúl Peña, Antonio Colmenar-Santos and Enrique Rosales-Asensio
Processes 2025, 13(8), 2374; https://doi.org/10.3390/pr13082374 - 26 Jul 2025
Viewed by 443
Abstract
Island electrical networks often face stability and resilience issues due to their weakly meshed structure, which lowers system inertia and compromises supply continuity. This challenge is further intensified by the increasing integration of renewable energy sources, promoted by decarbonization goals, whose intermittent and [...] Read more.
Island electrical networks often face stability and resilience issues due to their weakly meshed structure, which lowers system inertia and compromises supply continuity. This challenge is further intensified by the increasing integration of renewable energy sources, promoted by decarbonization goals, whose intermittent and variable nature complicates grid stability management. To address this, Red Eléctrica de España—the transmission system operator of Spain—has planned several improvements in the Canary Islands, including the installation of new wind farms and a second transmission circuit on the island of La Palma. This new infrastructure will complement the existing one and ensure system stability in the event of N-1 contingencies. This article evaluates the stability of the island’s electrical network through dynamic simulations conducted in PSS®E, analyzing four distinct fault scenarios across three different grid configurations (current, short-term upgrade and long-term upgrade with wind integration). Generator models are based on standard dynamic parameters (WECC) and calibrated load factors using real data from the day of peak demand in 2021. Results confirm that the planned developments ensure stable system operation under severe contingencies, while the integration of wind power leads to a 33% reduction in diesel generation, contributing to improved environmental and operational performance. Full article
Show Figures

Figure 1

21 pages, 4949 KiB  
Article
An Integrated Lightweight Neural Network Design and FPGA-Accelerated Edge Computing for Chili Pepper Variety and Origin Identification via an E-Nose
by Ziyu Guo, Yong Yin, Haolin Gu, Guihua Peng, Xueya Wang, Ju Chen and Jia Yan
Foods 2025, 14(15), 2612; https://doi.org/10.3390/foods14152612 - 25 Jul 2025
Viewed by 255
Abstract
A chili pepper variety and origin detection system that integrates a field-programmable gate array (FPGA) with an electronic nose (e-nose) is proposed in this paper to address the issues of variety confusion and origin ambiguity in the chili pepper market. The system uses [...] Read more.
A chili pepper variety and origin detection system that integrates a field-programmable gate array (FPGA) with an electronic nose (e-nose) is proposed in this paper to address the issues of variety confusion and origin ambiguity in the chili pepper market. The system uses the AIRSENSE PEN3 e-nose from Germany to collect gas data from thirteen different varieties of chili peppers and two specific varieties of chili peppers originating from seven different regions. Model training is conducted via the proposed lightweight convolutional neural network ChiliPCNN. By combining the strengths of a convolutional neural network (CNN) and a multilayer perceptron (MLP), the ChiliPCNN model achieves an efficient and accurate classification process, requiring only 268 parameters for chili pepper variety identification and 244 parameters for origin tracing, with 364 floating-point operations (FLOPs) and 340 FLOPs, respectively. The experimental results demonstrate that, compared with other advanced deep learning methods, the ChiliPCNN has superior classification performance and good stability. Specifically, ChiliPCNN achieves accuracy rates of 94.62% in chili pepper variety identification and 93.41% in origin tracing tasks involving Jiaoyang No. 6, with accuracy rates reaching as high as 99.07% for Xianjiao No. 301. These results fully validate the effectiveness of the model. To further increase the detection speed of the ChiliPCNN, its acceleration circuit is designed on the Xilinx Zynq7020 FPGA from the United States and optimized via fixed-point arithmetic and loop unrolling strategies. The optimized circuit reduces the latency to 5600 ns and consumes only 1.755 W of power, significantly improving the resource utilization rate and processing speed of the model. This system not only achieves rapid and accurate chili pepper variety and origin detection but also provides an efficient and reliable intelligent agricultural management solution, which is highly important for promoting the development of agricultural automation and intelligence. Full article
Show Figures

Figure 1

18 pages, 1587 KiB  
Article
Management of Mobile Resonant Electrical Systems for High-Voltage Generation in Non-Destructive Diagnostics of Power Equipment Insulation
by Anatolii Shcherba, Dmytro Vinnychenko, Nataliia Suprunovska, Sergy Roziskulov, Artur Dyczko and Roman Dychkovskyi
Electronics 2025, 14(15), 2923; https://doi.org/10.3390/electronics14152923 - 22 Jul 2025
Viewed by 244
Abstract
This research presents the development and management principles of mobile resonant electrical systems designed for high-voltage generation, intended for non-destructive diagnostics of insulation in high-power electrical equipment. The core of the system is a series inductive–capacitive (LC) circuit characterized by a high quality [...] Read more.
This research presents the development and management principles of mobile resonant electrical systems designed for high-voltage generation, intended for non-destructive diagnostics of insulation in high-power electrical equipment. The core of the system is a series inductive–capacitive (LC) circuit characterized by a high quality (Q) factor and operating at high frequencies, typically in the range of 40–50 kHz or higher. Practical implementations of the LC circuit with Q-factors exceeding 200 have been achieved using advanced materials and configurations. Specifically, ceramic capacitors with a capacitance of approximately 3.5 nF and Q-factors over 1000, in conjunction with custom-made coils possessing Q-factors above 280, have been employed. These coils are constructed using multi-core, insulated, and twisted copper wires of the Litzendraht type to minimize losses at high frequencies. Voltage amplification within the system is effectively controlled by adjusting the current frequency, thereby maximizing voltage across the load without increasing the system’s size or complexity. This frequency-tuning mechanism enables significant reductions in the weight and dimensional characteristics of the electrical system, facilitating the development of compact, mobile installations. These systems are particularly suitable for on-site testing and diagnostics of high-voltage insulation in power cables, large rotating machines such as turbogenerators, and other critical infrastructure components. Beyond insulation diagnostics, the proposed system architecture offers potential for broader applications, including the charging of capacitive energy storage units used in high-voltage pulse systems. Such applications extend to the synthesis of micro- and nanopowders with tailored properties and the electrohydropulse processing of materials and fluids. Overall, this research demonstrates a versatile, efficient, and portable solution for advanced electrical diagnostics and energy applications in the high-voltage domain. Full article
(This article belongs to the Special Issue Energy Harvesting and Energy Storage Systems, 3rd Edition)
Show Figures

Figure 1

19 pages, 2359 KiB  
Article
Technical and Economic Feasibility Analysis to Implement a Solid-State Transformer in Local Distribution Systems in Colombia
by Juan Camilo Ramírez, Eduardo Gómez-Luna and Juan C. Vasquez
Energies 2025, 18(14), 3723; https://doi.org/10.3390/en18143723 - 14 Jul 2025
Cited by 1 | Viewed by 402
Abstract
Today’s power grids are being modernized with the integration of new technologies, making them increasingly efficient, secure, and flexible. One of these technologies, which is beginning to make great contributions to distribution systems, is solid-state transformers (SSTs), motivating the present technical and economic [...] Read more.
Today’s power grids are being modernized with the integration of new technologies, making them increasingly efficient, secure, and flexible. One of these technologies, which is beginning to make great contributions to distribution systems, is solid-state transformers (SSTs), motivating the present technical and economic study of local level 2 distribution systems in Colombia. Taking into account Resolution 015 of 2018 issued by the Energy and Gas Regulatory Commission (CREG), which establishes the economic and quality parameters for the remuneration of electricity operators, the possibility of using these new technologies in electricity networks, particularly distribution networks, was studied. The methodology for developing this study consisted of creating a reference framework describing the topologies implemented in local distribution systems (LDSs), followed by a technical and economic evaluation based on demand management and asset remuneration through special construction units, providing alternatives for the digitization and modernization of the Colombian electricity market. The research revealed the advantages of SST technologies, such as reactive power compensation, surge protection, bidirectional flow, voltage drops, harmonic mitigation, voltage regulation, size reduction, and decreased short-circuit currents. These benefits can be leveraged by distribution network operators to properly manage these types of technologies, allowing them to be better prepared for the transition to smart grids. Full article
Show Figures

Figure 1

35 pages, 3959 KiB  
Article
Battery Charging Simulation of a Passenger Electric Vehicle from a Traction Voltage Inverter with an Integrated Charger
by Evgeniy V. Khekert, Boris V. Malozyomov, Roman V. Klyuev, Nikita V. Martyushev, Vladimir Yu. Konyukhov, Vladislav V. Kukartsev, Oleslav A. Antamoshkin and Ilya S. Remezov
World Electr. Veh. J. 2025, 16(7), 391; https://doi.org/10.3390/wevj16070391 - 13 Jul 2025
Viewed by 276
Abstract
This paper presents the results of the mathematical modeling and experimental studies of charging a traction lithium-ion battery of a passenger electric car using an integrated charger based on a traction voltage inverter. An original three-stage charging algorithm (3PT/PN) has been developed and [...] Read more.
This paper presents the results of the mathematical modeling and experimental studies of charging a traction lithium-ion battery of a passenger electric car using an integrated charger based on a traction voltage inverter. An original three-stage charging algorithm (3PT/PN) has been developed and implemented, which provides a sequential decrease in the charging current when the specified voltage and temperature levels of the battery module are reached. As part of this study, a comprehensive mathematical model has been created that takes into account the features of the power circuit, control algorithms, thermal effects and characteristics of the storage battery. The model has been successfully verified based on the experimental data obtained when charging the battery module in real conditions. The maximum error of voltage modeling has been 0.71%; that of current has not exceeded 1%. The experiments show the achievement of a realized capacity of 8.9 Ah and an integral efficiency of 85.5%, while the temperature regime remains within safe limits. The proposed approach provides a high charge rate, stability of the thermal state of the battery and a long service life. The results can be used to optimize the charging infrastructure of electric vehicles and to develop intelligent battery module management systems. Full article
Show Figures

Figure 1

33 pages, 4996 KiB  
Article
Rain-Induced Vibration Energy Harvesting Using Nonlinear Plates with Piezoelectric Integration and Power Management
by Yi-Ren Wang, Wei Ting Lin and Bo-Jang Huang
Sensors 2025, 25(14), 4347; https://doi.org/10.3390/s25144347 - 11 Jul 2025
Viewed by 353
Abstract
Vibration energy offers promising potential for renewable energy harvesting, especially in conditions where conventional sources such as solar power may be limited or intermittent. This study proposes a rain energy harvester (REH) that converts the kinetic energy of raindrops into electrical energy using [...] Read more.
Vibration energy offers promising potential for renewable energy harvesting, especially in conditions where conventional sources such as solar power may be limited or intermittent. This study proposes a rain energy harvester (REH) that converts the kinetic energy of raindrops into electrical energy using nonlinear thin plates, integrated with piezoelectric elements. Two plate configurations—fully hinged (H-H-H-H) and clamped–hinged–free–hinged (C-H-F-H)—are investigated. Theoretical modeling and simulation results are compared with experimental data, with special attention paid to the role of slapping forces in improving prediction accuracy. A power management system is also introduced to stabilize and regulate the harvested voltage. Results confirm the feasibility of rain-induced energy harvesting, showing potential for application in rain-prone areas and integration with existing infrastructure such as solar panels, tents, or canopies. Full article
(This article belongs to the Special Issue Advances in Energy Harvesting and Sensor Systems)
Show Figures

Figure 1

8 pages, 1917 KiB  
Proceeding Paper
Optimizing Fault Detection Algorithms in Synchronous Generator Using Wavelet Transform and Fuzzy Logic for Enhanced Fault Analysis
by Supus Kotpay, Suracha Panunchai, Natchanun Prainetr and Supachai Prainetr
Eng. Proc. 2025, 86(1), 3; https://doi.org/10.3390/engproc2025086003 - 4 Jul 2025
Viewed by 198
Abstract
This paper proposes a robust fault detection and analysis model for 126 MVA synchronous generators connected to 16 kV and 230 kV transmission lines, developed in MATLAB Simulink R2025a. The model simulates various fault scenarios, including short-circuit conditions, to enhance the fault detection [...] Read more.
This paper proposes a robust fault detection and analysis model for 126 MVA synchronous generators connected to 16 kV and 230 kV transmission lines, developed in MATLAB Simulink R2025a. The model simulates various fault scenarios, including short-circuit conditions, to enhance the fault detection accuracy. The proposed approach combines wavelet transform for precise signal decomposition with fuzzy logic for reliable decision-making, enabling real-time fault detection and classification. The enhanced signal processing framework facilitates faster fault identification and localization, while the fuzzy logic system ensures accurate and consistent fault categorization. The simulation results demonstrate significant improvements in the protection and operational control of synchronous generators, achieving both high reliability and precision. These findings underscore the algorithm’s suitability for deployment in modern power systems, offering a scalable and effective solution for fault management. Full article
Show Figures

Figure 1

9 pages, 3096 KiB  
Proceeding Paper
Development of AC-DC Converter for Hybrid PV Integrated Microgrid System
by Ramabadran Ramaprabha, Sakthivel Sangeetha, Raghunathan Akshitha Blessy, Ravichandran Lekhashree and Pachaiyappan Meenakshi
Eng. Proc. 2025, 93(1), 10; https://doi.org/10.3390/engproc2025093010 - 30 Jun 2025
Viewed by 141
Abstract
The amount of energy consumed worldwide is raising at a startling rate. This has led to a global energy crisis and a hike in fuel prices and has caused environmental jeopardy. Renewable energy resources offer a promising solution to the above situation. Solar [...] Read more.
The amount of energy consumed worldwide is raising at a startling rate. This has led to a global energy crisis and a hike in fuel prices and has caused environmental jeopardy. Renewable energy resources offer a promising solution to the above situation. Solar energy is examined to be the most liberal source of renewable energy. The efficiency of solar PV cells show nonlinear characteristics and deliver poor performance. Consequently, it is imperative to use the maximum power point tracking (MPPT) technique to extract the optimum amount of energy from photovoltaic (PV) cells. Perturb and Observe (P&O) and Incremental Conductance (INC) are examples of MPPT algorithms. The performance of MPPT schemes below varying climatic ambience should be predominantly considered. The workings of these schemes under various load conditions becomes critical to analyze. This work deals with this issue and compares the conventional P&O MPPT and INC MPPT schemes for various solar irradiation and load conditions and designing solar panels optimized for maximum power generation. The designed MPPT scheme is carried out in the control circuit of a boost converter, evaluating and designing a converter to convert solar panel DC power into grid-compatible AC power. By analyzing different methods for managing and tracking PV power, this method proves to be fast and gives better results under changes in solar insolation. Full article
Show Figures

Figure 1

24 pages, 11109 KiB  
Review
Review of Self-Powered Wireless Sensors by Triboelectric Breakdown Discharge
by Shuzhe Liu, Jixin Yi, Guyu Jiang, Jiaxun Hou, Yin Yang, Guangli Li, Xuhui Sun and Zhen Wen
Micromachines 2025, 16(7), 765; https://doi.org/10.3390/mi16070765 - 29 Jun 2025
Viewed by 565
Abstract
This review systematically examines recent advances in self-powered wireless sensing technologies based on triboelectric nanogenerators (TENGs), focusing on innovative methods that leverage breakdown discharge effects to achieve high-precision and long-distance signal transmission. These methods offer novel technical pathways and theoretical frameworks for next-generation [...] Read more.
This review systematically examines recent advances in self-powered wireless sensing technologies based on triboelectric nanogenerators (TENGs), focusing on innovative methods that leverage breakdown discharge effects to achieve high-precision and long-distance signal transmission. These methods offer novel technical pathways and theoretical frameworks for next-generation wireless sensing systems. To address the core limitations of conventional wireless sensors, such as a restricted transmission range, high power consumption, and suboptimal integration, this analysis elucidates the mechanism of the generation of high-frequency electromagnetic waves through localized electric field ionization induced by breakdown discharge. Key research directions are synthesized to enhance TENG-based sensing capabilities, including novel device architectures, the optimization of RLC circuit models, the integration of machine learning algorithms, and power management strategies. While current breakdown discharge sensors face challenges such as energy dissipation, multimodal coupling complexity, and signal interpretation barriers, future breakthroughs in material engineering and structural design are anticipated to drive advancements in efficiency, miniaturization, and intelligent functionality in this field. Full article
Show Figures

Figure 1

17 pages, 15677 KiB  
Article
Flattened Power Converter Design with Improved Thermal Performance for High-Power-Density Energy Conversion
by Zhengwei Dong, Shuyu Zhang and Liwei Zhou
Energies 2025, 18(13), 3416; https://doi.org/10.3390/en18133416 - 29 Jun 2025
Viewed by 355
Abstract
This paper proposes a flattened power electronic design approach to enhance both power density and thermal management performance. As essential components in electrified energy conversion, evaluations of power converters are strongly based on their power density. Achieving a compact design typically requires a [...] Read more.
This paper proposes a flattened power electronic design approach to enhance both power density and thermal management performance. As essential components in electrified energy conversion, evaluations of power converters are strongly based on their power density. Achieving a compact design typically requires a well-optimized printed circuit board (PCB) layout, optimal component design and selection, and an efficient thermal management system. During high-power operation, significant power losses can lead to substantial heat generation. Without effective thermal mitigation, this heat buildup may result in excessive temperature rises or even system failure. To address this challenge, this paper developed a flattened power converter design methodology to increase the effective heat-dissipation area without expanding the total volume consumption. This proposed design improves thermal performance and, in turn, enhances overall power density. A three-phase inverter prototype is developed and tested to demonstrate the effectiveness of the proposed method. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

37 pages, 16852 KiB  
Review
Advances in Interface Circuits for Self-Powered Piezoelectric Energy Harvesting Systems: A Comprehensive Review
by Abdallah Al Ghazi, Achour Ouslimani and Abed-Elhak Kasbari
Sensors 2025, 25(13), 4029; https://doi.org/10.3390/s25134029 - 28 Jun 2025
Viewed by 650
Abstract
This paper presents a comprehensive summary of recent advances in circuit topologies for piezoelectric energy harvesting, leading to self-powered systems (SPSs), covering the full-bridge rectifier (FBR) and half-bridge rectifier (HBR), AC-DC converters, and maximum power point tracking (MPPT) techniques. These approaches are analyzed [...] Read more.
This paper presents a comprehensive summary of recent advances in circuit topologies for piezoelectric energy harvesting, leading to self-powered systems (SPSs), covering the full-bridge rectifier (FBR) and half-bridge rectifier (HBR), AC-DC converters, and maximum power point tracking (MPPT) techniques. These approaches are analyzed with respect to their advantages, limitations, and overall impact on energy harvesting efficiency. Th work explores alternative methods that leverage phase shifting between voltage and current waveform components to enhance conversion performance. Additionally, it provides detailed insights into advanced design strategies, including adaptive power management algorithms, low-power control techniques, and complex impedance matching. The paper also addresses the fundamental principles and challenges of converting mechanical vibrations into electrical energy. Experimental results and performance metrics are reviewed, particularly in relation to hybrid approaches, load impedance, vibration frequency, and power conditioning requirements in energy harvesting systems. This review aims to provide researchers and engineers with a critical understanding of the current state of the art, key challenges, and emerging opportunities in piezoelectric energy harvesting. By examining recent developments, it offers valuable insights into optimizing interface circuit design for the development of efficient and self-sustaining piezoelectric energy harvesting systems. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

21 pages, 4853 KiB  
Article
Development of Digital Twin for DC-DC Converters Under Varying Parameter Conditions
by Benjamin Jessie, Thor Westergaard, Babak Fahimi and Poras Balsara
Electronics 2025, 14(13), 2549; https://doi.org/10.3390/electronics14132549 - 24 Jun 2025
Viewed by 324
Abstract
The constantly changing characteristics of sources, loads, and operating environments in microgrids aboard marine vessels warrant the need for the real-time and accurate transient state estimation of the various converters used for power flow management. This paper presents the digital twin development for [...] Read more.
The constantly changing characteristics of sources, loads, and operating environments in microgrids aboard marine vessels warrant the need for the real-time and accurate transient state estimation of the various converters used for power flow management. This paper presents the digital twin development for a parameter-varying non-isolated DC-DC buck (step down) converter to demonstrate the potential of circuit identification and state estimation within a single digital twin model. The digital twin will utilize individual and parameter-specific NARX-RNNs in a centralized model to identify and adapt system state predictions relative to the most current configuration of the buck converter. Additionally, the model’s ability to maintain state estimation accuracy in the presence of circuit component variation will be demonstrated through simulated deviations from nominal values, and model versatility will be shown through testing a simulation-based model on physical hardware. This modular model, which is demonstrated through simulation and experimentation, can be adapted and scaled for additional circuit configurations. It has the potential to be integrated into real-time system monitoring and fault detection systems within multi-converter microgrid environments. Full article
(This article belongs to the Special Issue Emerging Technologies in DC Microgrids)
Show Figures

Figure 1

Back to TopTop