Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,756)

Search Parameters:
Keywords = power integrated circuits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2649 KiB  
Article
Short-Circuit Current Calculation of Single-Phase to Ground Fault in Petal-Shaped Distribution Network
by Yilong Kang, Huanruo Qi, Rui Liu, Xiangyang Yan, Chen Chen, Fei Guo, Fang Guo and Xiaoxiao Dong
Processes 2025, 13(8), 2393; https://doi.org/10.3390/pr13082393 - 28 Jul 2025
Abstract
Petal-shaped distribution networks are receiving increasing attention due to their enhanced reliability. However, the integration of distributed generators (DGs) significantly alters the fault characteristics during single-phase to ground faults. Traditional short-circuit calculation methods become inadequate due to the unmodeled effects of negative sequence [...] Read more.
Petal-shaped distribution networks are receiving increasing attention due to their enhanced reliability. However, the integration of distributed generators (DGs) significantly alters the fault characteristics during single-phase to ground faults. Traditional short-circuit calculation methods become inadequate due to the unmodeled effects of negative sequence current control in DGs. To address this challenge, this study establishes, for the first time, a mathematical model for single-phase to ground faults in a petal-shaped network with DG integration under both positive and negative sequence control. It explicitly derives the DGs’ output current under three control goals: maintaining constant active power, maintaining constant reactive power, and injecting a symmetric three-phase current. Utilizing the symmetrical component method, a composite sequence network incorporating the DGs’ negative sequence current output is developed. Based on the node–voltage relationships, an analytical short-circuit current calculation method suitable for multiple control goals is proposed. Validation via MATLAB R2022a simulations demonstrates high-fidelity accuracy: in Case 1 with different fault locations, the maximum relative error is 0.31%, while in Case 2, it is 2.04%. These results quantify the critical impact of the negative sequence current—reaching up to 14.78% of the DG output during severe voltage sags—providing theoretical support for the protection design of a petal-shaped distribution network with high DG integration. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 3636 KiB  
Article
A High-Efficiency GaN-on-Si Power Amplifier Using a Rapid Dual-Objective Optimization Method for 5G FR2 Applications
by Lin Peng, Zuxin Ye, Yawen Zhang, Chenxuan Zhang, Yuda Fu, Jian Qin and Yuan Liang
Electronics 2025, 14(15), 2996; https://doi.org/10.3390/electronics14152996 - 27 Jul 2025
Abstract
A broadband, efficient monolithic microwave integrated circuit power amplifier (MMIC PA) in OMMIC’s 0.1 μm GaN-on-Si technology for 5G millimeter-wave communication is presented. This study concentrates on the output matching design, which has an important influence on the PA’s performance. A compact one-order [...] Read more.
A broadband, efficient monolithic microwave integrated circuit power amplifier (MMIC PA) in OMMIC’s 0.1 μm GaN-on-Si technology for 5G millimeter-wave communication is presented. This study concentrates on the output matching design, which has an important influence on the PA’s performance. A compact one-order synthesized transformer network (STN) is adopted to match the 50 Ω load to the extracted large-signal output model of the transistor. A dual-objective strategy is developed for parameter optimization, incorporating the impedance transformation trajectory inside the predefined optimal impedance domain (OID) that satisfies the required specifications, with approximation to selected optimal load impedances. By introducing a custom adjustment factor β into the error function, coupled with an automated iterative tuning process based on S-parameter simulations, desired broadband matching results can be rapidly achieved. The proposed two-stage PA occupies a small chip area of only 1.23 mm2 and demonstrates good frequency consistency over the 24–31 GHz band. Continuous-wave characterization shows a flat small-signal gain of 19.7 ± 0.5 dB; both the output power (Pout) and the power-added efficiency (PAE) at the 4 dB compression point remain smooth, ranging from 32.3 to 32.7 dBm and 35.5% to 37.8%, respectively. The peak PAE reaches up to nearly 40% at the center frequency. Full article
(This article belongs to the Special Issue Advanced RF/Microwave Circuits and System for New Applications)
Show Figures

Figure 1

25 pages, 4048 KiB  
Article
Grid Stability and Wind Energy Integration Analysis on the Transmission Grid Expansion Planned in La Palma (Canary Islands)
by Raúl Peña, Antonio Colmenar-Santos and Enrique Rosales-Asensio
Processes 2025, 13(8), 2374; https://doi.org/10.3390/pr13082374 - 26 Jul 2025
Viewed by 171
Abstract
Island electrical networks often face stability and resilience issues due to their weakly meshed structure, which lowers system inertia and compromises supply continuity. This challenge is further intensified by the increasing integration of renewable energy sources, promoted by decarbonization goals, whose intermittent and [...] Read more.
Island electrical networks often face stability and resilience issues due to their weakly meshed structure, which lowers system inertia and compromises supply continuity. This challenge is further intensified by the increasing integration of renewable energy sources, promoted by decarbonization goals, whose intermittent and variable nature complicates grid stability management. To address this, Red Eléctrica de España—the transmission system operator of Spain—has planned several improvements in the Canary Islands, including the installation of new wind farms and a second transmission circuit on the island of La Palma. This new infrastructure will complement the existing one and ensure system stability in the event of N-1 contingencies. This article evaluates the stability of the island’s electrical network through dynamic simulations conducted in PSS®E, analyzing four distinct fault scenarios across three different grid configurations (current, short-term upgrade and long-term upgrade with wind integration). Generator models are based on standard dynamic parameters (WECC) and calibrated load factors using real data from the day of peak demand in 2021. Results confirm that the planned developments ensure stable system operation under severe contingencies, while the integration of wind power leads to a 33% reduction in diesel generation, contributing to improved environmental and operational performance. Full article
Show Figures

Figure 1

21 pages, 4949 KiB  
Article
An Integrated Lightweight Neural Network Design and FPGA-Accelerated Edge Computing for Chili Pepper Variety and Origin Identification via an E-Nose
by Ziyu Guo, Yong Yin, Haolin Gu, Guihua Peng, Xueya Wang, Ju Chen and Jia Yan
Foods 2025, 14(15), 2612; https://doi.org/10.3390/foods14152612 - 25 Jul 2025
Viewed by 153
Abstract
A chili pepper variety and origin detection system that integrates a field-programmable gate array (FPGA) with an electronic nose (e-nose) is proposed in this paper to address the issues of variety confusion and origin ambiguity in the chili pepper market. The system uses [...] Read more.
A chili pepper variety and origin detection system that integrates a field-programmable gate array (FPGA) with an electronic nose (e-nose) is proposed in this paper to address the issues of variety confusion and origin ambiguity in the chili pepper market. The system uses the AIRSENSE PEN3 e-nose from Germany to collect gas data from thirteen different varieties of chili peppers and two specific varieties of chili peppers originating from seven different regions. Model training is conducted via the proposed lightweight convolutional neural network ChiliPCNN. By combining the strengths of a convolutional neural network (CNN) and a multilayer perceptron (MLP), the ChiliPCNN model achieves an efficient and accurate classification process, requiring only 268 parameters for chili pepper variety identification and 244 parameters for origin tracing, with 364 floating-point operations (FLOPs) and 340 FLOPs, respectively. The experimental results demonstrate that, compared with other advanced deep learning methods, the ChiliPCNN has superior classification performance and good stability. Specifically, ChiliPCNN achieves accuracy rates of 94.62% in chili pepper variety identification and 93.41% in origin tracing tasks involving Jiaoyang No. 6, with accuracy rates reaching as high as 99.07% for Xianjiao No. 301. These results fully validate the effectiveness of the model. To further increase the detection speed of the ChiliPCNN, its acceleration circuit is designed on the Xilinx Zynq7020 FPGA from the United States and optimized via fixed-point arithmetic and loop unrolling strategies. The optimized circuit reduces the latency to 5600 ns and consumes only 1.755 W of power, significantly improving the resource utilization rate and processing speed of the model. This system not only achieves rapid and accurate chili pepper variety and origin detection but also provides an efficient and reliable intelligent agricultural management solution, which is highly important for promoting the development of agricultural automation and intelligence. Full article
Show Figures

Figure 1

20 pages, 21323 KiB  
Article
C Band 360° Triangular Phase Shift Detector for Precise Vertical Landing RF System
by Víctor Araña-Pulido, B. Pablo Dorta-Naranjo, Francisco Cabrera-Almeida and Eugenio Jiménez-Yguácel
Appl. Sci. 2025, 15(15), 8236; https://doi.org/10.3390/app15158236 - 24 Jul 2025
Viewed by 83
Abstract
This paper presents a novel design for precise vertical landing of drones based on the detection of three phase shifts in the range of ±180°. The design has three inputs to which the signal transmitted from an oscillator located at the landing point [...] Read more.
This paper presents a novel design for precise vertical landing of drones based on the detection of three phase shifts in the range of ±180°. The design has three inputs to which the signal transmitted from an oscillator located at the landing point arrives with different delays. The circuit increases the aerial tracking volume relative to that achieved by detectors with theoretical unambiguous detection ranges of ±90°. The phase shift measurement circuit uses an analog phase detector (mixer), detecting a maximum range of ±90°and a double multiplication of the input signals, in phase and phase-shifted, without the need to fulfill the quadrature condition. The calibration procedure, phase detector curve modeling, and calculation of the input signal phase shift are significantly simplified by the use of an automatic gain control on each branch, dwhich keeps input amplitudes to the analog phase detectors constant. A simple program to determine phase shifts and guidance instructions is proposed, which could be integrated into the same flight control platform, thus avoiding the need to add additional processing components. A prototype has been manufactured in C band to explain the details of the procedure design. The circuit uses commercial circuits and microstrip technology, avoiding the crossing of lines by means of switches, which allows the design topology to be extrapolated to much higher frequencies. Calibration and measurements at 5.3 GHz show a dynamic range greater than 50 dB and a non-ambiguous detection range of ±180°. These specifications would allow one to track the drone during the landing maneuver in an inverted cone formed by a surface with an 11 m radius at 10 m high and the landing point, when 4 cm between RF inputs is considered. The errors of the phase shifts used in the landing maneuver are less than ±3°, which translates into 1.7% losses over the detector theoretical range in the worst case. The circuit has a frequency bandwidth of 4.8 GHz to 5.6 GHz, considering a 3 dB variation in the input power when the AGC is limiting the output signal to 0 dBm at the circuit reference point of each branch. In addition, the evolution of phases in the landing maneuver is shown by means of a small simulation program in which the drone trajectory is inside and outside the tracking range of ±180°. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

19 pages, 3051 KiB  
Article
Design of a Current-Mode OTA-Based Memristor Emulator for Neuromorphic Medical Application
by Amel Neifar, Imen Barraj, Hassen Mestiri and Mohamed Masmoudi
Micromachines 2025, 16(8), 848; https://doi.org/10.3390/mi16080848 - 24 Jul 2025
Viewed by 169
Abstract
This study presents transistor-level simulation results for a novel memristor emulator circuit. The design incorporates an inverter and a current-mode-controlled operational transconductance amplifier to stabilize the output voltage. Transient performance is evaluated across a 20 MHz to 100 MHz frequency range. Simulations using [...] Read more.
This study presents transistor-level simulation results for a novel memristor emulator circuit. The design incorporates an inverter and a current-mode-controlled operational transconductance amplifier to stabilize the output voltage. Transient performance is evaluated across a 20 MHz to 100 MHz frequency range. Simulations using 0.18 μm TSMC technology confirm the circuit’s functionality, demonstrating a power consumption of 0.1 mW at a 1.2 V supply. The memristor model’s reliability is verified through corner simulations, along with Monte Carlo and temperature variation tests. Furthermore, the emulator is applied in a Memristive Integrate-and-Fire neuron circuit, a CMOS-based system that replicates biological neuron behavior for spike generation, enabling ultra-low-power computing and advanced processing in retinal prosthesis applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

14 pages, 3769 KiB  
Article
Inversely Designed Silicon Nitride Power Splitters with Arbitrary Power Ratios
by Yang Cong, Shuo Liu, Yanfeng Liang, Haoyu Wang, Huanlin Lv, Fangxu Liu, Xuanchen Li and Qingxiao Guo
Photonics 2025, 12(8), 744; https://doi.org/10.3390/photonics12080744 - 24 Jul 2025
Viewed by 133
Abstract
An optical power splitter (OPS) with arbitrary splitting ratios has attracted significant research interest for its broad applications in photonic integrated circuits. A series of OPSs with arbitrary splitting ratios based on silicon nitride (Si3N4) platforms are presented. The [...] Read more.
An optical power splitter (OPS) with arbitrary splitting ratios has attracted significant research interest for its broad applications in photonic integrated circuits. A series of OPSs with arbitrary splitting ratios based on silicon nitride (Si3N4) platforms are presented. The devices are designed with ultra-compact dimensions using three-dimensional finite-difference time-domain (3D FDTD) analysis and an inverse design algorithm. Within a 50 nm bandwidth (1525 nm to 1575 nm), we demonstrated a 1 × 2 OPS with splitting ratios of 1:1, 1:1.5, and 1:2; a 1 × 3 OPS with ratios of 1:2:1 and 2:1:2; and a 1 × 4 OPS with ratios of 1:1:1:1 and 2:1:2:1. The target splitting ratios are achieved by optimizing pixel distributions in the coupling region. The dimensions of the designed devices are 1.96 × 1.96 µm2, 2.8 × 2.8 µm2, and 2.8 × 4.2 µm2, respectively. The designed devices achieve transmission efficiencies exceeding 90% and exhibit excellent power splitting ratios (PSRs). Full article
Show Figures

Figure 1

36 pages, 5908 KiB  
Review
Exploring the Frontier of Integrated Photonic Logic Gates: Breakthrough Designs and Promising Applications
by Nikolay L. Kazanskiy, Ivan V. Oseledets, Artem V. Nikonorov, Vladislava O. Chertykovtseva and Svetlana N. Khonina
Technologies 2025, 13(8), 314; https://doi.org/10.3390/technologies13080314 - 23 Jul 2025
Viewed by 307
Abstract
The increasing demand for high-speed, energy-efficient computing has propelled the development of integrated photonic logic gates, which utilize the speed of light to surpass the limitations of traditional electronic circuits. These gates enable ultrafast, parallel data processing with minimal power consumption, making them [...] Read more.
The increasing demand for high-speed, energy-efficient computing has propelled the development of integrated photonic logic gates, which utilize the speed of light to surpass the limitations of traditional electronic circuits. These gates enable ultrafast, parallel data processing with minimal power consumption, making them ideal for next-generation computing, telecommunications, and quantum applications. Recent advancements in nanofabrication, nonlinear optics, and phase-change materials have facilitated the seamless integration of all-optical logic gates onto compact photonic chips, significantly enhancing performance and scalability. This paper explores the latest breakthroughs in photonic logic gate design, key material innovations, and their transformative applications. While challenges such as fabrication precision and electronic–photonic integration remain, integrated photonic logic gates hold immense promise for revolutionizing optical computing, artificial intelligence, and secure communication. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

17 pages, 4494 KiB  
Article
A Fault Detection Method for Multi-Sensor Data of Spring Circuit Breakers Based on the RF-Adaboost Algorithm
by Chuang Wang, Peijie Cong, Sifan Yu, Jing Yuan, Nian Lv, Yu Ling, Zheng Peng, Haoyan Zhang and Hongwei Mei
Energies 2025, 18(14), 3890; https://doi.org/10.3390/en18143890 - 21 Jul 2025
Viewed by 340
Abstract
In the context of increasing the complexity and intelligence of modern power systems, traditional maintenance approaches for circuit breakers have shown limitations in meeting both reliability and economic requirements. This paper proposes a multi-sensor data fusion fault detection method based on the RF-Adaboost [...] Read more.
In the context of increasing the complexity and intelligence of modern power systems, traditional maintenance approaches for circuit breakers have shown limitations in meeting both reliability and economic requirements. This paper proposes a multi-sensor data fusion fault detection method based on the RF-Adaboost algorithm for spring-operated circuit breakers. By integrating pressure, speed, coil current, and energy storage motor sensors into the mechanism, multi-source operational data are acquired and processed via denoising and feature extraction techniques. A fault detection model is then constructed using the RF-Adaboost classifier. The experimental results demonstrate that the proposed method achieves over 96% accuracy in identifying typical fault states such as coil voltage deviation, reset spring fatigue, and closing spring degradation, outperforming conventional approaches. These results validate the model’s effectiveness and robustness in diagnosing complex mechanical failures in circuit breakers. Full article
(This article belongs to the Special Issue Advanced Control and Monitoring of High Voltage Power Systems)
Show Figures

Figure 1

21 pages, 985 KiB  
Article
Assessment of Grid-Tied Renewable Energy Systems’ Voltage Support Capability Under Various Reactive Power Compensation Devices
by Jie Cao, Mingshun Liu, Qinfeng Ma, Junqiu Fan, Dongkuo Song, Xia Zhou, Jianfeng Dai and Hao Wu
Energies 2025, 18(14), 3880; https://doi.org/10.3390/en18143880 - 21 Jul 2025
Viewed by 262
Abstract
The weak grid strength in regions with large-scale renewable energy integration has emerged as a universal challenge, limiting the further expansion of renewable energy development. Currently, the short-circuit ratio (SCR) is widely used to quantify the relative strength between AC systems and renewable [...] Read more.
The weak grid strength in regions with large-scale renewable energy integration has emerged as a universal challenge, limiting the further expansion of renewable energy development. Currently, the short-circuit ratio (SCR) is widely used to quantify the relative strength between AC systems and renewable energy. To address this issue, this study first analyzes and compares how different reactive power compensation methods enhance the SCR. It then proposes calculation frameworks for both the SCR and critical short-circuit ratio (CSCR) in renewable energy grid-connected systems integrated with reactive power compensation. Furthermore, based on these formulations, a quantitative evaluation methodology for voltage support strength is developed to systematically assess the improvement effects of various compensation approaches on grid strength. Finally, case studies verify that reactive power compensation provided by synchronous condensers effectively strengthens grid strength and facilitates the safe expansion of the renewable energy integration scale. Full article
Show Figures

Figure 1

23 pages, 3863 KiB  
Review
Memristor-Based Spiking Neuromorphic Systems Toward Brain-Inspired Perception and Computing
by Xiangjing Wang, Yixin Zhu, Zili Zhou, Xin Chen and Xiaojun Jia
Nanomaterials 2025, 15(14), 1130; https://doi.org/10.3390/nano15141130 - 21 Jul 2025
Viewed by 395
Abstract
Threshold-switching memristors (TSMs) are emerging as key enablers for hardware spiking neural networks, offering intrinsic spiking dynamics, sub-pJ energy consumption, and nanoscale footprints ideal for brain-inspired computing at the edge. This review provides a comprehensive examination of how TSMs emulate diverse spiking behaviors—including [...] Read more.
Threshold-switching memristors (TSMs) are emerging as key enablers for hardware spiking neural networks, offering intrinsic spiking dynamics, sub-pJ energy consumption, and nanoscale footprints ideal for brain-inspired computing at the edge. This review provides a comprehensive examination of how TSMs emulate diverse spiking behaviors—including oscillatory, leaky integrate-and-fire (LIF), Hodgkin–Huxley (H-H), and stochastic dynamics—and how these features enable compact, energy-efficient neuromorphic systems. We analyze the physical switching mechanisms of redox and Mott-type TSMs, discuss their voltage-dependent dynamics, and assess their suitability for spike generation. We review memristor-based neuron circuits regarding architectures, materials, and key performance metrics. At the system level, we summarize bio-inspired neuromorphic platforms integrating TSM neurons with visual, tactile, thermal, and olfactory sensors, achieving real-time edge computation with high accuracy and low power. Finally, we critically examine key challenges—such as stochastic switching origins, device variability, and endurance limits—and propose future directions toward reconfigurable, robust, and scalable memristive neuromorphic architectures. Full article
(This article belongs to the Special Issue Neuromorphic Devices: Materials, Structures and Bionic Applications)
Show Figures

Figure 1

32 pages, 10857 KiB  
Article
Improved Fault Resilience of GFM-GFL Converters in Ultra-Weak Grids Using Active Disturbance Rejection Control and Virtual Inertia Control
by Monigaa Nagaboopathy, Kumudini Devi Raguru Pandu, Ashmitha Selvaraj and Anbuselvi Shanmugam Velu
Sustainability 2025, 17(14), 6619; https://doi.org/10.3390/su17146619 - 20 Jul 2025
Viewed by 253
Abstract
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair [...] Read more.
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair voltage and frequency stability, imposing challenging conditions for Inverter-Based Resources. To address these challenges, this paper considers a 110 KVA, three-phase, two-level Voltage Source Converter, interfacing a 700 V DC link to a 415 V AC ultra-weak grid. X/R = 1 is controlled using Sinusoidal Pulse Width Modulation, where the Grid-Connected Converter operates in Grid-Forming Mode to maintain voltage and frequency stability under a steady state. During symmetrical and asymmetrical faults, the converter transitions to Grid-Following mode with current control to safely limit fault currents and protect the system integrity. After fault clearance, the system seamlessly reverts to Grid-Forming Mode to resume voltage regulation. This paper proposes an improved control strategy that integrates voltage feedforward reactive power support and virtual capacitor-based virtual inertia using Active Disturbance Rejection Control, a robust, model-independent controller, which rapidly rejects disturbances by regulating d and q-axes currents. To test the practicality of the proposed system, real-time implementation is carried out using the OPAL-RT OP4610 platform, and the results are experimentally validated. The results demonstrate improved fault current limitation and enhanced DC link voltage stability compared to a conventional PI controller, validating the system’s robust Fault Ride-Through performance under ultra-weak grid conditions. Full article
Show Figures

Figure 1

24 pages, 6475 KiB  
Review
Short-Circuit Detection and Protection Strategies for GaN E-HEMTs in High-Power Applications: A Review
by Haitz Gezala Rodero, David Garrido Díez, Iosu Aizpuru Larrañaga and Igor Baraia-Etxaburu
Electronics 2025, 14(14), 2875; https://doi.org/10.3390/electronics14142875 - 18 Jul 2025
Viewed by 318
Abstract
Gallium nitride (GaN) enhancement-mode high-electron-mobility transistors ( E-HEMTs) deliver superior performance compared to traditional silicon (Si) and silicon carbide (SiC) counterparts. Their faster switching speeds, lower on-state resistances, and higher operating frequencies enable more efficient and compact power converters. However, their integration into [...] Read more.
Gallium nitride (GaN) enhancement-mode high-electron-mobility transistors ( E-HEMTs) deliver superior performance compared to traditional silicon (Si) and silicon carbide (SiC) counterparts. Their faster switching speeds, lower on-state resistances, and higher operating frequencies enable more efficient and compact power converters. However, their integration into high-power applications is limited by critical reliability concerns, particularly regarding their short-circuit (SC) withstand capability and overvoltage (OV) resilience. GaN devices typically exhibit SC withstand times of only a few hundred nanoseconds, needing ultrafast protection circuits, which conventional desaturation (DESAT) methods cannot adequately provide. Furthermore, their high switching transients increase the risk of false activation events. The lack of avalanche capability and the dynamic nature of GaN breakdown voltage exacerbate issues related to OV stress during fault conditions. Although SC-related behaviour in GaN devices has been previously studied, a focused and comprehensive review of protection strategies tailored to GaN technology remains lacking. This paper fills that gap by providing an in-depth analysis of SC and OV failure phenomena, coupled with a critical evaluation of current and next-generation protection schemes suitable for GaN-based high-power converters. Full article
(This article belongs to the Special Issue Advances in Semiconductor GaN and Applications)
Show Figures

Figure 1

15 pages, 2929 KiB  
Article
Graphene-Loaded LiNbO3 Directional Coupler: Characteristics and Potential Applications
by Yifan Liu, Fei Lu, Hui Hu, Haoyang Du, Yan Liu and Yao Wei
Nanomaterials 2025, 15(14), 1116; https://doi.org/10.3390/nano15141116 - 18 Jul 2025
Viewed by 247
Abstract
This study explores the impact of graphene integration on lithium niobate (LiNbO3, LN) ridge waveguides and directional couplers, focusing on coupling efficiency, polarization-dependent light absorption, and temperature sensitivity. Experimental and simulation results reveal that graphene loading significantly alters the effective mode [...] Read more.
This study explores the impact of graphene integration on lithium niobate (LiNbO3, LN) ridge waveguides and directional couplers, focusing on coupling efficiency, polarization-dependent light absorption, and temperature sensitivity. Experimental and simulation results reveal that graphene loading significantly alters the effective mode refractive index and enhances waveguide coupling, enabling precise control over light transmission and power distribution. The temperature-dependent behavior of graphene–LN structures demonstrates strong thermal sensitivity, with notable changes in output power ratios between cross and through ports under varying temperatures. These findings highlight the potential of graphene–LN hybrid devices for compact, high-performance photonic circuits and temperature sensing applications. This study provides valuable insights into the design of advanced integrated photonic systems, paving the way for innovations in optical communication, sensing, and quantum technologies. Full article
Show Figures

Figure 1

19 pages, 15854 KiB  
Article
Failure Analysis of Fire in Lithium-Ion Battery-Powered Heating Insoles: Case Study
by Rong Yuan, Sylvia Jin and Glen Stevick
Batteries 2025, 11(7), 271; https://doi.org/10.3390/batteries11070271 - 17 Jul 2025
Viewed by 312
Abstract
This study investigates a lithium-ion battery failure in heating insoles that ignited during normal walking while powered off. Through comprehensive material characterization, electrical testing, thermal analysis, and mechanical gait simulation, we systematically excluded electrical or thermal abuse as failure causes. X-ray/CT imaging localized [...] Read more.
This study investigates a lithium-ion battery failure in heating insoles that ignited during normal walking while powered off. Through comprehensive material characterization, electrical testing, thermal analysis, and mechanical gait simulation, we systematically excluded electrical or thermal abuse as failure causes. X-ray/CT imaging localized the ignition source to the lateral heel edge of the pouch cell, correlating precisely with peak mechanical stress identified through gait analysis. Remarkably, the cyclic load was less than 10% of the single crush load threshold specified in safety standards. Key findings reveal multiple contributing factors as follows: the uncoated polyethylene separator’s inability to prevent stress-induced internal short circuits, the circuit design’s lack of battery health monitoring functionality that permitted undetected degradation, and the hazardous placement inside clothing that exacerbated burn injuries. These findings necessitate a multi-level safety framework for lithium-ion battery products, encompassing enhanced cell design to prevent internal short circuit, improved circuit protection with health monitoring capabilities, optimized product integration to mitigate mechanical and environmental impact, and effective post-failure containment measures. This case study exposes a critical need for product-specific safety standards that address the unique demands of wearable lithium-ion batteries, where existing certification requirements fail to prevent real-use failure scenarios. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
Show Figures

Graphical abstract

Back to TopTop