Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,471)

Search Parameters:
Keywords = power LEDs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2836 KB  
Article
Investigation of the Optimum Solar Insolation for PV Systems Considering the Effect of Tilt Angle and Ambient Temperature
by Raghed Melhem, Yomna Shaker, Fatma Mazen Ali Mazen and Ali Abou-Elnour
Energies 2025, 18(19), 5257; https://doi.org/10.3390/en18195257 (registering DOI) - 3 Oct 2025
Abstract
As interest in PV installation has spiked in recent years, the need for optimizing several factors of PV performance has become crucial. These are tilt angle and solar cell temperature (taking into account ambient temperature) and their effect on solar insolation for solar [...] Read more.
As interest in PV installation has spiked in recent years, the need for optimizing several factors of PV performance has become crucial. These are tilt angle and solar cell temperature (taking into account ambient temperature) and their effect on solar insolation for solar photovoltaic (PV) systems. The objective of this study is to achieve the optimal tilt angle and cell temperature accordingly by developing a MATLAB program to reach the target of maximizing the received solar insolation. To achieve this, additional solar angles such as the azimuth, hour, latitude angle, declination angle, hour angle, and azimuth angle need to be calculated. By computing the solar insolation for specific regions of interest, specifically the Gulf Cooperation Council (GCC) countries, the desired results can be obtained. Additionally, the study aims to assess the influence of PV cell temperature on the I–V curves of commercially available PV modules, which will provide insights into the impact of temperature on the performance characteristics of PV cells. By employing a developed model, the study examined the combined collective influences of solar received radiation, tilt angle, and ambient temperature on the output power of PV systems in five different cities. The annual optimal tilt angles were found to be as follows: Mecca (21.4° N)—21.48°, Fujairah (25.13° N)—25.21°, Kuwait (29.3° N)—29.38°, Baghdad (33.3° N)—33.38°, and Mostaganem (35.9° N)—2535.98°. Notably, the estimated yearly optimal tilt angles closely corresponded to the latitudes of the respective cities. Additionally, the study explored the impact of ambient temperature on PV module performance. It was observed that an increase in ambient temperature resulted in a corresponding rise in the temperature of the PV cells, indicating the significant influence of environmental temperature on PV module efficiency. Overall, the findings demonstrate that adjusting the tilt angle of PV modules on a monthly basis led to higher solar power output compared to yearly adjustments. These results underscore the importance of considering both solar radiation and ambient temperature when optimizing PV power generation. Full article
(This article belongs to the Collection Featured Papers in Solar Energy and Photovoltaic Systems Section)
Show Figures

Figure 1

22 pages, 4434 KB  
Article
Assessing Lighting Quality and Occupational Outcomes in Intensive Care Units: A Case Study from the Democratic Republic of Congo
by Jean-Paul Kapuya Bulaba Nyembwe, John Omomoluwa Ogundiran, Nsenda Lukumwena, Hicham Mastouri and Manuel Gameiro da Silva
Int. J. Environ. Res. Public Health 2025, 22(10), 1511; https://doi.org/10.3390/ijerph22101511 - 1 Oct 2025
Abstract
This study presents a comprehensive assessment of lighting conditions in the Intensive Care Units (ICUs) of two major hospitals in the Democratic Republic of Congo (DRC): Hospital du Cinquantenaire in Kinshasa and Jason Sendwe Hospital in Lubumbashi. A mixed-methods approach was employed, integrating [...] Read more.
This study presents a comprehensive assessment of lighting conditions in the Intensive Care Units (ICUs) of two major hospitals in the Democratic Republic of Congo (DRC): Hospital du Cinquantenaire in Kinshasa and Jason Sendwe Hospital in Lubumbashi. A mixed-methods approach was employed, integrating continuous illuminance monitoring with structured staff surveys to evaluate visual comfort in accordance with the EN 12464-1 standard for indoor workplaces. Objective measurements revealed that more than 52.2% of the evaluated ICU workspaces failed to meet the recommended minimum illuminance level of 300 lux. Subjective responses from healthcare professionals indicated that poor lighting significantly reduced job satisfaction by 40%, lowered self-rated task performance by 30%, decreased visual comfort scores from 4.1 to 2.6 (on a 1–5 scale), and increased the prevalence of well-being symptoms (eye fatigue, headaches) by 25–35%. Frequent complaints included eye strain, glare, and discomfort with posture, with these issues often exacerbated during the rainy season due to reduced natural daylight. The study highlights critical deficiencies in current lighting infrastructure and emphasizes the need for urgent improvements in clinical environments. Moreover, inconsistent energy supply to these healthcare settings also impacts the assurance of visual comfort. To address these shortcomings, the study recommends transitioning to energy-efficient LED lighting, enhancing access to natural light, incorporating circadian rhythm-based lighting systems, enabling individual lighting control at workstations, and ensuring a consistent power supply via the integration of solar inverters to the grid supply. These interventions are essential not only for improving healthcare staff performance and safety but also for supporting better patient outcomes. The findings offer actionable insights for hospital administrators and policymakers in the DRC and similar low-resource settings seeking to enhance environmental quality in critical care facilities. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

20 pages, 4849 KB  
Article
Experimental Investigation of Partial Flue Gas Recirculation During Load Changes in a 1 MWth SRF-Fired CFB Combustor
by Alexander Kuhn, Jochen Ströhle and Bernd Epple
Energies 2025, 18(19), 5227; https://doi.org/10.3390/en18195227 - 1 Oct 2025
Abstract
The increasing share of renewable energy sources in power grids demands greater load flexibility from thermal power plants. Circulating Fluidized Bed (CFB) combustion systems, while offering fuel flexibility and high thermal inertia, face challenges in maintaining hydrodynamic and thermal stability during load transitions. [...] Read more.
The increasing share of renewable energy sources in power grids demands greater load flexibility from thermal power plants. Circulating Fluidized Bed (CFB) combustion systems, while offering fuel flexibility and high thermal inertia, face challenges in maintaining hydrodynamic and thermal stability during load transitions. This study investigates partial flue gas recirculation (FGR) as a strategy to enhance short-term load flexibility in a 1 MWth CFB pilot plant fired exclusively with solid recovered fuel. Two experimental test series were conducted. Under conventional operation, where fuel and fluidization air are reduced proportionally, load reductions to 86% and 80% led to operating regime shift. Particle entrainment from the riser to the freeboard and loop seal decreased, circulation weakened, and the temperature difference between bed and freeboard zone increased by 71 K. Grace diagram analysis confirmed that the system approached the boundary of the circulating regime. In contrast, the partial FGR strategy maintained total fluidization rates by replacing part of the combustion air with recirculated flue gas. This stabilized pressure conditions, sustained particle circulation, and limited the increase in the temperature difference to just 7 K. Heat extraction in the freeboard remained constant or improved, despite slightly lower flue gas temperatures. While partial FGR introduces a minor efficiency loss due to the reheating of recirculated gases, it significantly enhances combustion stability and enables low-load operation without compromising fluidization quality. These findings demonstrate the potential of partial FGR as a control strategy for flexible, waste-fueled CFB systems and supports its application in future low-carbon energy systems. Full article
(This article belongs to the Special Issue Biomass Power Generation and Gasification Technology)
Show Figures

Figure 1

17 pages, 2793 KB  
Article
Full-Spectrum LED-Driven Underwater Spectral Detection System and Its Applications
by Yunfei Li, Jun Wei, Shaohua Cheng, Tao Yu, Hong Zhao, Guancheng Li and Fuhong Cai
Chemosensors 2025, 13(10), 359; https://doi.org/10.3390/chemosensors13100359 - 1 Oct 2025
Abstract
Spectral detection technology offers non-destructive, in situ, and high-speed capabilities, making it widely applicable for detecting biological and chemical samples and quantifying their concentrations. Water resources, essential to life on Earth, are widely distributed across the planet. The application of spectral technology to [...] Read more.
Spectral detection technology offers non-destructive, in situ, and high-speed capabilities, making it widely applicable for detecting biological and chemical samples and quantifying their concentrations. Water resources, essential to life on Earth, are widely distributed across the planet. The application of spectral technology to underwater environments is useful for wide-area water resource monitoring. Although spectral detection technology is well-established, its underwater application presents challenges, including waterproof housing design, power supply, and data transmission, which limit widespread application of underwater spectral detection. Furthermore, underwater spectral detection necessitates the development of compatible computational methods for sample classification or regression analysis. Focusing on underwater spectral detection, this work involved the construction of a suitable hardware system. A compact spectrometer and LEDs (400 nm–800 nm) were employed as the detection and light source modules, respectively, resulting in a compact system architecture. Extensive tests confirmed that the miniaturized design-maintained system performance. Further, this study addressed the estimation of total phosphorus (TP) concentration in water using spectral data. Samples with varying TP concentrations were prepared and calibrated against standard detection instruments. Subsequently, classification algorithms applied to the acquired spectral data enabled the in situ underwater determination of TP concentration in these samples. This work demonstrates the feasibility of underwater spectral detection for future in situ, high-speed monitoring of aquatic biochemical indicators. In the future, after adding UV LED light source, more water quality parameter information can be obtained. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Chemical Analysis)
Show Figures

Figure 1

17 pages, 3770 KB  
Article
Spatiotemporal Evolution and Driving Factors Analysis of Karst Cultivated Land Based on Geodetector in Guilin (Guangxi, China)
by Shaobin Zeng, Feili Wei, Hong Jiang, Tengfang Li and Yongqiang Ren
Appl. Sci. 2025, 15(19), 10635; https://doi.org/10.3390/app151910635 - 1 Oct 2025
Abstract
In karst regions (KRs), unique surface morphology and irrational human exploitation have led to increasingly prominent issues such as land fragmentation and rocky desertification. Understanding the spatiotemporal evolution of cultivated land (CL) in these areas is of great significance for supporting regional socioeconomic [...] Read more.
In karst regions (KRs), unique surface morphology and irrational human exploitation have led to increasingly prominent issues such as land fragmentation and rocky desertification. Understanding the spatiotemporal evolution of cultivated land (CL) in these areas is of great significance for supporting regional socioeconomic development, food security, and ecological sustainability. This study focuses on Guilin, combining GIS spatial analysis with methods including kernel density analysis, dynamic degree, spatial transfer matrix, and a Geodetector to examine the spatiotemporal distribution characteristics, evolution trends, and driving factors of land use based on five-phase of land use data from 2000 to 2020. The results show that: (1) over the past two decades, land use in Guilin has been dominated by CL and forest land, with CL exhibiting a spatial pattern of more in the east and south, and less in the west and north; (2) the CL transfer-out rate exceeded the transfer-in rate, mainly shifting to construction land and forest land; (3) the overall density of CL showed a declining trend, with a relatively stable spatial pattern; and (4) driving factor analysis indicates that the spatiotemporal changes in CL are jointly influenced by multiple factors, with natural factors exerting a stronger influence than socio-economic factors. Among them, the interaction between elevation and temperature had the greatest impact and served as the dominant factor. Although GDP and population were not dominant individually, their explanatory power and sensitivity increased significantly when interacting with other factors, making them key sensitive factors. The results can provide a scientific reference for the protection and rational utilization of CL resources in KR. Full article
Show Figures

Figure 1

31 pages, 7395 KB  
Article
Creativeable: Leveraging AI for Personalized Creativity Enhancement
by Ariel Kreisberg-Nitzav and Yoed N. Kenett
AI 2025, 6(10), 247; https://doi.org/10.3390/ai6100247 - 1 Oct 2025
Abstract
Creativity is central to innovation and problem-solving, yet scalable training solutions remain limited. This study evaluates Creativeable, an AI-powered creativity training program that provides automated feedback and adjusts creative story writing task difficulty without human intervention. A total of 385 participants completed [...] Read more.
Creativity is central to innovation and problem-solving, yet scalable training solutions remain limited. This study evaluates Creativeable, an AI-powered creativity training program that provides automated feedback and adjusts creative story writing task difficulty without human intervention. A total of 385 participants completed five rounds of creative story writing using semantically distant word prompts across four conditions: (1) feedback with adaptive difficulty (F/VL); (2) feedback with constant difficulty (F/CL); (3) no feedback with adaptive difficulty (NF/VL); (4) no feedback with constant difficulty (NF/CL). Before and after using Creativeable, participants were assessed for their creativity, via the alternative uses task, as well as undergoing a control semantic fluency task. While creativity improvements were evident across conditions, the degree of effectiveness varied. The F/CL condition led to the most notable gains, followed by the NF/CL and NF/VL conditions, while the F/VL condition exhibited comparatively smaller improvements. These findings highlight the potential of AI to democratize creativity training by offering scalable, personalized interventions, while also emphasizing the importance of balancing structured feedback with increasing task complexity to support sustained creative growth. Full article
Show Figures

Figure 1

22 pages, 4095 KB  
Article
Ecosynthesis and Optimization of Nano rGO/Ag-Based Electrode Materials for Superior Supercapacitor Coin Cell Devices
by Belen Orellana, Leonardo Vivas, Carolina Manquian, Tania P. Brito and Dinesh P. Singh
Int. J. Mol. Sci. 2025, 26(19), 9578; https://doi.org/10.3390/ijms26199578 - 1 Oct 2025
Abstract
In the shift toward sustainable energy, there is a strong demand for efficient and durable energy storage solutions. Supercapacitors, in particular, are a promising technology, but they require high-performance materials that can be produced using simple, eco-friendly methods. This has led researchers to [...] Read more.
In the shift toward sustainable energy, there is a strong demand for efficient and durable energy storage solutions. Supercapacitors, in particular, are a promising technology, but they require high-performance materials that can be produced using simple, eco-friendly methods. This has led researchers to investigate new materials and composites that can deliver high energy and power densities, along with long-term stability. Herein, we report a green synthesis approach to create a composite material consisting of reduced graphene oxide and silver nanoparticles (rGO/Ag). The method uses ascorbic acid, a natural compound found in fruits and vegetables, as a non-toxic agent to simultaneously reduce graphene oxide and silver nitrate. To enhance electrochemical performance, the incorporation of silver nanoparticles into the rGO structures is optimized. In this study, different molar concentrations of silver nitrate (1.0, 0.10, and 0.01 M) are used to control silver nanoparticle loading during the synthesis and reduction process. A correlation between silver concentration, defect density in rGO, and the resulting capacitive behavior was assessed by systematically varying the silver molarity. The synthesized materials exhibited excellent performance as supercapacitor electrodes in a three-electrode configuration, with the rGO/Ag 1.0 M composite showing the best performance, reaching a maximum specific capacitance of 392 Fg−1 at 5 mVs−1. Furthermore, the performance of this optimized electrode material was investigated in a two-electrode configuration as a coin cell device, which demonstrates a maximum areal-specific capacitance of 22.63 mFcm−2 and a gravimetric capacitance of 19.00 Fg−1, which is within the range of commercially viable devices and a significant enhancement, outperforming low-level graphene-based devices. Full article
(This article belongs to the Special Issue Innovative Nanomaterials from Functional Molecules)
Show Figures

Graphical abstract

15 pages, 2371 KB  
Article
Zn/Fe-MOF-Derived Carbon Nanofibers via Electrospinning for Efficient Plasma-Catalytic Antibiotic Removal
by Ying Xia, Shaoqun Tao, Yu Liu, Chenyu Zhao, Weichuan Qiao, Sen Chen, Jingqi Ruan, Ming Zhang and Cheng Gu
Catalysts 2025, 15(10), 944; https://doi.org/10.3390/catal15100944 - 1 Oct 2025
Abstract
Plasma has become an up-and-coming advanced oxidation technology for wastewater treatment. However, its efficiency is often limited due to the lack of high-performance catalytic materials. In this study, one-dimensional carbon nanofiber precursors were first fabricated via electrospinning, followed by the in situ growth [...] Read more.
Plasma has become an up-and-coming advanced oxidation technology for wastewater treatment. However, its efficiency is often limited due to the lack of high-performance catalytic materials. In this study, one-dimensional carbon nanofiber precursors were first fabricated via electrospinning, followed by the in situ growth of the Zn/Fe-MOF on their surfaces. After pyrolysis at different temperatures, a series of carbon-based catalysts (FeNFC) were obtained. This new type of catalyst possesses advantages such as high porosity, a large specific surface area, and mechanical stability. Using tetracycline (TTCH) as the target pollutant, the performance of the catalyst was evaluated in the dielectric barrier discharge (DBD) system. The study showed that the addition of FeNFC significantly increased the degradation rate of TTCH in the system. Comparing different pyrolysis temperatures, at 900 °C, the comprehensive performance of the catalyst (FeNFC-900) was the best (the kinetic constant was kobs = 0.126 min−1, and the removal rate of TTCH was 91.8% within 30 min). The catalytic performance was influenced by factors such as the dosage of the catalyst, the concentration of TTCH, the power of DBD, and the initial pH. The catalytic effect of the material increased within a certain range with the increase in the catalyst dosage. The increase in TTCH concentration led to a decrease in the catalytic performance. The higher the power of the DBD, the higher the removal rate of TTCH. Moreover, when the initial pH was strongly alkaline, the catalytic effect of the catalyst was the best (kobs = 0.275 min−1, and the removal rate of TTCH was 98.7% within 30 min). Ionic interference tests demonstrated the strong resistance of FeNFC to common water matrix components, while radical quenching experiments revealed that multiple reactive species contributed to TTCH degradation. This work has broad application prospects for enhancing the efficiency of DBD systems in the removal of TTCH. Full article
Show Figures

Figure 1

30 pages, 10467 KB  
Article
Ultrasound-Assisted Production of Virgin Olive Oil: Effects on Bioactive Compounds, Oxidative Stability, and Antioxidant Capacity
by Katarina Filipan, Klara Kraljić, Mirella Žanetić, Maja Jukić Špika, Zoran Herceg, Tomislava Vukušić Pavičić, Višnja Stulić, Mia Ivanov, Marko Obranović, Ivana Hojka, Mia Tokić, Dubravka Škevin and Sandra Balbino
Sci 2025, 7(4), 135; https://doi.org/10.3390/sci7040135 - 1 Oct 2025
Abstract
This study investigated the effects of ultrasonic treatment of olive paste prior to malaxation on oil yield (Y), enzyme activity and virgin olive oil (VOO) quality in four Croatian olive varieties: Istarska Bjelica, Rosulja, Oblica and Levantinka. The oils were extracted using the [...] Read more.
This study investigated the effects of ultrasonic treatment of olive paste prior to malaxation on oil yield (Y), enzyme activity and virgin olive oil (VOO) quality in four Croatian olive varieties: Istarska Bjelica, Rosulja, Oblica and Levantinka. The oils were extracted using the Abencor system according to a central composite experiment design, with treatment durations of 3–17 min and power levels of 256–640 W. The parameters analyzed included Y, oxidative stability index (OSI), antioxidant capacity (AC), phenolic and α-tocopherol content, volatile compounds, fatty acid profile, and the activity of lipoxygenase, β-glucosidase, polyphenol oxidase, and peroxidase. Olive variety was the most influential factor in all variables. The response surface methodology showed that ultrasonic treatment at low-to-medium intensity improved several quality attributes. For example, Y increased by 4% in Oblica, phenolic content increased by up to 17% in Istarska Bjelica, and OSI and AC increased by 13–15% in Istarska Bjelica and Levantinka. In contrast, longer treatment and higher ultrasound power had a negative effect. No significant differences were found in other parameters examined. Overall, the application of ultrasound led to measurable, though moderate, improvements in Y and VOO quality, with results strongly dependent on olive variety and treatment conditions. These results underline the need for further optimization tailored to each variety. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

42 pages, 4392 KB  
Article
Holism of Thermal Energy Storage: A Data-Driven Strategy for Industrial Decarbonization
by Abdulmajeed S. Al-Ghamdi and Salman Z. Alharthi
Sustainability 2025, 17(19), 8745; https://doi.org/10.3390/su17198745 - 29 Sep 2025
Abstract
This study presents a holistic framework for adaptive thermal energy storage (A-TES) in solar-assisted systems. This framework aims to support a reliable industrial energy supply, particularly during periods of limited sunlight, while also facilitating industrial decarbonization. In previous studies, the focus was not [...] Read more.
This study presents a holistic framework for adaptive thermal energy storage (A-TES) in solar-assisted systems. This framework aims to support a reliable industrial energy supply, particularly during periods of limited sunlight, while also facilitating industrial decarbonization. In previous studies, the focus was not on addressing the framework of the entire problem, but rather on specific parts of it. Therefore, the innovation in this study lies in bringing these aspects together within a unified framework through a data-driven approach that combines the analysis of efficiency, technology, environmental impact, sectoral applications, operational challenges, and policy into a comprehensive system. Sensible thermal energy storage with an adaptive approach can be utilized in numerous industries, particularly concentrated solar power plants, to optimize power dispatch, enhance energy efficiency, and reduce gas emissions. Simulation results indicate that stable regulations and flexible incentives have led to a 60% increase in solar installations, highlighting their significance in investment expansion within the renewable energy sector. Integrated measures among sectors have increased energy availability by 50% in rural regions, illustrating the need for partnerships in renewable energy projects. The full implementation of novel advanced energy management systems (AEMSs) in industrial heat processes has resulted in a 20% decrease in energy consumption and a 15% improvement in efficiency. Making the switch to open-source software has reduced software expenditure by 50% and increased productivity by 20%, demonstrating the strategic advantages of open-source solutions. The findings provide a foundation for future research by offering a framework to analyze a specific real-world industrial case. Full article
Show Figures

Graphical abstract

28 pages, 3341 KB  
Article
Research on Dynamic Energy Management Optimization of Park Integrated Energy System Based on Deep Reinforcement Learning
by Xinjian Jiang, Lei Zhang, Fuwang Li, Zhiru Li, Zhijian Ling and Zhenghui Zhao
Energies 2025, 18(19), 5172; https://doi.org/10.3390/en18195172 - 29 Sep 2025
Abstract
Under the background of energy transition, the Integrated Energy System (IES) of the park has become a key carrier for enhancing the consumption capacity of renewable energy due to its multi-energy complementary characteristics. However, the high proportion of wind and solar resource access [...] Read more.
Under the background of energy transition, the Integrated Energy System (IES) of the park has become a key carrier for enhancing the consumption capacity of renewable energy due to its multi-energy complementary characteristics. However, the high proportion of wind and solar resource access and the fluctuation of diverse loads have led to the system facing dual uncertainty challenges, and traditional optimization methods are difficult to adapt to the dynamic and complex dispatching requirements. To this end, this paper proposes a new dynamic energy management method based on Deep Reinforcement Learning (DRL) and constructs an IES hybrid integer nonlinear programming model including wind power, photovoltaic, combined heat and power generation, and storage of electric heat energy, with the goal of minimizing the operating cost of the system. By expressing the dispatching process as a Markov decision process, a state space covering wind and solar output, multiple loads and energy storage states is defined, a continuous action space for unit output and energy storage control is constructed, and a reward function integrating economic cost and the penalty for renewable energy consumption is designed. The Deep Deterministic Policy Gradient (DDPG) and Deep Q-Network (DQN) algorithms were adopted to achieve policy optimization. This study is based on simulation rather than experimental validation, which aligns with the exploratory scope of this research. The simulation results show that the DDPG algorithm achieves an average weekly operating cost of 532,424 yuan in the continuous action space scheduling, which is 8.6% lower than that of the DQN algorithm, and the standard deviation of the cost is reduced by 19.5%, indicating better robustness. Under the fluctuation of 10% to 30% on the source-load side, the DQN algorithm still maintains a cost fluctuation of less than 4.5%, highlighting the strong adaptability of DRL to uncertain environments. Therefore, this method has significant theoretical and practical value for promoting the intelligent transformation of the energy system. Full article
Show Figures

Figure 1

20 pages, 3959 KB  
Article
Development of DC-Powered LED Lamp Driver Circuit for Outdoor Emergency Lighting Applications
by Chun-An Cheng, Chien-Hsuan Chang, Hung-Liang Cheng, En-Chih Chang, Hong-Jun Huang, Jie-Heng Du, Hsiang-Lin Chang and Pei-Ying Ye
Appl. Sci. 2025, 15(19), 10522; https://doi.org/10.3390/app151910522 - 28 Sep 2025
Abstract
In the event of power outages caused by natural disasters, accidents, or other emergencies, outdoor emergency lighting systems play a critical role in providing illumination to maintain spatial orientation, facilitate evacuation procedures, and help individuals avoid hazardous areas or locate safe shelters. Compared [...] Read more.
In the event of power outages caused by natural disasters, accidents, or other emergencies, outdoor emergency lighting systems play a critical role in providing illumination to maintain spatial orientation, facilitate evacuation procedures, and help individuals avoid hazardous areas or locate safe shelters. Compared to traditional lighting technologies, LED-based outdoor emergency lighting offers several advantages, including compact size, long operational lifespan, low energy consumption, high safety, resistance to breakage, and the absence of chemical residue or pollution. These characteristics align with contemporary trends in environmental sustainability and energy efficiency. This study proposes a novel LED driver circuit architecture for outdoor emergency lighting applications. The primary circuit topology is based on an improved buck-boost converter integrated with a flyback converter, forming a hybrid buck-boost-flyback configuration. The proposed circuit is capable of recycling the energy stored in the transformer’s leakage inductance, thereby enhancing overall power conversion efficiency. A 12 W (20 V/0.6 A) prototype LED driver circuit was designed and implemented to validate the performance of the proposed system. Experimental measurements, including waveform analysis and efficiency evaluation, demonstrate that the driver circuit achieves a high efficiency exceeding 91%. These results confirm the practical feasibility and effectiveness of the proposed electronic driver for LED-based outdoor emergency lighting applications. Full article
(This article belongs to the Special Issue Recent Advances and Applications Related to Light-Emitting Diodes)
Show Figures

Figure 1

21 pages, 3784 KB  
Article
Orthodontic Bracket Removal and Enamel Roughness: Comparing the Effects of Sapphire and Metallic Brackets in an In Vitro Study
by Cosmin Bogdan Licsăndroiu, Mihaela Jana Țuculină, Adelina Smaranda Bugălă, Petre Costin Mărășescu, Felicia Ileana Mărășescu, Andreea Gabriela Nicola, Cristian Niky Cumpătă, Cosmin Mihai Mirițoiu, Ovidiu Ioan Gheorghe, Maria Cristina Bezna, Elena Verona Licsăndroiu and Ionela Teodora Dascălu
Bioengineering 2025, 12(10), 1041; https://doi.org/10.3390/bioengineering12101041 - 28 Sep 2025
Abstract
Background: Enamel surface roughness after bracket debonding is an important issue due to its impact on plaque accumulation and the potential development of carious lesions. This in vitro study aimed to assess enamel roughness after the removal of metallic and sapphire brackets and [...] Read more.
Background: Enamel surface roughness after bracket debonding is an important issue due to its impact on plaque accumulation and the potential development of carious lesions. This in vitro study aimed to assess enamel roughness after the removal of metallic and sapphire brackets and the effect of a remineralization treatment. Methods: Two hundred extracted human permanent teeth with healthy enamel were randomly distributed into two groups (n = 100) and bonded with either metallic or sapphire brackets using the same adhesive (3M™ Transbond™ XT (St. Paul, MN, USA), Minnesota Mining and Manufacturing Company, MN, USA). The enamel surface roughness was measured before bonding, after debonding, and after remineralization using SEM and a TR200 roughness (SaluTron GmbH, Frechen, Germany) tester. The parameter Ra was used to quantify the surface roughness. One-way ANOVA, the normality test, variance homogeneity, and the Bonferroni post hoc test were used to analyze the data. Results: Debonding significantly increased the enamel surface roughness in both groups. The sapphire bracket group presented significantly higher mean Ra values post debonding (4.14 ± 0.36 µm) compared to the metallic group (2.56 ± 0.52 µm). Remineralization led to a decrease in surface roughness in both groups, though not to baseline levels. The changes were statistically significant (p < 0.01), with a power of the test of 1.0. Conclusions: The bracket material significantly affects enamel surface roughness after orthodontic debonding. Sapphire brackets produced greater surface irregularities than metallic ones. Remineralization partially reduced roughness in both groups, with the final values in the metallic group being closer to baseline levels. Crucially, these values remained far above the clinical threshold for plaque retention, highlighting the need for improved debonding techniques. Full article
(This article belongs to the Special Issue New Sight for the Treatment of Dental Diseases: Updates and Direction)
Show Figures

Figure 1

15 pages, 7341 KB  
Article
Inspection and Modeling Analysis of Locking Pins in the Penultimate-Stage Blades of a 600 MW Steam Turbine
by Ke Tang, Weiwen Chen, Jiang Zhu, Binhao Yi, Qing Hao, Jiashun Gao, Zhilong Xu, Bicheng Guo and Shiqi Chen
Materials 2025, 18(19), 4487; https://doi.org/10.3390/ma18194487 - 26 Sep 2025
Abstract
The fracture behavior of a locking pin used in the penultimate-stage blades of a 600 MW steam turbine in a thermal power plant was investigated through microstructural and microhardness characterization, fracture surface and energy-dispersive spectroscopy (EDS) analysis, as well as finite element load [...] Read more.
The fracture behavior of a locking pin used in the penultimate-stage blades of a 600 MW steam turbine in a thermal power plant was investigated through microstructural and microhardness characterization, fracture surface and energy-dispersive spectroscopy (EDS) analysis, as well as finite element load simulation. The microhardness values measured on the cross-section of the service pins ranged from 528 to 541 HV0.1, showing little difference from the unused pins. Scanning electron microscopy analysis revealed that approximately 70% of the fracture surfaces exhibited an intergranular “rock candy” morphology. The results indicate that pin failure was primarily caused by the combined effects of fretting wear and stress corrosion cracking (SCC). Specifically, vibration at the blade root, impeller, and pins due to start–stop cycles and load variations led to fretting wear, forming pits approximately 75 μm in size. Under the combined effects of weakly corrosive wet steam environments and shear stresses, SCC initiated at the high stress concentration points of these pits. Early crack propagation primarily followed original austenite grain boundaries, while later stages mainly extended along martensite plate boundaries. As cracks advanced, the cross-sectional area gradually decreased, causing the effective shear stress to increase until it exceeded the shear strength, ultimately leading to fracture. These findings not only provide a scientific basis for enhancing the reliability of steam turbine locking pins and extending their service life, but also contribute to a broader understanding of the failure mechanisms of key components operating under corrosive and fluctuating load environments. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

19 pages, 3835 KB  
Article
Drainage Recycling Ratio Influences Yield, Fruit Quality, and Antioxidant Properties of Korean Strawberry ‘Seolhyang’
by Minkyung Kim, M. G. Rabbani, Youngae Jeong, Mewuleddeg Zebro, Jeonghyeon Baek and Ki-Young Choi
Plants 2025, 14(19), 2984; https://doi.org/10.3390/plants14192984 - 26 Sep 2025
Abstract
Closed hydroponic systems for strawberries (Fragaria × ananassa Duch.) are infrequently used because the crop is highly sensitive to salt accumulation and prone to root diseases, resulting in yield reduction. This study investigated semi-closed hydroponic systems using various drainage recycling ratios (30%, [...] Read more.
Closed hydroponic systems for strawberries (Fragaria × ananassa Duch.) are infrequently used because the crop is highly sensitive to salt accumulation and prone to root diseases, resulting in yield reduction. This study investigated semi-closed hydroponic systems using various drainage recycling ratios (30%, 50%, and 70% of drainage EC) to determine their impact on yield, fruit quality, and antioxidant properties. Recycling at moderate levels (30–50%) effectively maintained ionic balance, particularly with respect to K/N and K/Ca ratios, which enabled stable yields and increased fruit weight similar to the control (open hydroponic system) group. Conversely, a high recycling ratio (70%) led to ionic imbalances—characterized by increased K/N ratios and higher concentrations of Na+, Cl, and SO42−—that were associated with decreased fruit size. Measures of antioxidant capacity, such as total phenol and flavonoid content, ferric reducing antioxidant power, and DPPH activity, were not significantly influenced by the recycling ratio alone. Nevertheless, the relatively elevated antioxidant activity observed at the 70% recycling level indicates a mild ionic and osmotic stress response likely caused by increased salt concentration. Changes related to the cropping system season, rather than ion variations from recycling, exerted a stronger influence on antioxidant accumulation. In summary, moderate drainage recycling facilitates optimal fruit production without negatively affecting quality, while excessive recycling may increase antioxidant activity but leads to reduced yields. The results provide practical recommendations for optimizing nutrient reuse in semi-closed strawberry hydroponic systems. Full article
Show Figures

Figure 1

Back to TopTop