Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (134)

Search Parameters:
Keywords = power–entropy decomposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2954 KB  
Article
An Adaptive Hybrid Short-Term Load Forecasting Framework Based on Improved Rime Optimization Variational Mode Decomposition and Cross-Dimensional Attention
by Aodi Zhang, Daobing Liu and Jianquan Liao
Energies 2026, 19(2), 497; https://doi.org/10.3390/en19020497 - 19 Jan 2026
Viewed by 84
Abstract
Accurate Short-Term Load Forecasting (STLF) is paramount for the stable and economical operation of power systems, particularly in the context of high renewable energy penetration, which exacerbates load volatility and non-stationarity. The prevailing advanced “decomposition–ensemble” paradigm, however, faces two significant challenges when processing [...] Read more.
Accurate Short-Term Load Forecasting (STLF) is paramount for the stable and economical operation of power systems, particularly in the context of high renewable energy penetration, which exacerbates load volatility and non-stationarity. The prevailing advanced “decomposition–ensemble” paradigm, however, faces two significant challenges when processing non-stationary signals: (1) The performance of Variational Mode Decomposition (VMD) is highly dependent on its hyperparameters (K, α), and traditional meta-heuristic algorithms (e.g., GA, GWO, PSO) are prone to converging to local optima during the optimization process; (2) Deep learning predictors struggle to dynamically weigh the importance of multi-dimensional, heterogeneous features (such as the decomposed Intrinsic Mode Functions (IMFs) and external climatic factors). To address these issues, this paper proposes a novel, adaptive hybrid forecasting framework, namely IRIME-VMD-CDA-LSTNet. Firstly, an Improved Rime Optimization Algorithm (IRIME) integrated with a Gaussian Mutation strategy is proposed. This algorithm adaptively optimizes the VMD hyperparameters by targeting the minimization of average sample entropy, enabling it to effectively escape local optima. Secondly, the optimally decomposed IMFs are combined with climatic features to construct a multi-dimensional information matrix. Finally, this matrix is fed into an innovative Cross-Dimensional Attention (CDA) LSTNet model, which dynamically allocates weights to each feature dimension. Ablation experiments conducted on a real-world dataset from a distribution substation demonstrate that, compared to GA-VMD, GWO-VMD, and PSO-VMD, the proposed IRIME-VMD method achieves a reduction in Root Mean Square Error (RMSE) of up to 18.9%. More importantly, the proposed model effectively mitigates the “prediction lag” phenomenon commonly observed in baseline models, especially during peak load periods. This framework provides a robust and high-accuracy solution for non-stationary load forecasting, holding significant practical value for the operation of modern power systems. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

27 pages, 2979 KB  
Article
A Study on the Measurement and Spatial Non-Equilibrium of Marine New-Quality Productivity in China: Differences, Polarization, and Causes
by Yao Wu, Renhong Wu, Lihua Yang, Zixin Lin and Wei Wang
Water 2026, 18(2), 240; https://doi.org/10.3390/w18020240 - 16 Jan 2026
Viewed by 147
Abstract
Compared to traditional marine productivity, marine new-quality productivity (MNQP) is composed of advanced productive forces driven by the deepening application of new technologies, is characterized by the rapid emergence of new industries, new business models, and new modes of operation, and [...] Read more.
Compared to traditional marine productivity, marine new-quality productivity (MNQP) is composed of advanced productive forces driven by the deepening application of new technologies, is characterized by the rapid emergence of new industries, new business models, and new modes of operation, and is marked by a substantial increase in total factor productivity in the marine economy. It has, therefore, become a new engine and pathway for China’s development into a maritime power. The main research approaches and conclusions of this paper are as follows: ① Using a combined order relation analysis method–Entropy Weight Method (G1-EWM) weighting method that integrates subjective and objective factors, we measured the development level of China’s MNQP from 2006 to 2021 across two dimensions: “factor structure” and “quality and efficiency”. The findings indicate that China’s MNQP is developing robustly and still holds considerable potential for improvement. ② Utilizing Gaussian Kernel Density Estimation and Spatial Markov Chain analysis to examine the dynamic evolution of China’s MNQP, the study identifies breaking the low-end lock-in of MNQP as crucial for accelerating balanced development. Spatial imbalances in China’s MNQP may exist both at the national level and within the three major marine economic zones. ③ To further examine potential spatial imbalances, Dagum Gini decomposition was employed to assess regional disparities in China’s MNQP. The DER polarization index and EGR polarization index were used to analyze spatial polarization levels, revealing an intensifying spatial imbalance in China’s MNQP. ④ Finally, geographic detectors were employed to identify the factors influencing spatial imbalances in China’s MNQP. Results indicate that these imbalances result from the combined effects of multiple factors, with marine economic development emerging as the core determinant exerting a dominant influence. The core conclusions of this study provide theoretical support and practical evidence for advancing the enhancement of China’s MNQP, thereby contributing to the realization of the goal of building a maritime power. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

20 pages, 2800 KB  
Article
A High-Ratio Renewable-Energy Power System Time–Frequency Domain-Cooperative Harmonic Detection Method Based on Enhanced Variational Modal Decomposition and the Prony Algorithm
by Yao Zhong, Guangrun Yang, Jiaqi Qi, Cheng Guo, Dongyan Chen and Qihao Jin
Symmetry 2026, 18(1), 13; https://doi.org/10.3390/sym18010013 - 20 Dec 2025
Viewed by 272
Abstract
Accurate identification of harmonic components is a prerequisite for addressing resonance risks in new energy power stations. Traditional Variational Modal decomposition (VMD) is susceptible to the influence of the modal decomposition order K and the penalty factor α when decomposing harmonic signals. This [...] Read more.
Accurate identification of harmonic components is a prerequisite for addressing resonance risks in new energy power stations. Traditional Variational Modal decomposition (VMD) is susceptible to the influence of the modal decomposition order K and the penalty factor α when decomposing harmonic signals. This paper proposes an adaptive parameter selection method for VMD based on an improved Triangular Topology Aggregation Optimization (TTAO) algorithm. Firstly, the pre-set parameters of variational modal decomposition—modal order K and penalty factor α—exhibit strong coupling. Conventional optimization algorithms cannot effectively coordinate adjustments to both parameters. This paper employs an enhanced TTAO algorithm, whose triangular topology unit structure and dual aggregation mechanism enable simultaneous adjustment of modal order K and penalty factor α, effectively resolving their coupled optimization challenge. Using minimum envelope entropy as the fitness function, the algorithm obtains an optimized parameter combination for VMD to decompose the signal. Subsequently, dominant modal components are selected based on Pearson’s correlation coefficients for reconstruction, with harmonic parameters precisely identified using the Prony algorithm. Simulation results demonstrate that under a 20 dB noise environment, the proposed method achieves a signal-to-noise ratio (SNR) of 25.6952 for steady-state harmonics, with a root mean square error (RMSE) of 0.4889. The mean errors for frequency and amplitude identification are 0.055% and 3.085%, respectively, significantly outperforming methods such as PSO-VMD and EMD. Moreover, the runtime of our model is markedly shorter than that of the PSO-VMD algorithm, effectively resolving the symmetric trade-off between recognition accuracy and runtime inherent in variational modal decomposition. Full article
Show Figures

Figure 1

17 pages, 3056 KB  
Article
Analysis of Electrical Signals in Plant Physiological Responses: A Multi-Scale Adaptive Denoising Method Based on CEEMDAN-WST
by Zihan Liu, Fangming Tian and Feng Tan
Agriculture 2025, 15(21), 2269; https://doi.org/10.3390/agriculture15212269 - 31 Oct 2025
Viewed by 944
Abstract
Plant surface electrical signals are key representations for non-destructive monitoring of changes in cell membrane potential, enabling real-time reflection of physiological responses and regulatory processes under external stimuli. However, the low-frequency and weak-amplitude characteristics of these signals make them extremely susceptible to interference [...] Read more.
Plant surface electrical signals are key representations for non-destructive monitoring of changes in cell membrane potential, enabling real-time reflection of physiological responses and regulatory processes under external stimuli. However, the low-frequency and weak-amplitude characteristics of these signals make them extremely susceptible to interference from multiple complex noise sources, such as environmental, power-line frequency, and inherent instrument noise. Existing denoising methods suffer from issues such as mode mixing and insufficient fidelity, hindering accurate extraction of genuine plant physiological information. This study proposes a novel denoising approach that integrates Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and Wavelet Soft Thresholding (WST). By decomposing and filtering noise components with adaptive thresholds based on the SURE criterion, the method achieves multi-scale decomposition and effective suppression of residual noise. Applied to surface electrical signals of maize leaves, the results demonstrated a 48% reduction in permutation entropy (PE) for the entire signal. In the resting potential segment, the root mean square (RMS) decreased by 28.91%, total energy dropped by 9.3%, and waveform stability improved. For the action potential segment, the full width at half maximum (FWHM) increased to 0.747, and although the peak amplitude slightly decreased, the waveform structure remained intact. Signal energy became more concentrated within the 0–2 Hz range, achieving efficient noise suppression and high signal fidelity. This method provides a reliable preprocessing technique for elucidating plant physiological mechanisms based on surface electrical signals and holds significant potential for real-time non-destructive monitoring and early warning systems in smart agriculture. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

19 pages, 4016 KB  
Article
A Cable Partial Discharge Localization Method Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise–Multiscale Permutation Entropy–Improved Wavelet Thresholding Denoising and Cross-Correlation Coefficient Filtering
by Ting Zhu, Yuchen Lin, Hong Tian and Youxiang Yan
Energies 2025, 18(20), 5511; https://doi.org/10.3390/en18205511 - 19 Oct 2025
Cited by 1 | Viewed by 522
Abstract
Partial discharge (PD) source localization is an essential technology to identify the location of defects in power cables. This paper presents a complete cable PD localization system. To improve localization accuracy and reduce computational cost, the Complete Ensemble Empirical Mode Decomposition with Adaptive [...] Read more.
Partial discharge (PD) source localization is an essential technology to identify the location of defects in power cables. This paper presents a complete cable PD localization system. To improve localization accuracy and reduce computational cost, the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise—Multiscale Permutation Entropy–Improved Wavelet Threshold (CEEMDAN-MPE-IWT) method is first employed to effectively suppress noise in PD signals. Subsequently, Cross-Correlation (CC) coefficients are calculated between the double-ended signals to eliminate low-quality signals with poor correlation. Furthermore, the retained signals are subjected to time-window cropping to minimize redundant data and enhance computational efficiency. Based on the processed signals, multiple time delay estimates are derived using the Generalized Cross-Correlation (GCC) algorithm, and the K-means clustering algorithm is subsequently applied to determine the final localization result. Finally, a cable PD experimental platform is established to validate the proposed method. Experimental results demonstrate that the proposed approach achieves a relative localization error of less than 3%, indicating high localization accuracy and strong potential for engineering applications. Full article
Show Figures

Figure 1

33 pages, 8203 KB  
Article
Applying Entropic Measures, Spectral Analysis, and EMD to Quantify Ion Channel Recordings: New Insights into Quercetin and Calcium Activation of BK Channels
by Przemysław Borys, Paulina Trybek, Beata Dworakowska, Anna Sekrecka-Belniak, Michał Wojcik and Agata Wawrzkiewicz-Jałowiecka
Entropy 2025, 27(10), 1047; https://doi.org/10.3390/e27101047 - 9 Oct 2025
Viewed by 778
Abstract
Understanding the functional modulation of ion channels by multiple activating substances is critical to grasping stimulus-specific gating mechanisms and possible synergistic or competitive interactions. This study investigates the activation of large-conductance, voltage- and Ca2+-activated potassium channels (BK) in the plasma membrane [...] Read more.
Understanding the functional modulation of ion channels by multiple activating substances is critical to grasping stimulus-specific gating mechanisms and possible synergistic or competitive interactions. This study investigates the activation of large-conductance, voltage- and Ca2+-activated potassium channels (BK) in the plasma membrane of human bronchial epithelial cells by Ca2+ and quercetin (Que), both individually and in combination. Patch-clamp recordings were analyzed using open state probability, dwell-time distributions, Shannon entropy, sample entropy, power spectral density (PSD), and empirical mode decomposition (EMD). Our results reveal concentration-dependent alterations in gating kinetics, particularly at a low concentration of quercetin ([Que] = 10 μM) compared with [Que] = 100 μM, where some Que-related effects are strongly attenuated in the presence of Ca2+. We also identify specific frequency bands where oscillatory components are most sensitive to the considered stimuli. Our findings highlight the complex reciprocal interplay between Ca2+ and Que in modulating BK channel function, and demonstrate the interpretative power of entropic and signal-decomposition approaches in characterizing stimulus-specific gating dynamics. Full article
(This article belongs to the Special Issue Mathematical Modeling for Ion Channels)
Show Figures

Figure 1

22 pages, 3598 KB  
Article
Research on Denoising Methods for Magnetocardiography Signals in a Non-Magnetic Shielding Environment
by Biao Xing, Xie Feng and Binzhen Zhang
Sensors 2025, 25(19), 6096; https://doi.org/10.3390/s25196096 - 3 Oct 2025
Viewed by 1096
Abstract
Magnetocardiography (MCG) offers a noninvasive method for early screening and precise localization of cardiovascular diseases by measuring picotesla-level weak magnetic fields induced by cardiac electrical activity. However, in unshielded magnetic environments, geomagnetic disturbances, power-frequency electromagnetic interference, and physiological/motion artifacts can significantly overwhelm effective [...] Read more.
Magnetocardiography (MCG) offers a noninvasive method for early screening and precise localization of cardiovascular diseases by measuring picotesla-level weak magnetic fields induced by cardiac electrical activity. However, in unshielded magnetic environments, geomagnetic disturbances, power-frequency electromagnetic interference, and physiological/motion artifacts can significantly overwhelm effective magnetocardiographic components. To address this challenge, this paper systematically constructs an integrated denoising framework, termed “AOA-VMD-WT”. In this approach, the Arithmetic Optimization Algorithm (AOA) adaptively optimizes the key parameters (decomposition level K and penalty factor α) of Variational Mode Decomposition (VMD). The decomposed components are then regularized based on their modal center frequencies: components with frequencies ≥50 Hz are directly suppressed; those with frequencies <50 Hz undergo wavelet threshold (WT) denoising; and those with frequencies <0.5 Hz undergo baseline correction. The purified signal is subsequently reconstructed. For quantitative evaluation, we designed performance indicators including QRS amplitude retention rate, high/low frequency suppression amount, and spectral entropy. Further comparisons are made with baseline methods such as FIR and wavelet soft/hard thresholds. Experimental results on multiple sets of measured MCG data demonstrate that the proposed method achieves an average improvement of approximately 8–15 dB in high-frequency suppression, 2–8 dB in low-frequency suppression, and a decrease in spectral entropy ranging from 0.1 to 0.6 without compromising QRS amplitude. Additionally, the parameter optimization exhibits high stability. These findings suggest that the proposed framework provides engineerable algorithmic support for stable MCG measurement in ordinary clinic scenarios. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

21 pages, 3637 KB  
Article
Short-Term Photovoltaic Power Prediction Model Based on Variational Modal Decomposition and Improved RIME Optimization Algorithm
by Lingling Xie, Long Li, Xiaoping Xiong, Jiajia Cai, Hanzhong Cui and Haoyuan Li
Electronics 2025, 14(18), 3612; https://doi.org/10.3390/electronics14183612 - 11 Sep 2025
Cited by 1 | Viewed by 673
Abstract
Photovoltaic (PV) power generation is highly stochastic and volatile, a trait that presents a notable challenge to the prediction accuracy of distributed PV systems. To address this challenge, this study proposes a short-term photovoltaic power prediction strategy that integrates variational modal decomposition (VMD) [...] Read more.
Photovoltaic (PV) power generation is highly stochastic and volatile, a trait that presents a notable challenge to the prediction accuracy of distributed PV systems. To address this challenge, this study proposes a short-term photovoltaic power prediction strategy that integrates variational modal decomposition (VMD) for feature extraction with an improved RIME (IRIME) optimization algorithm for parameter optimization. Firstly, the raw PV power data are split into several intrinsic mode functions (IMFs) using VMD. The decomposed IMFs are reconstructed by using the sample entropy (SE) method, and a new subsequence with enhanced features is obtained. Secondly, a bidirectional gated recurrent unit (BIGRU) prediction model is established, and its structural parameters are optimized by the IRIME algorithm. Finally, the prediction results of each subsequence are summarized to obtain the final prediction value. Information from a centralized PV power station located in southern China is employed to verify the suggested prediction model. Experimental findings indicate that in comparison with other models, the proposed model achieves the smallest PV power prediction error; the mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE) of the proposed model are reduced at least by 21.95%, 3.03%, and 12.33%, respectively. The coefficient of determination (R2) is increased at least by 10.56‰. The method presented in this research is capable of improving prediction accuracy efficiently and holds specific engineering practicality. Full article
Show Figures

Figure 1

34 pages, 16782 KB  
Article
Ultra-Short-Term Prediction of Monopile Offshore Wind Turbine Vibration Based on a Hybrid Model Combining Secondary Decomposition and Frequency-Enhanced Channel Self-Attention Transformer
by Zhenju Chuang, Yijie Zhao, Nan Gao and Zhenze Yang
J. Mar. Sci. Eng. 2025, 13(9), 1760; https://doi.org/10.3390/jmse13091760 - 11 Sep 2025
Viewed by 648
Abstract
Ice loads continue to pose challenges to the structural safety of offshore wind turbines (OWTs), while the rapid development of offshore wind power in cold regions is enabling the deployment of OWTs in deeper waters. To accurately simulate the dynamic response of an [...] Read more.
Ice loads continue to pose challenges to the structural safety of offshore wind turbines (OWTs), while the rapid development of offshore wind power in cold regions is enabling the deployment of OWTs in deeper waters. To accurately simulate the dynamic response of an OWT under combined ice–wind loading, this paper proposes a Discrete Element Method–Wind Turbine Integrated Analysis (DEM-WTIA) framework. The framework can synchronously simulate discontinuous ice-crushing processes and aeroelastic–structural dynamic responses through a holistic turbine model that incorporates rotor dynamics and control systems. To address the issue of insufficient prediction accuracy for dynamic responses, we introduced a multivariate time series forecasting method that integrates a secondary decomposition strategy with a hybrid prediction model. First, we developed a parallel signal processing mechanism, termed Adaptive Complete Ensemble Empirical Mode Decomposition with Improved Singular Spectrum Analysis (CEEMDAN-ISSA), which achieves adaptive denoising via permutation entropy-driven dynamic window optimization and multi-feature fusion-based anomaly detection, yielding a noise suppression rate of 76.4%. Furthermore, we propose the F-Transformer prediction model, which incorporates a Frequency-Enhanced Channel Attention Mechanism (FECAM). By integrating the Discrete Cosine Transform (DCT) into the Transformer architecture, the F-Transformer mines hidden features in the frequency domain, capturing potential periodicities in discontinuous data. Experimental results demonstrate that signals processed by ISSA exhibit increased signal-to-noise ratios and enhanced fidelity. The F-Transformer achieves a maximum reduction of 31.86% in mean squared error compared to the standard Transformer and maintains a coefficient of determination (R2) above 0.91 under multi-condition coupled testing. By combining adaptive decomposition and frequency-domain enhancement techniques, this framework provides a precise and highly adaptable ultra-short-term response forecasting tool for the safe operation and maintenance of offshore wind power in cold regions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

23 pages, 8508 KB  
Article
A Short-Term User-Side Load Forecasting Method Based on the MCPO-VMD-FDFE Decomposition-Enhanced Framework
by Yu Du, Jiaju Shi, Xun Dou and Yu He
Electronics 2025, 14(18), 3611; https://doi.org/10.3390/electronics14183611 - 11 Sep 2025
Cited by 1 | Viewed by 526
Abstract
With the transition of the energy structure and the continuous development of smart grids, short-term user-side load forecasting plays a key role in fine power dispatch and efficient system operation. However, existing parameter optimization methods lack multi-dimensional and physically interpretable fitness evaluation. They [...] Read more.
With the transition of the energy structure and the continuous development of smart grids, short-term user-side load forecasting plays a key role in fine power dispatch and efficient system operation. However, existing parameter optimization methods lack multi-dimensional and physically interpretable fitness evaluation. They also fail to fully exploit frequency-domain features of decomposed modal components. These limitations reduce model accuracy and robustness in complex scenarios. To address this issue, this paper proposes a short-term user-side load forecasting method based on the MCPO-VMD-FDFE decomposition-enhanced framework. Firstly, a multi-dimensional fitness function is designed using indicators such as modal energy entropy and energy concentration. The Crested Porcupine Optimizer with Multidimensional Fitness Function (MCPO) algorithm is applied in VMD (Variational Mode Decomposition) to optimize the number of decomposition modes (K) and the penalty factor (α), thereby improving decomposition quality. Secondly, each IMF component obtained from VMD is analyzed by FFT. Key frequency components are selectively enhanced based on adaptive thresholds and weight coefficients to improve feature expression. Finally, a multi-scale convolution module is added to the PatchTST model to enhance its ability to capture local and multi-scale temporal features. The enhanced IMF components are fed into the improved model for prediction, and the final output is obtained by aggregating the results of all components. Experimental results show that the proposed method achieves the best performance on user-side load datasets for weekdays, Saturdays, and Sundays. The RMSE is reduced by 45.65% overall, confirming the effectiveness of the proposed approach in short-term user-side load forecasting tasks. Full article
(This article belongs to the Special Issue Feature Papers in Artificial Intelligence)
Show Figures

Figure 1

34 pages, 10418 KB  
Article
Entropy-Fused Enhanced Symplectic Geometric Mode Decomposition for Hybrid Power Quality Disturbance Recognition
by Chencheng He, Wenbo Wang, Xuezhuang E, Hao Yuan and Yuyi Lu
Entropy 2025, 27(9), 920; https://doi.org/10.3390/e27090920 - 30 Aug 2025
Cited by 1 | Viewed by 782
Abstract
Electrical networks face operational challenges from power quality-affecting disturbances. Since disturbance signatures directly affect classifier performance, optimized feature selection becomes critical for accurate power quality assessment. The pursuit of robust feature extraction inevitably constrains the dimensionality of the discriminative feature set, but the [...] Read more.
Electrical networks face operational challenges from power quality-affecting disturbances. Since disturbance signatures directly affect classifier performance, optimized feature selection becomes critical for accurate power quality assessment. The pursuit of robust feature extraction inevitably constrains the dimensionality of the discriminative feature set, but the complexity of the recognition model will be increased and the recognition speed will be reduced if the feature vector dimension is too high. Building upon the aforementioned requirements, in this paper, we propose a feature extraction framework that combines improved symplectic geometric mode decomposition, refined generalized multiscale quantum entropy, and refined generalized multiscale reverse dispersion entropy. Firstly, based on the intrinsic properties of power quality disturbance (PQD) signals, the embedding dimension of symplectic geometric mode decomposition and the adaptive mode component screening method are improved, and the PQD signal undergoes tri-band decomposition via improved symplectic geometric mode decomposition (ISGMD), yielding distinct high-frequency, medium-frequency, and low-frequency components. Secondly, utilizing the enhanced symplectic geometric mode decomposition as a foundation, the perturbation features are extracted by the combination of refined generalized multiscale quantum entropy and refined generalized multiscale reverse dispersion entropy to construct high-precision and low-dimensional feature vectors. Finally, a double-layer composite power quality disturbance model is constructed by a deep extreme learning machine algorithm to identify power quality disturbance signals. After analysis and comparison, the proposed method is found to be effective even in a strong noise environment with a single interference, and the average recognition accuracy across different noise environments is 97.3%. Under the complex conditions involving multiple types of mixed perturbations, the average recognition accuracy is maintained above 96%. Compared with the existing CNN + LSTM method, the recognition accuracy of the proposed method is improved by 3.7%. In addition, its recognition accuracy in scenarios with small data samples is significantly better than that of traditional methods, such as single CNN models and LSTM models. The experimental results show that the proposed strategy can accurately classify and identify various power quality interferences and that it is better than traditional methods in terms of classification accuracy and robustness. The experimental results of the simulation and measured data show that the combined feature extraction methodology reliably extracts discriminative feature vectors from PQD. The double-layer combined classification model can further enhance the model’s recognition capabilities. This method has high accuracy and certain noise resistance. In the 30 dB white noise environment, the average classification accuracy of the model is 99.10% for the simulation database containing 63 PQD types. Meanwhile, for the test data based on a hardware platform, the average accuracy is 99.03%, and the approach’s dependability is further evidenced by rigorous validation experiments. Full article
Show Figures

Figure 1

18 pages, 3961 KB  
Article
Multi-Task Graph Attention Net for Electricity Consumption Prediction and Anomaly Detection
by Na Bai, Jian Zhang and Zhaoli Wu
Computers 2025, 14(9), 350; https://doi.org/10.3390/computers14090350 - 26 Aug 2025
Viewed by 920
Abstract
Precise electricity consumption forecasting and anomaly detection constitute fundamental requirements for maintaining grid reliability in smart power systems. While consumption patterns demonstrate quasi-periodic behavior with region-specific fluctuations influenced by environmental factors, existing approaches may fail to systematically model these dynamic variations or quantify [...] Read more.
Precise electricity consumption forecasting and anomaly detection constitute fundamental requirements for maintaining grid reliability in smart power systems. While consumption patterns demonstrate quasi-periodic behavior with region-specific fluctuations influenced by environmental factors, existing approaches may fail to systematically model these dynamic variations or quantify environmental impacts. This limitation results in a compromised prediction accuracy and ambiguous anomaly identification. To overcome these challenges, we propose a novel Multi-Task Graph Attention Network (MGAT) framework leveraging an adaptive entropy analysis. Our methodology comprises four key innovations: (1) the temporal decomposition of consumption data with entropy-based adaptive clustering into predictable low-entropy components (processed via multi-scale attention networks) and volatile high-entropy components; (2) the graph-based representation of high-entropy fluctuations through numerical correlation encoding, complemented by temporal environmental graphs quantifying external influences; (3) the hierarchical fusion of environmental and fluctuation graphs via a specialized Graph Attention Autoencoder that jointly models dynamic patterns and environmental dependencies; (4) the integrated synthesis of all components for simultaneous consumption prediction and anomaly detection. Experiments verify the MGAT’s performance in both forecasting precision and anomaly identification compared to conventional methods. Full article
(This article belongs to the Special Issue Machine Learning Applications in Pattern Recognition)
Show Figures

Figure 1

29 pages, 3625 KB  
Article
Wind Farm Collector Line Fault Diagnosis and Location System Based on CNN-LSTM and ICEEMDAN-PE Combined with Wavelet Denoising
by Huida Duan, Song Bai, Zhipeng Gao and Ying Zhao
Electronics 2025, 14(17), 3347; https://doi.org/10.3390/electronics14173347 - 22 Aug 2025
Viewed by 805
Abstract
To enhance the accuracy and precision of fault diagnosis and location for the collector lines in wind farms under complex operating conditions, an intelligent combined method based on CNN-LSTM and ICEEMDAN-PE-improved wavelet threshold denoising is proposed. A wind power plant model is established [...] Read more.
To enhance the accuracy and precision of fault diagnosis and location for the collector lines in wind farms under complex operating conditions, an intelligent combined method based on CNN-LSTM and ICEEMDAN-PE-improved wavelet threshold denoising is proposed. A wind power plant model is established using the PSCADV46/EMTDC software. In response to the issue of indistinct fault current signal characteristics under complex fault conditions, a hybrid fault diagnosis model is constructed using CNN-LSTM. The convolutional neural network is utilized to extract the local time-frequency features of the current signals, while the long short-term memory network is employed to capture the dynamic time series patterns of faults. Combined with the improved phase-mode transformation, various types of faults are intelligently classified, effectively resolving the problem of fault feature extraction and achieving a fault diagnosis accuracy rate of 96.5%. To resolve the problem of small fault current amplitudes, low fault traveling wave amplitudes, and difficulty in accurate location due to noise interference in actual wind farms with high-resistance grounding faults, a combined denoising algorithm based on ICEEMDAN-PE-improved wavelet threshold is proposed. This algorithm, through the collaborative optimization of modal decomposition and entropy threshold, significantly improves the signal-to-noise ratio and reduces the root mean square error under simulated conditions with injected Gaussian white noise, stabilizing the fault location error within 0.5%. Extensive simulation results demonstrate that the fault diagnosis and location method proposed in this paper can effectively meet engineering requirements and provide reliable technical support for the intelligent operation and maintenance system of a wind farm. Full article
(This article belongs to the Special Issue Advanced Online Monitoring and Fault Diagnosis of Power Equipment)
Show Figures

Figure 1

20 pages, 3247 KB  
Article
Ultra-Short-Term Wind Power Prediction with Multi-Scale Feature Extraction Under IVMD
by Jian Sun, Huakun Wei and Chuangxin Chen
Processes 2025, 13(8), 2606; https://doi.org/10.3390/pr13082606 - 18 Aug 2025
Viewed by 1042
Abstract
To mitigate wind power intermittency effects on forecasting accuracy, this study proposes a novel ultra-short-term prediction method based on improved variational mode decomposition (IVMD) and multi-scale feature extraction. First, the maximum information coefficient identified meteorological features strongly correlated with wind power, such as [...] Read more.
To mitigate wind power intermittency effects on forecasting accuracy, this study proposes a novel ultra-short-term prediction method based on improved variational mode decomposition (IVMD) and multi-scale feature extraction. First, the maximum information coefficient identified meteorological features strongly correlated with wind power, such as wind speed and wind direction, thereby reducing model input dimensionality. Permutation entropy then served as the fitness function for the sparrow search algorithm (SSA), enabling adaptive IVMD parameter optimization for effective decomposition of non-stationary sequences. The resulting intrinsic mode functions and key meteorological features were input into a prediction model integrating a temporal convolutional network (TCN) and bidirectional gated recurrent unit (BiGRU) to capture global trends and local fluctuations. The SSA was reapplied to optimize TCN-BiGRU hyperparameters, enhancing adaptability. Simulations using operational data from a Xinjiang wind farm demonstrated that the proposed method achieved a coefficient of determination (R2) of 0.996, representing an absolute increase of 0.060 over the XGBoost benchmark (R2 = 0.936). This confirms significant enhancement of ultra-short-term forecasting accuracy. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 3409 KB  
Article
Short-Term Prediction Intervals for Photovoltaic Power via Multi-Level Analysis and Dual Dynamic Integration
by Kaiyang Kuang, Jingshan Zhang, Qifan Chen, Yan Zhou, Yan Yan, Litao Dai and Guanghu Wang
Electronics 2025, 14(15), 3068; https://doi.org/10.3390/electronics14153068 - 31 Jul 2025
Cited by 1 | Viewed by 649
Abstract
There is an obvious correlation between the photovoltaic (PV) output of different physical levels; that is, the overall power change trend of large-scale regional (high-level) stations can provide a reference for the prediction of the output of sub-regional (low-level) stations. The current PV [...] Read more.
There is an obvious correlation between the photovoltaic (PV) output of different physical levels; that is, the overall power change trend of large-scale regional (high-level) stations can provide a reference for the prediction of the output of sub-regional (low-level) stations. The current PV prediction methods have not deeply explored the multi-level PV power generation elements and have not considered the correlation between different levels, resulting in the inability to obtain potential information on PV power generation. Moreover, traditional probabilistic prediction models lack adaptability, which can lead to a decrease in prediction performance under different PV prediction scenarios. Therefore, a probabilistic prediction method for short-term PV power based on multi-level adaptive dynamic integration is proposed in this paper. Firstly, an analysis is conducted on the multi-level PV power stations together with the influence of the trend of high-level PV power generation on the forecast of low-level power generation. Then, the PV data are decomposed into multiple layers using the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and analyzed by combining fuzzy entropy (FE) and mutual information (MI). After that, a new multi-level model prediction method, namely, the improved dual dynamic adaptive stacked generalization (I-Stacking) ensemble learning model, is proposed to construct short-term PV power generation prediction models. Finally, an improved dynamic adaptive kernel density estimation (KDE) method for prediction errors is proposed, which optimizes the performance of the prediction intervals (PIs) through variable bandwidth. Through comparative experiments and analysis using traditional methods, the effectiveness of the proposed method is verified. Full article
Show Figures

Figure 1

Back to TopTop