Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,684)

Search Parameters:
Keywords = posttranslational regulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3272 KiB  
Review
Timing Is Everything: The Fungal Circadian Clock as a Master Regulator of Stress Response and Pathogenesis
by Victor Coca-Ruiz and Daniel Boy-Ruiz
Stresses 2025, 5(3), 47; https://doi.org/10.3390/stresses5030047 - 1 Aug 2025
Viewed by 83
Abstract
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological [...] Read more.
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological relevance of fungal circadian systems, moving beyond the canonical Neurospora crassa model to explore the broader phylogenetic diversity of timekeeping mechanisms. We examine the core transcription-translation feedback loop (TTFL) centered on the FREQUENCY/WHITE COLLAR (FRQ/WCC) system and contrast it with divergent and non-canonical oscillators, including the metabolic rhythms of yeasts and the universally conserved peroxiredoxin (PRX) oxidation cycles. A central theme is the clock’s role in gating cellular defenses against oxidative, osmotic, and nutritional stress, enabling fungi to anticipate and withstand environmental insults through proactive regulation. We provide a detailed analysis of chrono-pathogenesis, where the circadian control of virulence factors aligns fungal attacks with windows of host vulnerability, with a focus on experimental evidence from pathogens like Botrytis cinerea, Fusarium oxysporum, and Magnaporthe oryzae. The review explores the downstream pathways—including transcriptional cascades, post-translational modifications, and epigenetic regulation—that translate temporal signals into physiological outputs such as developmental rhythms in conidiation and hyphal branching. Finally, we highlight critical knowledge gaps, particularly in understudied phyla like Basidiomycota, and discuss future research directions. This includes the exploration of novel clock architectures and the emerging, though speculative, hypothesis of “chrono-therapeutics”—interventions designed to disrupt fungal clocks—as a forward-looking concept for managing fungal infections. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

20 pages, 887 KiB  
Review
Epigenetics of Endometrial Cancer: The Role of Chromatin Modifications and Medicolegal Implications
by Roberto Piergentili, Enrico Marinelli, Lina De Paola, Gaspare Cucinella, Valentina Billone, Simona Zaami and Giuseppe Gullo
Int. J. Mol. Sci. 2025, 26(15), 7306; https://doi.org/10.3390/ijms26157306 - 29 Jul 2025
Viewed by 241
Abstract
Endometrial cancer (EC) is the most common gynecological malignancy in developed countries. Risk factors for EC include metabolic alterations (obesity, metabolic syndrome, insulin resistance), hormonal imbalance, age at menopause, reproductive factors, and inherited conditions, such as Lynch syndrome. For the inherited forms, several [...] Read more.
Endometrial cancer (EC) is the most common gynecological malignancy in developed countries. Risk factors for EC include metabolic alterations (obesity, metabolic syndrome, insulin resistance), hormonal imbalance, age at menopause, reproductive factors, and inherited conditions, such as Lynch syndrome. For the inherited forms, several genes had been implicated in EC occurrence and development, such as POLE, MLH1, TP53, PTEN, PIK3CA, PIK3R1, CTNNB1, ARID1A, PPP2R1A, and FBXW7, all mutated at high frequency in EC patients. However, gene function impairment is not necessarily caused by mutations in the coding sequence of these and other genes. Gene function alteration may also occur through post-transcriptional control of messenger RNA translation, frequently caused by microRNA action, but transcriptional impairment also has a profound impact. Here, we review how chromatin modifications change the expression of genes whose impaired function is directly related to EC etiopathogenesis. Chromatin modification plays a central role in EC. The modification of chromatin structure alters the accessibility of genes to transcription factors and other regulatory proteins, thus altering the intracellular protein amount. Thus, DNA structural alterations may impair gene function as profoundly as mutations in the coding sequences. Hence, its central importance is in the diagnostic and prognostic evaluation of EC patients, with the caveat that chromatin alteration is often difficult to identify and needs investigations that are specific and not broadly used in common clinical practice. The different phases of the healthy endometrium menstrual cycle are characterized by differential gene expression, which, in turn, is also regulated through epigenetic mechanisms involving DNA methylation, histone post-translational modifications, and non-coding RNA action. From a medicolegal and policy-making perspective, the implications of using epigenetics in cancer care are briefly explored as well. Epigenetics in endometrial cancer is not only a topic of biomedical interest but also a crossroads between science, ethics, law, and public health, requiring integrated approaches and careful regulation. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

15 pages, 8667 KiB  
Article
A Novel Synthetic Tag Induces Palmitoylation and Directs the Subcellular Localization of Target Proteins
by Jun Ka, Gwanyeob Lee, Seunghyun Han, Haekwan Jeong and Suk-Won Jin
Biomolecules 2025, 15(8), 1076; https://doi.org/10.3390/biom15081076 - 25 Jul 2025
Viewed by 333
Abstract
Proper subcellular localization is essential to exert the designated function of a protein, not only for endogenous proteins but also transgene-encoded proteins. Post-translational modification is a frequently used method to regulate the subcellular localization of a specific protein. While there are a number [...] Read more.
Proper subcellular localization is essential to exert the designated function of a protein, not only for endogenous proteins but also transgene-encoded proteins. Post-translational modification is a frequently used method to regulate the subcellular localization of a specific protein. While there are a number of tags that are widely used to direct the target protein to a specific location within a cell, these tags often fail to emulate the dynamics of protein trafficking, necessitating an alternative approach to the direct subcellular localization of transgene-encoded proteins. Here, we report the development of a new synthetic polypeptide protein tag comprised of ten amino acids, which promotes membrane localization of a target protein. This short synthetic peptide tag, named “Palmito-Tag”, induces ectopic palmitoylation on the cysteine residue within the tag, thereby promoting membrane localization of the target proteins without affecting their innate function. We show that the target proteins with the Palmito-Tag are incorporated into the membranous organelles within the cells, including the endosomes, as well as extracellular vesicles. Given the reversible nature of palmitoylation, the Palmito-Tag may allow us to shift the subcellular localization of the target protein in a context-dependent manner. With the advent of therapeutic applications of exosomes and other extracellular vesicles, we believe that the ability to reversibly modify a target protein and direct its deposition to the specific subcellular milieu will help us explore more effective venues to harness the potential of extracellular vesicle-based therapies. Full article
(This article belongs to the Special Issue Feature Papers in Cellular Biochemistry)
Show Figures

Figure 1

27 pages, 2366 KiB  
Review
S-Nitrosylation in Cardiovascular Disorders: The State of the Art
by Caiyun Mao, Jieyou Zhao, Nana Cheng, Zihang Xu, Haoming Ma, Yunjia Song and Xutao Sun
Biomolecules 2025, 15(8), 1073; https://doi.org/10.3390/biom15081073 - 24 Jul 2025
Viewed by 358
Abstract
Protein S-nitrosylation is a selective post-translational modification in which a nitrosyl group is covalently attached to the reactive thiol group of cysteine, forming S-nitrosothiol. This modification plays a pivotal role in modulating physiological and pathological cardiovascular processes by altering protein conformation, activity, stability, [...] Read more.
Protein S-nitrosylation is a selective post-translational modification in which a nitrosyl group is covalently attached to the reactive thiol group of cysteine, forming S-nitrosothiol. This modification plays a pivotal role in modulating physiological and pathological cardiovascular processes by altering protein conformation, activity, stability, and other post-translational modifications. It is instrumental in regulating vascular and myocardial systolic and diastolic functions, vascular endothelial cell and cardiomyocyte apoptosis, and cardiac action potential and repolarization. Aberrant S-nitrosylation levels are implicated in the pathogenesis of various cardiovascular diseases, including systemic hypertension, pulmonary arterial hypertension, atherosclerosis, heart failure, myocardial infarction, arrhythmia, and diabetic cardiomyopathy. Insufficient S-nitrosylation leads to impaired vasodilation and increased vascular resistance, while excessive S-nitrosylation contributes to cardiac hypertrophy and myocardial fibrosis, thereby accelerating ventricular remodeling. This paper reviews the S-nitrosylated proteins in the above-mentioned diseases and their impact on these conditions through various signaling pathways, with the aim of providing a theoretical foundation for the development of novel therapeutic strategies or drugs targeting S-nitrosylated proteins. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

22 pages, 4596 KiB  
Article
Gut Microbiota Dysbiosis Remodels the Lysine Acetylome of the Mouse Cecum in Early Life
by Yubing Zeng, Jinying Shen, Xuejia He, Fan Liu, Yi Wang, Yi Wang, Yanan Qiao, Pei Pei and Shan Wang
Biology 2025, 14(8), 917; https://doi.org/10.3390/biology14080917 - 23 Jul 2025
Viewed by 273
Abstract
The interaction between epigenetic mechanisms and the gut microbiome is potentially crucial for the development and maintenance of intestinal health. Lysine acetylation, an important post-translational modification, plays a complex and critical role in the epigenetic regulation of the host by the gut microbiota. [...] Read more.
The interaction between epigenetic mechanisms and the gut microbiome is potentially crucial for the development and maintenance of intestinal health. Lysine acetylation, an important post-translational modification, plays a complex and critical role in the epigenetic regulation of the host by the gut microbiota. However, there are currently no reports on how gut microbiota dysbiosis affects host physiology in early life through global lysine acetylation. In this study, we constructed a mouse model of gut microbiota dysbiosis using antibiotic cocktail therapy (ABX). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the cecum, we analyzed the cecal lysine acetylome and proteome. As a result, we profiled the lysine acetylation landscape of the cecum and identified a total of 16,579 acetylation sites from 5218 proteins. Differentially acetylated proteins (DAPs) are involved in various metabolic pathways, including the citrate cycle (TCA cycle), butanoate metabolism, pyruvate metabolism, glycolysis/gluconeogenesis, and fatty acid biosynthesis. Moreover, both glycolysis and gluconeogenesis are significantly enriched in acetylation and protein modifications. This study aimed to provide valuable insights into the epigenetic molecular mechanisms associated with host protein acetylation as influenced by early-life gut microbiota disturbances. It reveals potential therapeutic targets for metabolic disorders linked to gut microbiota dysbiosis, thereby establishing a theoretical foundation for the clinical prevention and treatment of diseases arising from such dysbiosis. Full article
Show Figures

Figure 1

13 pages, 2987 KiB  
Communication
Improved Degradome Sequencing Protocol via Reagent Recycling from sRNAseq Library Preparations
by Marta Puchta-Jasińska, Jolanta Groszyk and Maja Boczkowska
Int. J. Mol. Sci. 2025, 26(14), 7020; https://doi.org/10.3390/ijms26147020 - 21 Jul 2025
Viewed by 248
Abstract
One of the key elements in the analysis of gene expression and its post-translational regulation is miRNAs. Degradome-seq analyses are performed to analyze the cleavage of target RNAs in the transcriptome. This work presents the first degradome-seq library preparation protocol that enables successful [...] Read more.
One of the key elements in the analysis of gene expression and its post-translational regulation is miRNAs. Degradome-seq analyses are performed to analyze the cleavage of target RNAs in the transcriptome. This work presents the first degradome-seq library preparation protocol that enables successful construction of libraries, even from highly degraded RNA samples with RIN below 3, thus significantly expanding the possibilities for research when working with low-quality material. The developed protocol improves the efficiency of library preparation in degradome-seq analysis used to identify miRNA targets, reduces library preparation time, and lowers the cost of purchasing reagents by using reagents from the RNA-seq library preparation kit and proprietary-designed primers. A crucial feature of this new protocol is optimizing the purification step for short library fragments, which increases the yield of correctly sized fragments compared to previously used methods. This is achieved by implementing an original method involving tube-spin purification with gauze and precipitation using sodium acetate with glycogen, greatly enhancing recovery efficiency—a factor especially critical when working with degraded RNA. Cloning to a plasmid and sequencing of the inserted fragment verified the correctness of the library preparation using the developed protocol. This protocol represents a groundbreaking tool for degradome research, enabling the construction and sequencing of degradome libraries, even from degraded samples previously considered unsuitable for such analyses. This is due to the use of residues from the sRNA-seq library kit. It noticeably reduces the cost of library construction. The precision of the excised fragment after electrophoresis was performed during the procedure to isolate fragments of the correct length, which was improved using additional size markers. Compared to previously used methods, optimizing the purification method of degradome-seq libraries allowed an increase in the yield of fragments obtained. Full article
(This article belongs to the Special Issue Advances in Seed Development and Germination)
Show Figures

Figure 1

30 pages, 2320 KiB  
Review
HDACs and Their Inhibitors on Post-Translational Modifications: The Regulation of Cardiovascular Disease
by Siyi Yang, Yidong Sun and Wei Yu
Cells 2025, 14(14), 1116; https://doi.org/10.3390/cells14141116 - 20 Jul 2025
Viewed by 689
Abstract
Cardiovascular diseases (CVD), such as myocardial hypertrophy, heart failure, atherosclerosis, and myocardial ischemia/reperfusion (I/R) injury, are among the major threats to human health worldwide. Post-translational modifications alter the function of proteins through dynamic chemical modification after synthesis. This mechanism not only plays an [...] Read more.
Cardiovascular diseases (CVD), such as myocardial hypertrophy, heart failure, atherosclerosis, and myocardial ischemia/reperfusion (I/R) injury, are among the major threats to human health worldwide. Post-translational modifications alter the function of proteins through dynamic chemical modification after synthesis. This mechanism not only plays an important role in maintaining homeostasis and plays a crucial role in maintaining normal cardiovascular function, but is also closely related to the pathological state of various diseases. Histone deacetylases (HDACs) play an important role in the epigenetic regulation of gene expression, and play important roles in post-translational modification by catalyzing the deacetylation of key lysine residues in nucleosomal histones, which are closely associated with the occurrence and development of cardiovascular diseases. Recent studies indicate that HDAC inhibitors (HDACis) may represent a new class of drugs for the treatment of cardiovascular diseases by influencing post-translational modifications. In this review, we systematically summarize the mechanism of action of HDACs and HDACis in post-translational modifications related to common cardiovascular diseases, providing new ideas for the treatment of CVD, and explore possible future research directions on the relationship between HDAC and HDACi in post-translational modifications and cardiovascular diseases. Full article
(This article belongs to the Section Cellular Metabolism)
Show Figures

Figure 1

22 pages, 1446 KiB  
Review
Integrating Redox Proteomics and Computational Modeling to Decipher Thiol-Based Oxidative Post-Translational Modifications (oxiPTMs) in Plant Stress Physiology
by Cengiz Kaya and Francisco J. Corpas
Int. J. Mol. Sci. 2025, 26(14), 6925; https://doi.org/10.3390/ijms26146925 - 18 Jul 2025
Viewed by 296
Abstract
Redox signaling is central to plant adaptation, influencing metabolic regulation, stress responses, and developmental processes through thiol-based oxidative post-translational modifications (oxiPTMs) of redox-sensitive proteins. These modifications, particularly those involving cysteine (Cys) residues, act as molecular switches that alter protein function, structure, and interactions. [...] Read more.
Redox signaling is central to plant adaptation, influencing metabolic regulation, stress responses, and developmental processes through thiol-based oxidative post-translational modifications (oxiPTMs) of redox-sensitive proteins. These modifications, particularly those involving cysteine (Cys) residues, act as molecular switches that alter protein function, structure, and interactions. Advances in mass spectrometry-based redox proteomics have greatly enhanced the identification and quantification of oxiPTMs, enabling a more refined understanding of redox dynamics in plant cells. In parallel, the emergence of computational modeling, artificial intelligence (AI), and machine learning (ML) has revolutionized the ability to predict redox-sensitive residues and characterize redox-dependent signaling networks. This review provides a comprehensive synthesis of methodological advancements in redox proteomics, including enrichment strategies, quantification techniques, and real-time redox sensing technologies. It also explores the integration of computational tools for predicting S-nitrosation, sulfenylation, S-glutathionylation, persulfidation, and disulfide bond formation, highlighting key models such as CysQuant, BiGRUD-SA, DLF-Sul, and Plant PTM Viewer. Furthermore, the functional significance of redox modifications is examined in plant development, seed germination, fruit ripening, and pathogen responses. By bridging experimental proteomics with AI-driven prediction platforms, this review underscores the future potential of integrated redox systems biology and emphasizes the importance of validating computational predictions, through experimental proteomics, for enhancing crop resilience, metabolic efficiency, and precision agriculture under climate variability. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 2093 KiB  
Review
PHF20L1: An Epigenetic Regulator in Cancer and Beyond
by Yishan Wang, Qin Hu, Haixia Zhao, Lulu Zeng, Zhongwei Zhao, Xia Li, Qiaoyou Weng, Yang Yang, Minjiang Chen, Jiansong Ji and Rongfang Qiu
Biomolecules 2025, 15(7), 1048; https://doi.org/10.3390/biom15071048 - 18 Jul 2025
Viewed by 321
Abstract
Plant homeodomain (PHD) finger protein 20-like 1 (PHF20L1) is a novel epigenetic “reader” that specifically recognises histone post-translational modifications (PTMs) via its Tudor and PHD finger domains, thereby regulating chromatin remodelling, DNA damage repair, and oncogene transcriptional activation. This review comprehensively summarises the [...] Read more.
Plant homeodomain (PHD) finger protein 20-like 1 (PHF20L1) is a novel epigenetic “reader” that specifically recognises histone post-translational modifications (PTMs) via its Tudor and PHD finger domains, thereby regulating chromatin remodelling, DNA damage repair, and oncogene transcriptional activation. This review comprehensively summarises the role of PHF20L1 in various cancers, including breast, ovarian, and colorectal cancers, as well as retinoblastomas, and elucidates its molecular mechanisms of action in cancer pathogenesis. Accumulating evidence indicates that PHF20L1 is upregulated in these malignancies and drives tumour progression by promoting proliferation, metastasis, and immune evasion. Furthermore, PHF20L1 orchestrates tumour-related gene expression by interacting with key epigenetic complexes. Given its unique structural features, we propose novel strategies for developing small-molecule inhibitors and combinatorial therapies, providing a theoretical basis for targeted epigenetic regulation for precision treatment. Future research should further investigate the molecular regulatory networks of PHF20L1 in different cancers and other human diseases and focus on developing specific small-molecule inhibitors to enable precision-targeted therapies. Full article
(This article belongs to the Special Issue Tumor Genomics and Liquid Biopsy in Cancer Biology)
Show Figures

Figure 1

22 pages, 5198 KiB  
Article
Histone Acetyltransferase MOF-Mediated AURKB K215 Acetylation Drives Breast Cancer Cell Proliferation via c-MYC Stabilization
by Yujuan Miao, Na Zhang, Fuqing Li, Fei Wang, Yuyang Chen, Fuqiang Li, Xueli Cui, Qingzhi Zhao, Yong Cai and Jingji Jin
Cells 2025, 14(14), 1100; https://doi.org/10.3390/cells14141100 - 17 Jul 2025
Viewed by 480
Abstract
Aurora kinase B (AURKB), a serine/threonine protein kinase, is essential for accurate chromosome segregation and cytokinesis during mitosis. Dysregulation of AURKB, often characterized by its overexpression, has been implicated in various malignancies, including breast cancer. However, the mechanisms governing its dysregulation remain incompletely [...] Read more.
Aurora kinase B (AURKB), a serine/threonine protein kinase, is essential for accurate chromosome segregation and cytokinesis during mitosis. Dysregulation of AURKB, often characterized by its overexpression, has been implicated in various malignancies, including breast cancer. However, the mechanisms governing its dysregulation remain incompletely understood. Here, we identify a pivotal role for the MOF/MSL complex—which includes the histone acetyltransferase MOF (KAT8)—in modulating AURKB stability through acetylation at lysine 215 (K215). This post-translational modification inhibits AURKB ubiquitination, thereby stabilizing its protein levels. MOF/MSL-mediated AURKB stabilization promotes the proper assembly of the chromosomal passenger complex (CPC), ensuring mitotic fidelity. Notably, inhibition of MOF reduces AURKB K215 acetylation, leading to decreased AURKB expression and activity. Consequently, this downregulation suppresses expression of the downstream oncogene c-MYC, ultimately attenuating the malignant proliferation of breast cancer cells. Collectively, our findings reveal a novel mechanism by which lysine acetylation regulates AURKB stability, highlight the significance of the MOF-AURKB-c-MYC axis in breast cancer progression, and suggest potential therapeutic strategies targeting this pathway in clinical settings. Full article
(This article belongs to the Collection Feature Papers in 'Cell Proliferation and Division')
Show Figures

Graphical abstract

23 pages, 2728 KiB  
Article
Shear Stress-Dependent Modulation of Endothelin B Receptor: The Role of Endothelial Glycocalyx Heparan Sulfate
by Camden Holm, Son Nam Nguyen and Solomon A. Mensah
Cells 2025, 14(14), 1088; https://doi.org/10.3390/cells14141088 - 16 Jul 2025
Viewed by 372
Abstract
The endothelial glycocalyx (GCX) plays a crucial role in vascular health and integrity and influences many biochemical activities through mechanotransduction, in which heparan sulfate (HS) plays a major role. Endothelin-1 (ET-1) is a potent vasoregulator that binds to the endothelin B receptor (ETB) [...] Read more.
The endothelial glycocalyx (GCX) plays a crucial role in vascular health and integrity and influences many biochemical activities through mechanotransduction, in which heparan sulfate (HS) plays a major role. Endothelin-1 (ET-1) is a potent vasoregulator that binds to the endothelin B receptor (ETB) on endothelial cells (ECs), stimulating vasodilation, and to the endothelin A receptor on smooth muscle cells, stimulating vasoconstriction. While the shear stress (SS) dependence of ET-1 and HS is well documented, there is limited research documenting the SS dependence of the ETB. Understanding the SS dependence of the ETB is crucial for clarifying the role of hemodynamic forces in the endothelin system. We hypothesize that GCX HS regulates the expression of the ETB on the EC surface in an SS-dependent manner. Human lung microvascular ECs were exposed to SS in a parallel-plate flow chamber for 12 h. Damage to the GCX was simulated by treatment with 15 mU/mL heparinase-III during SS exposure. Immunostaining and qPCR were used to evaluate changes in ET-1, ETB, and HS expression. Results indicate that ETB expression is SS sensitive, with at least a 1.3-fold increase in ETB protein expression and a 0.6 to 0.4-fold-change decrease in ETB mRNA expression under SS. This discrepancy suggests post-translational regulation. In some cases, enzymatic degradation of HS attenuated the SS-induced increase in ETB protein, reducing the fold-change difference to 1.1 relative to static controls. This implies that ETB expression may be partially dependent on HS-mediated mechanotransduction, though inconclusively. Furthermore, ET-1 mRNA levels were elevated two-fold under SS without a corresponding rise in ET-1 protein expression or significant impact from HS degradation, implying that post-translational regulation of ET-1 occurs independently of HS. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Vascular-Related Diseases)
Show Figures

Figure 1

26 pages, 1698 KiB  
Review
Research Progress on the Functional Regulation Mechanisms of ZKSCAN3
by Jianxiong Xu, Xinzhe Li, Jingjing Xia, Wenfang Li and Zhengding Su
Biomolecules 2025, 15(7), 1016; https://doi.org/10.3390/biom15071016 - 14 Jul 2025
Viewed by 485
Abstract
The zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) has emerged as a critical regulator of diverse cellular processes, including autophagy, cell cycle progression, and tumorigenesis. Structurally, ZKSCAN3 is characterized by its conserved DNA-binding zinc finger motifs, a SCAN domain mediating [...] Read more.
The zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) has emerged as a critical regulator of diverse cellular processes, including autophagy, cell cycle progression, and tumorigenesis. Structurally, ZKSCAN3 is characterized by its conserved DNA-binding zinc finger motifs, a SCAN domain mediating protein–protein interaction, and a KRAB repression domain implicated in transcriptional regulation. Post-translational modifications, such as phosphorylation and ubiquitination, dynamically modulate its subcellular localization and activity, enabling context-dependent functional plasticity. Functionally, ZKSCAN3 acts as a master switch in autophagy by repressing the transcription of autophagy-related genes under nutrient-replete conditions, while its nuclear-cytoplasmic shuttling under stress conditions links metabolic reprogramming to cellular survival. Emerging evidence also underscores its paradoxical roles in cancer: it suppresses tumor initiation by maintaining genomic stability yet promotes metastasis through epithelial–mesenchymal transition induction. Furthermore, epigenetic mechanisms, including promoter methylation and non-coding RNA regulation, fine-tune ZKSCAN3 expression, contributing to tissue-specific outcomes. Despite these insights, gaps remain in understanding the structural determinants governing its interaction with chromatin-remodeling complexes and the therapeutic potential of targeting ZKSCAN3 in diseases. Future investigations should prioritize integrating multi-omics approaches to unravel context-specific regulatory networks and explore small-molecule modulators for translational applications. This comprehensive analysis provides a framework for advancing our mechanistic understanding of ZKSCAN3 and its implications in human health and disease. This review synthesizes recent advances in elucidating the regulatory networks and functional complexity of ZKSCAN3, highlighting its dual roles in physiological and pathological contexts. Full article
(This article belongs to the Special Issue Spotlight on Hot Cancer Biological Biomarkers)
Show Figures

Figure 1

17 pages, 1513 KiB  
Review
Rational Modulation of Liquid–Liquid Phase Separation Offers Novel Ways to Combat Tauopathies
by Xingxing Zhang, Lumiao Wang, Nixin Lin, Meng Gao and Yongqi Huang
Int. J. Mol. Sci. 2025, 26(14), 6709; https://doi.org/10.3390/ijms26146709 - 12 Jul 2025
Viewed by 544
Abstract
The microtubule-associated protein tau plays an essential role in regulating the dynamic assembly of microtubules and is implicated in axonal elongation and maturation, axonal transport, synaptic plasticity regulation, and genetic stability maintenance. Nevertheless, the assembly of tau into neurofibrillary tangles in neurons is [...] Read more.
The microtubule-associated protein tau plays an essential role in regulating the dynamic assembly of microtubules and is implicated in axonal elongation and maturation, axonal transport, synaptic plasticity regulation, and genetic stability maintenance. Nevertheless, the assembly of tau into neurofibrillary tangles in neurons is a pathological hallmark of a group of neurodegenerative diseases known as tauopathies. Despite enormous efforts and rapid advancements in the field, effective treatment remains lacking for these diseases. In this review, we provide an overview of the structure and phase transition of tau protein. In particular, we focus on the involvement of liquid–liquid phase separation in the biology and pathology of tau. We then discuss several potential strategies for combating tauopathies in the context of phase separation: (i) modulating the formation of tau condensates, (ii) delaying the liquid-to-solid transition of tau condensates, (iii) reducing the enrichment of aggregation-prone species into tau condensates, and (iv) suppressing abnormal post-translational modifications on tau inside condensates. Deciphering the structure–activity relationship of tau phase transition modulators and uncovering the conformational changes in tau during phase transitions will aid in developing therapeutic agents targeting tau in the context of phase separation. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 2486 KiB  
Article
The Unconventional Role of ABHD17A in Increasing the S-Palmitoylation and Antiviral Activity of IFITM1 by Downregulating ABHD16A
by Xuemeng Shi, Shuaiwu Chen, Mingyang Liu, Yali Fan, Xin Wen, Jingyi Wang, Xiaoling Li, Huimin Liu, Lin Mao, Li Yu, Yuxin Hu and Jun Xu
Biomolecules 2025, 15(7), 992; https://doi.org/10.3390/biom15070992 - 11 Jul 2025
Viewed by 372
Abstract
The broad-spectrum antiviral functions of interferon-inducible transmembrane 1 (IFITM1) rely on S-palmitoylation post-translational modification. α/β-hydrolase domain-containing 17A (ABHD17A) has been reported to be responsible for protein depalmitoylation over the past decade, but whether and how ABHD17A regulates the dynamic S-palmitoylation modification of IFITM1 [...] Read more.
The broad-spectrum antiviral functions of interferon-inducible transmembrane 1 (IFITM1) rely on S-palmitoylation post-translational modification. α/β-hydrolase domain-containing 17A (ABHD17A) has been reported to be responsible for protein depalmitoylation over the past decade, but whether and how ABHD17A regulates the dynamic S-palmitoylation modification of IFITM1 remains unknown. Here, we demonstrated that ABHD17A physically interacts with IFITM1 and increases the S-palmitoylation level of IFITM1. Sequence alignment revealed that ABHD17A lacked the DHHC motif, which is capable of catalyzing the S-palmitoylation modification. Thus, we screened multiple candidate palmitoylating and depalmitoylating enzymes that may contribute to ABHD17A-induced upregulation of IFITM1 S-palmitoylation. The recently discovered depalmitoylase ABHD16A was significantly downregulated by ABHD17A, which counteracted the palmitate-removing reactions of ABHD16A on IFITM1 and subsequently upregulated the S-palmitoylation level and antiviral activity of IFITM1. Our work therefore elucidated the unconventional role of depalmitoylase ABHD17A in elevating the S-palmitoylation modification, expanded the biological functions of ABHD17A in innate immunity, and provided potential targets for viral disease therapy. Full article
Show Figures

Figure 1

16 pages, 1588 KiB  
Review
The Role of Lactylation in Virus–Host Interactions
by Gejie Zhao, Jia Zhou, Shutong He, Xiao Fei and Guijie Guo
Int. J. Mol. Sci. 2025, 26(14), 6613; https://doi.org/10.3390/ijms26146613 - 10 Jul 2025
Viewed by 437
Abstract
Lactylation, a novel form of post-translational modifications (PTMs) of protein, particularly within histone proteins, has recently gained attention for its role in regulating gene expression and cellular processes. In recent years, lactylation has been widely studied in cancer, immune diseases, neurological diseases, cardiovascular [...] Read more.
Lactylation, a novel form of post-translational modifications (PTMs) of protein, particularly within histone proteins, has recently gained attention for its role in regulating gene expression and cellular processes. In recent years, lactylation has been widely studied in cancer, immune diseases, neurological diseases, cardiovascular diseases, metabolic diseases, etc. Increasing evidence now suggests that lactylation also plays a significant role in the host’s innate immune response to viruses. Lactylation influences fundamental cellular functions, including transcriptional regulation, signal transduction, cell proliferation and differentiation. It affects protein behavior by modulating their function, stability, subcellular localization and interactions. Studies have shown that many viral infections promote lactate production through enhanced glycolysis, a process that facilitates viral replication. Given that innate immunity serves as the host’s first line of defense against pathogenic invasion, understanding how lactylation regulates antiviral responses offers promising avenues for the development of diagnostic tools and therapeutic strategies against viral diseases. In this review, we provide a comprehensive overview of recent research on the role of lactylation in viral–host interactions. Full article
(This article belongs to the Special Issue Viral Infections and Immune Responses)
Show Figures

Figure 1

Back to TopTop