Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = post-mining land reclamation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1071 KiB  
Article
Methodological Framework for Evaluating Quarry Reclamation Based on the Reclamation Quality Index
by Oľga Glova Végsöová and Jozef Glova
Land 2025, 14(8), 1557; https://doi.org/10.3390/land14081557 - 29 Jul 2025
Viewed by 188
Abstract
Mining activities in a quarry significantly interfere with the landscape, weaken its ecological functions, disrupt the continuity of habitats and change its natural character. The aim of this study is to present a robust, transparent, and participatory methodological framework centered on the Reclamation [...] Read more.
Mining activities in a quarry significantly interfere with the landscape, weaken its ecological functions, disrupt the continuity of habitats and change its natural character. The aim of this study is to present a robust, transparent, and participatory methodological framework centered on the Reclamation Quality Index, which enables a comprehensive and repeatable assessment of reclamation quality. At a time when the restoration of functional, ecologically stable and long-term sustainable landscapes is increasingly important, there is a need for reliable tools to assess the quality of restoration. This article presents an original methodology for the evaluation of quarry reclamation, which combines scientific precision with practical applicability. The proposed Reclamation Quality Index is built on multidisciplinary foundations and uses the Delphi methodology, through which expert knowledge and weighted preferences enter the evaluation process. A tool designed in this way makes it possible to quantify the quality of land restoration, identify the benefits of individual interventions, support effective planning, and strengthen the strategic management of post-mining transformation. At the same time, the Reclamation Quality Index creates space for the application of the principles of ecological stability and integration of the landscape as a living, dynamic system in the process of restoration. With its structure and philosophy, the methodology represents a prospective approach to the evaluation and planning of the post-extraction landscape. Its application goes beyond academia, as it can serve as a support for environmental policymaking, landscape planning, and assessing the quality of restoration in practice. Full article
Show Figures

Figure 1

24 pages, 605 KiB  
Article
A Triple-Bottom-Line Performance Measurement Model for the Sustainability of Post-Mining Landscapes in Indonesia
by Justan Riduan Siahaan, Gagaring Pagalung, Eymal Bahsar Demmallino, Abrar Saleng, Andi Amran Sulaiman and Nadhirah Nagu
Sustainability 2025, 17(13), 6218; https://doi.org/10.3390/su17136218 - 7 Jul 2025
Viewed by 408
Abstract
Indonesia’s post-mining landscapes require an integrated governance approach to achieve equitable and sustainable reclamation. This study developed and evaluated the TILANG Framework (Triple-Bottom-Line Integrated Land Governance) as a multidimensional model that aligns ecological restoration, community empowerment, and institutional accountability. Based on a meta-synthesis [...] Read more.
Indonesia’s post-mining landscapes require an integrated governance approach to achieve equitable and sustainable reclamation. This study developed and evaluated the TILANG Framework (Triple-Bottom-Line Integrated Land Governance) as a multidimensional model that aligns ecological restoration, community empowerment, and institutional accountability. Based on a meta-synthesis of 773 academic and institutional remarks coded using NVivo 12, the study identified sustainable cacao agriculture as a viable compensation mechanism that supports livelihood recovery while restoring degraded land. The framework draws on six foundational theoretical components—Corporate Social Responsibility (CSR), Stakeholder Theory, Legitimacy Theory, the Theory of Planned Behavior, the Triple Bottom Line, and multi-level governance—and is operationalized through six implementation principles: Trust, Inclusivity, Legitimacy, Alignment, Norms, and Governance. The findings support performance-based land reclamation by embedding behavioral readiness and institutional co-financing into sustainability strategies. This model is particularly relevant to Indonesia’s ongoing land-use transformation, where post-extractive zones are shifting toward agroecological and community-centered recovery. The study found that (1) reframing land compensation as a restorative, performance-based mechanism enables more legitimate and inclusive post-mining governance; (2) sustainable cacao agriculture represents a viable and socially accepted strategy for ecological recovery and rural livelihood revitalization; and (3) the TILANG Framework advances land-use transformation by integrating corporate responsibility, behavioral readiness, and multi-level governance into a cohesive performance model. Full article
(This article belongs to the Special Issue Environmental and Economic Sustainability in Agri-Food System)
Show Figures

Figure 1

20 pages, 2654 KiB  
Article
The Potential Use of Solid Waste and Mine Water for Land Rehabilitation of the Coal Mine-Affected Area in Slovenia
by Angelika Więckol-Ryk, Alicja Krzemień, Łukasz Pierzchała and Matjaž Kamenik
Resources 2025, 14(4), 57; https://doi.org/10.3390/resources14040057 - 31 Mar 2025
Viewed by 827
Abstract
The rehabilitation of post-mining sites is crucial due to the severe environmental impacts of mining, including land degradation, heavy metal pollution, and loss of biodiversity. Effective reclamation strategies are essential to reverse these impacts and enable sustainable land use. This study presents the [...] Read more.
The rehabilitation of post-mining sites is crucial due to the severe environmental impacts of mining, including land degradation, heavy metal pollution, and loss of biodiversity. Effective reclamation strategies are essential to reverse these impacts and enable sustainable land use. This study presents the possibility of the rehabilitation of a post-mining area in Velenje, Slovenia, using artificial soils made from combustion by-products amended with lignite and organic compost, and explores the potential of lignite mine water for irrigation. This approach introduces an innovative solution that differs from the traditional methods of rehabilitating degraded areas. Physicochemical and phytotoxicity tests were conducted to determine the quality of the soil substitutes. The analysis revealed that the pH, salinity, and chemical composition of soils positively impacted Sinapis alba growth as a test plant, with the most promising compositions containing 20–30% of lignite by weight as a replacement for organic compost. Irrigation water quality parameters, such as electrical conductivity (0.87 dS/m), the sodium absorption ratio (2.09 meq/L), and boron content (0.05 mg/L), indicated a low soil dispersion risk, while the residual sodium carbonate (3.02 meq/L) suggested a medium risk. Although, the concentration of toxic elements did not exceed the threshold limits; the long-term irrigation with mine water requires the monitoring of the molybdenum levels. These results suggest the potential for using artificial soils and mine water in post-mining land reclamation but highlight the need for the monitoring of their quality. Full article
(This article belongs to the Special Issue Mine Ecological Restoration)
Show Figures

Figure 1

43 pages, 3450 KiB  
Article
Analysis of Technologies for the Reclamation of Illegal Landfills: A Case Study of the Relocation and Management of Chromium and Arsenic Contamination in Łomianki (Poland)
by Janusz Sobieraj and Dominik Metelski
Sustainability 2025, 17(7), 2796; https://doi.org/10.3390/su17072796 - 21 Mar 2025
Viewed by 1212
Abstract
The reclamation of illegal landfills poses a significant threat to the environment. An example of such a case is Łomianki near Warsaw, where an illegal landfill contained alarming levels of arsenic and chromium, posing a potential risk to the health of local residents [...] Read more.
The reclamation of illegal landfills poses a significant threat to the environment. An example of such a case is Łomianki near Warsaw, where an illegal landfill contained alarming levels of arsenic and chromium, posing a potential risk to the health of local residents due to the possibility of these metals contaminating a nearby drinking water source. Initial geochemical tests revealed high concentrations of these metals, with chromium reaching up to 24,660 mg/kg and arsenic up to 10,350 mg/kg, well above international environmental standards. This study presents effective reclamation strategies that can be used in similar situations worldwide. The reclamation allowed this land to be used for the construction of the M1 shopping center while minimizing environmental hazards. The study is based on a case study of the reclamation of this illegal landfill. The methods used in this project included the relocation of approximately 130,000 m3 of hazardous waste to a nearby site previously used for sand mining. Bentonite mats and geotextiles were used to prevent the migration of contaminants into the groundwater. The waste was layered with sand to assist in the structural stabilization of the site. In addition, proper waste segregation and drainage systems were implemented to manage water and prevent contamination. Eight years after the reclamation, post-remediation soil surveys showed significant improvements in soil quality and structural stability. Specifically, the Proctor Compaction Index (IS) increased from an estimated 0.5–0.7 (for uncontrolled slope) to 0.98, indicating a high degree of compaction and soil stability, while arsenic and chromium levels were reduced by 98.4% and 98.1%, respectively. Reclamation also significantly reduced permeability and settlement rates, further improving the site’s suitability for construction. The cost-benefit analysis showed a cost saving of 37.7% through local waste relocation compared to off-site disposal, highlighting the economic efficiency and environmental benefits. The main conclusions of this study are that land reclamation effectively reduced environmental hazards; innovative solutions, such as bentonite mats, advanced waste sorting, geotextiles, and drainage systems, improved environmental quality; and the Łomianki case serves as a model for sustainable waste management practices. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

32 pages, 8118 KiB  
Article
Impact of Coal Waste Rock on Biological and Physicochemical Properties of Soils with Different Agricultural Uses
by Aleksandra Garbacz, Artur Nowak, Anna Marzec-Grządziel, Marcin Przybyś, Anna Gałązka, Jolanta Jaroszuk-Ściseł and Grzegorz Grzywaczewski
Sustainability 2025, 17(6), 2603; https://doi.org/10.3390/su17062603 - 15 Mar 2025
Viewed by 832
Abstract
During the mining process in mines, a problem arises with the formation of coal post-mining waste, which is waste rock. It is often stored by mines on various types of land to manage the resulting spoil. However, this is not without its impact [...] Read more.
During the mining process in mines, a problem arises with the formation of coal post-mining waste, which is waste rock. It is often stored by mines on various types of land to manage the resulting spoil. However, this is not without its impact on the soil. In this study, we determined the biological and physicochemical properties of rhizosphere soils of the podzolic type, subjected to waste rock reclamation and without the influence of waste rock (control), differing in the type of agricultural use and type of plant cover: field-monocotyledonous (oat cultivation), field-dicotyledonous (buckwheat cultivation), and wasteland covered with very species-poor vegetation. Research has shown that long-term cultivation (buckwheat) contributed to the elimination (leveling out) of the microbial and biochemical differences. The addition of waste rock significantly reduced the number of microorganisms synthesizing siderophore, especially on wasteland (decreased by 1.5 log10/gDW). The abundant presence of the genera Acidocella and Acidphilum, absent in wasteland without waste rock, in the unused soil under the influence of waste rock was strongly associated with the effect of lowering the pH by waste rock in soil not used for agriculture. Increased levels of 77 types of bacteria were observed in samples from buckwheat cultivation compared to wasteland. The number of microorganisms resistant to heavy metals as well as microorganisms capable of producing specific Fe-binding ligands—siderophores—decreased under the influence of waste rock. Moreover, the dehydrogenase activity in long-term cultivation both under the influence of waste rock and without its influence was at a similar level. In contrast, an almost 100-fold decrease in dehydrogenase activity was observed in soils with oat cultivation and a more than 4-fold decrease in acid phosphatase (ACP) and alkaline phosphatase (ALP) activity. These parameters provide an effective system for monitoring soil health, from inexpensive and fast methods to advanced and precise techniques. The results can be applied to solve the problems associated with coal mining wastes by developing methods for their use in soils with long-term agricultural use. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Graphical abstract

22 pages, 10940 KiB  
Article
Assessment of the Influence of Aluminum, Iron, and Manganese Forms on the Phytocenoses of Post-Mining Lands in the Lengerskoye Brown Coal Mine
by Akmaral Issayeva, Waldemar Spychalski, Elźbieta Wilk-Woźniak, Dariusz Kayzer, Radosław Pankiewicz, Wojciech Antkowiak, Bogusława Łeska, Akmaral Alikhan, Assel Tleukeyeva and Zbigniew Rozwadowski
Sustainability 2025, 17(4), 1642; https://doi.org/10.3390/su17041642 - 17 Feb 2025
Viewed by 988
Abstract
Post-mining land in areas where mineral extraction has occurred may constitute a significant portion of the land used for various purposes. Such land serves as soil-forming parent material for developing anthropogenic soils, which sometimes exhibit unfavorable physicochemical properties. The toxicity of the waste [...] Read more.
Post-mining land in areas where mineral extraction has occurred may constitute a significant portion of the land used for various purposes. Such land serves as soil-forming parent material for developing anthropogenic soils, which sometimes exhibit unfavorable physicochemical properties. The toxicity of the waste generated during lignite mining is due to a number of factors, whose determination permits the identification of its origin for the subsequent design of technologies for the waste reclamation. The purpose of the study, in consistence with sustainable development, is to identify the causes of the toxicity of brown coal waste from the Lengerskoye deposit, in southern Kazakhstan. These studies have provided the results essential for planning remedial actions necessary to improve the well-being of the local population, in accordance with the principles of sustainable development. The studies were performed using single extraction; forms of Al, Fe, and Mn; soil texture; elemental analysis; phytocoenosis analysis; and diffractometric, IR spectroscopic, SEM, route reconnaissance, and comparative statistical methods. A decrease in the biodiversity of plant species was noted, with a gradual increase with distance from the waste storage sites. The most resistant plant species in the vicinity of the waste dump were Cynodon dactylon (L.) Pers and Alhagi pseudalhagi (M. Bieb.) Desv. ex B. Keller & Shap., while Dodartia orientalis (L.) was the only plant species found at the edge of the waste dump. The high toxicity of lignite waste is determined by such factors as low pH values, about 3.0; high content of active forms of aluminum, iron, and manganese (344.0, 0.90, and 20 mg/kg); high electrical conductivity—2835 µS/cm; waste composition poor in nutrients; and climate aridity. It has been observed that a content of exchangeable aluminum above 100 mg/kg resulted in an almost complete lack of vegetation. Full article
Show Figures

Figure 1

16 pages, 1325 KiB  
Article
Assessing the Effectiveness of Rotation Growing of Industrial Hemp and Alfalfa in Post-Mining Agricultural Reclamation: Using Soil Fauna as an Indicator
by Krassimira Ilieva-Makulec, Anna Augustyniuk-Kram, Kamil Karaban, Jacek Kołodziej and Jerzy Mańkowski
Agriculture 2024, 14(9), 1621; https://doi.org/10.3390/agriculture14091621 - 16 Sep 2024
Cited by 1 | Viewed by 1504
Abstract
The reclamation of post-mining land for agricultural purposes has continued to be a big challenge. Our study concerns the use of soil microfauna (nematodes) and mesofauna (mites and springtails) as indicators of soil quality after 6 years of agricultural reclamation of a post-mining [...] Read more.
The reclamation of post-mining land for agricultural purposes has continued to be a big challenge. Our study concerns the use of soil microfauna (nematodes) and mesofauna (mites and springtails) as indicators of soil quality after 6 years of agricultural reclamation of a post-mining area in west–central Poland. A new method, which involves rotation growing of industrial hemp (H) and alfalfa (A) and incorporating the resulting biomass into the soil, was used to reclaim two sites (5 and 15 years after mining) representing different types of post-mining deposits (clayey and sandy). On each site, two plots were established, where each crop was grown for three years, but in a different order during the rotation cycle (3H3A and 3A3H). The results showed significant differences in the abundance and structure of the fauna communities between 3H3A and 3A3H reclamation practices, as well as between the reclaimed plots and non-reclaimed (NR) plots, where spontaneous succession proceeded. The three animal groups were more abundant in the reclaimed soil compared to the NR soil. The highest densities for nematodes were observed in the 3H3A plots and for the mesofauna in the 3A3H plots. The reclamation practices had a positive effect on groups involved in the regulation of C and N mineralisation, particularly bacterial- and hyphal-feeding nematodes and oribatid mites, and a negative effect on plant-feeding nematodes and euedaphic collembolans. The finding that most of the parameters of the studied biota had values resembling those of agricultural soils after 6 years of reclamation clearly indicates the effectiveness of the applied practices for transforming degraded land into soils that mirror soils under agricultural use. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

23 pages, 4665 KiB  
Article
Natural Water Sources and Small-Scale Non-Artisanal Andesite Mining: Scenario Analysis of Post-Mining Land Interventions Using System Dynamics
by Mohamad Khusaini, Rita Parmawati, Corinthias P. M. Sianipar, Gatot Ciptadi and Satoshi Hoshino
Water 2024, 16(17), 2536; https://doi.org/10.3390/w16172536 - 7 Sep 2024
Viewed by 1356
Abstract
Small-scale open-pit, non-artisanal mining of low-value ores is an understudied practice despite its widespread occurrence and potential impact on freshwater resources due to mining-induced land-use/cover changes (LUCCs). This research investigates the long-term impacts of andesite mining in Pasuruan, Indonesia, on the Umbulan Spring’s [...] Read more.
Small-scale open-pit, non-artisanal mining of low-value ores is an understudied practice despite its widespread occurrence and potential impact on freshwater resources due to mining-induced land-use/cover changes (LUCCs). This research investigates the long-term impacts of andesite mining in Pasuruan, Indonesia, on the Umbulan Spring’s water discharge within its watershed. System Dynamics (SD) modeling captures the systemic and systematic impact of mining-induced LUCCs on discharge volumes and groundwater recharge. Agricultural and reservoir-based land reclamation scenarios then reveal post-mining temporal dynamics. The no-mining scenario sees the spring’s discharge consistently decrease until an inflection point in 2032. With mining expansion, reductions accelerate by ~1.44 million tons over two decades, or 65.31 thousand tons annually. LUCCs also decrease groundwater recharge by ~2.48 million tons via increased surface runoff. Proposed post-mining land interventions over reclaimed mining areas influence water volumes differently. Reservoirs on reclaimed land lead to ~822.14 million extra tons of discharge, 2.75 times higher than the agricultural scenario. Moreover, reservoirs can restore original recharge levels by 2039, while agriculture only reduces the mining impact by 28.64% on average. These findings reveal that small-scale non-artisanal andesite mining can disrupt regional hydrology despite modest operating scales. Thus, evidence-based guidelines are needed for permitting such mines based on environmental risk and site water budgets. Policy options include discharge or aquifer recharge caps tailored to small-scale andesite mines. The varied outputs of rehabilitation scenarios also highlight evaluating combined land and water management interventions. With agriculture alone proving insufficient, optimized mixes of revegetation and water harvesting require further exploration. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

27 pages, 770 KiB  
Review
Transitional and Post-Mining Land Uses: A Global Review of Regulatory Frameworks, Decision-Making Criteria, and Methods
by Chrysoula Pagouni, Francis Pavloudakis, Ioannis Kapageridis and Athena Yiannakou
Land 2024, 13(7), 1051; https://doi.org/10.3390/land13071051 - 13 Jul 2024
Cited by 7 | Viewed by 5608
Abstract
Post-mining land management is an integral part of surface mining and quarrying operations. In this context, the questions raised concern what course of action is mandated by laws and regulations; what type of land reclamation should be implemented, taking into account the site-specific [...] Read more.
Post-mining land management is an integral part of surface mining and quarrying operations. In this context, the questions raised concern what course of action is mandated by laws and regulations; what type of land reclamation should be implemented, taking into account the site-specific conditions prevailing in each mining area; what are the appropriate land uses; and by what criteria and methodology can these be determined? The literature review conducted as part of the present study revealed that in addition to the traditional 4R actions of land management, namely remediation, restoration, reclamation, and rehabilitation, two more actions, repurposing and co-purposing, have now been added, with the purpose to address the social and economic impacts of mine closures. Furthermore, numerous land uses were documented and categorized into 11 classes, 38 sub-classes, and 119 alternatives. Nine criteria for selecting land uses were identified, expressed through 72 attributes that served as input information for 22 multicriteria methods, which, in most cases, were applied in combination of two or more. Full article
(This article belongs to the Special Issue Geospatial Data in Land Suitability Assessment)
Show Figures

Figure 1

20 pages, 17559 KiB  
Article
Assessing Ecological Impacts and Recovery in Coal Mining Areas: A Remote Sensing and Field Data Analysis in Northwest China
by Deyun Song, Zhenqi Hu, Yi Yu, Fan Zhang and Huang Sun
Remote Sens. 2024, 16(12), 2236; https://doi.org/10.3390/rs16122236 - 19 Jun 2024
Cited by 3 | Viewed by 2573
Abstract
In the coal-rich provinces of Shanxi, Shaanxi, and Inner Mongolia, the landscape bears the scars of coal extraction—namely subsidence and deformation—that disrupt both the terrain and the delicate ecological balance. This research delves into the transformative journey these mining regions undergo, from pre-mining [...] Read more.
In the coal-rich provinces of Shanxi, Shaanxi, and Inner Mongolia, the landscape bears the scars of coal extraction—namely subsidence and deformation—that disrupt both the terrain and the delicate ecological balance. This research delves into the transformative journey these mining regions undergo, from pre-mining equilibrium, through the tumultuous phase of extraction, to the eventual restoration of stability post-reclamation. By harnessing a suite of analytical tools, including sophisticated remote sensing, UAV aerial surveys, and the meticulous ground-level sampling of flora and soil, the study meticulously measures the environmental toll of mining activities and charts the path to ecological restoration. The results are promising, indicating that the restoration initiatives are effectively healing the landscapes, with proactive interventions such as seeding, afforestation, and land rehabilitation proving vital in the swift ecological turnaround. Remote sensing technology, in particular, emerges as a robust ally in tracking ecological shifts, supporting sustainable practices and guiding ecological management strategies. This study offers a promising framework for assessing geological environmental shifts, which may guide policymakers in shaping the future of mining rehabilitation in arid and semi-arid regions. Full article
Show Figures

Graphical abstract

15 pages, 22214 KiB  
Article
Integrated Mining and Reclamation Practices Enhance Sustainable Land Use: A Case Study in Huainan Coalfield, China
by Zhanjie Feng, Zhenqi Hu, Xi Zhang, Yuhang Zhang, Ruihao Cui and Li Lu
Land 2023, 12(11), 1994; https://doi.org/10.3390/land12111994 - 31 Oct 2023
Cited by 11 | Viewed by 2672
Abstract
In the coal-grain composite area (CGCA) of eastern China with a high groundwater table (HGT), underground coal mining subsidence has caused extensive submergence of farmland, posing a significant threat to regional food security. Currently, land reclamation techniques in mining subsidence areas primarily focus [...] Read more.
In the coal-grain composite area (CGCA) of eastern China with a high groundwater table (HGT), underground coal mining subsidence has caused extensive submergence of farmland, posing a significant threat to regional food security. Currently, land reclamation techniques in mining subsidence areas primarily focus on post-mining reclamation (PMR) of stable subsidence land with a low reclamation rate. This study investigated the application of concurrent mining and reclamation (CMR) technology for unstable subsidence land in a representative HGT mining area, namely the Guqiao Coal Mine in the Huainan Coalfield. Firstly, mining subsidence prediction and geographic information technology were employed to simulate the spatio-temporal evolution of dynamic mining subsidence, taking into consideration the mining plan. Subsequently, phased reclamation parameters were quantitatively designed by integrating the dynamic mining subsidence and surface reclamation measures. Lastly, scenario simulations were conducted to discuss the effectiveness of CMR in comparison with non-reclamation (NR) and PMR. Additionally, reclamation and ecological restoration strategies for coal mining subsidence areas with comprehensive governance modes were proposed. The findings indicated that mining activities have led to a reduction in both the quantity and quality of original farmland, with 70% of the farmland submerged and rendered uncultivable. In contrast to PMR, which achieved a reclamation rate of 29%, CMR can significantly increase the farmland reclamation rate to 69% while also prolonging the service life of farmland. This study provides theoretical support and technical references for promoting sustainable mining practices, protecting farmland, and facilitating the high-quality development of coal resource-based cities. Full article
Show Figures

Figure 1

7 pages, 2137 KiB  
Proceeding Paper
Extractive Waste Management in Coal Surface Mining Projects—A Circular Economy Approach
by Ariadni Sokratidou, Christos Roumpos, Nikolaos Paraskevis, Aikaterini Servou and Francis Pavloudakis
Mater. Proc. 2023, 15(1), 13; https://doi.org/10.3390/materproc2023015013 - 16 Oct 2023
Cited by 2 | Viewed by 1677
Abstract
Coal surface mines usually occupy large areas for the development of mining activities, and they affect and change the landscape and land cover in various ways. After completing the exploitation of a specific mine section, the sustainable reclamation of mining land is directly [...] Read more.
Coal surface mines usually occupy large areas for the development of mining activities, and they affect and change the landscape and land cover in various ways. After completing the exploitation of a specific mine section, the sustainable reclamation of mining land is directly associated with the optimal exploitation of waste dumping sites. This study investigates the main issues related to extractive waste management concerning the progressive development of dumping sites in continuous surface mining projects, from initial excavations to the completion of mining operations and post-mining utilization, considering basic geospatial parameters and circular economy principles. In this framework, the waste dumping areas of the exhausted Amyntaion lignite mines in North Greece are examined. Research results showed that the waste management that was applied in this area was characterized by sustainable attributes, and an equilibrium was observed in the dumping material volume. Full article
Show Figures

Figure 1

6 pages, 4612 KiB  
Proceeding Paper
Flood Detection in Complex Surface Mining Areas Using Satellite Data for Sustainable Management
by Konstantinos Karalidis, Georgios Louloudis, Christos Roumpos, Eleni Mertiri and Francis Pavloudakis
Mater. Proc. 2023, 15(1), 1; https://doi.org/10.3390/materproc2023015001 - 9 Oct 2023
Viewed by 1220
Abstract
In the context of the lignite phase-out plan in Greece, the aim of the Public Power Corporation (PPC) is sustainable mine closure and land reclamation and, at the same time, the enhancement of safe mining and post-mining activities. The main objective of this [...] Read more.
In the context of the lignite phase-out plan in Greece, the aim of the Public Power Corporation (PPC) is sustainable mine closure and land reclamation and, at the same time, the enhancement of safe mining and post-mining activities. The main objective of this study is to provide a methodology to identify the areas in complex surface mining landscapes that are more vulnerable to flooding using remotely sensed satellite data. This is an integral part of the strategic planning of the new land uses and the design of new and improved water management strategies. In this research, the change detection method is applied using Synthetic Aperture Radar (SAR), and flood-prone zones are delineated. Full article
Show Figures

Figure 1

18 pages, 7433 KiB  
Article
A Geospatial Analysis Model for the Selection of Post-Mining Land Uses in Surface Lignite Mines: Application in the Ptolemais Mines, Greece
by Aikaterini Servou, Nikolaos Paraskevis, Christos Roumpos and Francis Pavloudakis
Sustainability 2023, 15(19), 14388; https://doi.org/10.3390/su151914388 - 29 Sep 2023
Cited by 2 | Viewed by 2449
Abstract
Among the procedures included in surface mines’ closure, the determination of post-mining land uses constitutes one of the early but primary steps. This research aims to develop an algorithm for the selection of the most suitable land use spatial distribution in the post-mining [...] Read more.
Among the procedures included in surface mines’ closure, the determination of post-mining land uses constitutes one of the early but primary steps. This research aims to develop an algorithm for the selection of the most suitable land use spatial distribution in the post-mining area of a surface lignite mine in northern Greece. Considering the already reclaimed areas and the local socioeconomic conditions, six distinct criteria that concern physical local characteristics were selected and, in turn, spatially combined with parameters affecting the mining area. Mining experts attributed weights to the criteria regarding their importance for the examined land uses. The six criteria concerned physical local characteristics (slope, elevation, and distance from villages, rivers, roads, and transmission lines), while the parameters affecting the mining area referred to the type of ground (undisturbed or graded areas), existing infrastructure, and mine closure planning, emphasizing the final landscape of the mining area. The investigated land uses encompassed agricultural, forest, industrial (including buildings, infrastructure, and photovoltaic parks), and recreational parks. Through the application of a fuzzification algorithm within a geographical information system (GIS) environment, four land use suitability maps were generated, which were subsequently overlaid to derive a comprehensive suitability map. The final suitability map was derived from the integration of the mining parameters as spatial information into the algorithm. The findings indicate that, even though the land use suitability analysis could be derived from a mathematical model, the integration of qualitative information related to the mining specifications is necessary to produce more reliable results. The proposed algorithm can be used as a useful tool by decision-makers in the mining industry to plan post-mining reclamation based on suitable criteria. Full article
(This article belongs to the Special Issue Sustainable Mining and Processing of Mineral Resources)
Show Figures

Figure 1

14 pages, 6761 KiB  
Article
Remote Sensing-Based Revegetation Assessment at Post-Closure Mine Sites in Canada
by Sam Gordon, Xiaoyong Xu and Yanyu Wang
Sustainability 2023, 15(14), 11287; https://doi.org/10.3390/su151411287 - 20 Jul 2023
Cited by 2 | Viewed by 2156
Abstract
The environmental legacy of post-closure mine sites poses a significant risk to the sustainability of mining operations and natural resource development. This study aims to advance the understanding of sustainable mine site reclamation behavior in Canada by using multi-temporal Landsat satellite images to [...] Read more.
The environmental legacy of post-closure mine sites poses a significant risk to the sustainability of mining operations and natural resource development. This study aims to advance the understanding of sustainable mine site reclamation behavior in Canada by using multi-temporal Landsat satellite images to examine the long-term land cover changes at post-closure mine sites. Six representative post-closure mine sites were selected for the evaluation and comparison. The Normalized Difference Vegetation Index (NDVI) analysis, Landsat image classification, post-classification change detection, and Regrowth Index (RI) analysis were conducted to assess the speed and extent of landscape and vegetation recovery at the target mine sites. A significant vegetation recovery was quantified for the mine sites that have experienced active reclamation activities. In contrast, the post-closure mine area undergoing only passive revegetation typically demonstrated a slow and minor increase in vegetation over time. The actively revegetated mine sites can typically be restored to a vegetation cover level that equals or is better than the pre-mining situation. This work confirms that active reclamation and revegetation at post-closure mine sites is critically important in sustainable mining. The quantified mine site reclamation behavior and the relevant sustainable practices would be useful for evidence-based sustainable resource management in Canada. Full article
Show Figures

Figure 1

Back to TopTop