Assessing the Effectiveness of Rotation Growing of Industrial Hemp and Alfalfa in Post-Mining Agricultural Reclamation: Using Soil Fauna as an Indicator
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Methods
2.3. Statistical Analysis
3. Results
3.1. Soil Physicochemical Properties
3.2. Soil Enzymatic Activity
3.3. Microfauna (Nematoda) Abundance and Community Structure
3.3.1. Nematode Density
3.3.2. Nematode Trophic Structure
3.3.3. Nematode Generic Richness and Dominance Structure
3.4. Mesofauna (Acari and Collembola) Abundance and Community Structure
3.5. Soil Properties and Soil Fauna Abundance across the Sampling Plots
4. Discussion
4.1. Soil Physicochemical Properties in Reclaimed and Non-Reclaimed Post-Mine Soil
4.2. Soil Fauna Responses to Reclamation of Post-Mine Soil
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fagiewicz, K.; Łowicki, D. The dynamics of landscape pattern changes in mining areas: The case study of the Adamów-Koźmin Lignite Basin. Quaest. Geogr. 2019, 38, 151–162. [Google Scholar] [CrossRef]
- Mańkowski, J.; Kołodziej, J.; Kuback, A.; Baraniecki, P.; Pniewska, I. Cultivation of industrial hemp accelerating reclamation of land degraded by open mining of lignite. Chemik 2014, 68, 983–988. [Google Scholar]
- Mańkowski, J.; Kołodziej, J.; Pudełko, K.; Kozłowski, R.M. Bast fibres: The role of hemp (Cannabis sativa L.) in remediation of degraded lands. In Handbook of Natural Fibres, 2nd ed.; Kozłowski, R.M., Mackiewicz-Talarczyk, M., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2020; pp. 393–417. ISBN 9780128187821. [Google Scholar] [CrossRef]
- Ganjegunte, G.K.; Wick, A.F.; Stahl, P.D.; Vance, G.F. Accumulation and composition of total organic carbon in reclaimed coal mine lands. Land Degrad. Dev. 2009, 20, 156–175. [Google Scholar] [CrossRef]
- Abakumov, E.V.; Cajthaml, T.; Brus, J.; Frouz, J. Humus accumulation, humification, and humic acid composition in soils of two post-mining chronosequences after coal mining. J. Soils Sediments 2013, 13, 491–500. [Google Scholar] [CrossRef]
- Pagliai, M.; Vignozzi, N.; Pellegrin, S. Soil structure and the effect of management practices. Soil Tillage Res. 2004, 79, 131–143. [Google Scholar] [CrossRef]
- Sen, S.; Kumar, V. Evaluating soil quality and bioefficacy study of Cajanus cajan L. in coal mine-degraded land. Turk. J. Agric. For. 2016, 40, 3. [Google Scholar] [CrossRef]
- Clayton, J.; Lemanski, K.; Bonkowski, M. Shifts in soil microbial stoichiometry and metabolic quotient provide evidence for a critical tipping point at 1% soil organic carbon in an agricultural post-mining chronosequence. Biol. Fertil. Soils 2021, 57, 435–446. [Google Scholar] [CrossRef]
- Mosier, S.; Córdova, S.C.; Robertson, G.P. Restoring soil fertility on degraded lands to meet food, fuel, and climate security needs via perennialization. Front. Sustain. Food Syst. 2021, 5, 706142. [Google Scholar] [CrossRef]
- Pihlap, E.; Vuko, M.; Lucas, M.; Steffens, M.; Schloter, M.; Vetterlein, D.; Endenich, M.; Kögel-Knabner, I. Initial soil formation in an agriculturally reclaimed open-cast mining area—The role of management and loess parent material. Soil Tillage Res. 2019, 191, 224–237. [Google Scholar] [CrossRef]
- Głowacki, A.; Mocek-Płóciniak, A.; Spychalski, W.; Kayzer, D. The influence of long-term land reclamation on the microbiological properties of post-mining soils. Soil Sci. Annu. 2020, 71, 359–370. [Google Scholar] [CrossRef]
- Mei, L.; Zhang, N.; Wei, Q.; Cao, Y.; Li, D.; Cui, G. Alfalfa modified the effects of degraded black soil cultivated land on the soil microbial community. Front. Plant Sci. 2022, 13, 938187. [Google Scholar] [CrossRef] [PubMed]
- Linger, P.; Müssig, J.; Fischer, H.; Kobert, J. Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: Fibre quality and phytoremediation potential. Ind. Crops Prod. 2002, 16, 33–42. [Google Scholar] [CrossRef]
- Husain, R.; Weeden, H.; Bogush, D.; Deguchi, M.; Solimanm, M.; Potlakayala, S.; Katam, R.; Goldman, S.; Rudrabhatla, S. Enhanced tolerance of industrial hemp (Cannabis sativa L.) plants on abandoned mine land soil leads to overexpression of cannabinoids. PLoS ONE 2019, 14, e0221570. [Google Scholar] [CrossRef] [PubMed]
- Pudełko, K.; Kołodziej, J.; Mańkowski, J. Restoration of minesoil organic matter by cultivation of fiber hemp (Cannabis sativa L.) on lignite post-mining areas. Ind. Crops Prod. 2021, 171, 113921. [Google Scholar] [CrossRef]
- Borges, F.L.G.; Oliveira, M.R.; de Almeida, T.C.; Majer, J.D.; Garcia, L.C. Terrestrial invertebrates as bioindicators in restoration ecology: A global bibliometric survey. Ecol. Indic. 2021, 25, 107458. [Google Scholar] [CrossRef]
- Briones, M.J.I. The serendipitous value of soil fauna in ecosystem functioning: The unexplained explained. Front. Environ. Sci. 2018, 6, 149. [Google Scholar] [CrossRef]
- Kardol, P.; De Long, J. How anthropogenic shifts in plant community composition alter soil food webs. F1000Research 2018, 7, 4. [Google Scholar] [CrossRef]
- Bongers, T.; Ferris, H. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 1999, 14, 224–228. [Google Scholar] [CrossRef]
- Ilieva-Makulec, K.; Tyburski, J.; Makulec, G. Soil nematodes in organic and conventional farming system: A comparison of the taxonomic and functional diversity. Pol. J. Ecol. 2016, 64, 303–320. [Google Scholar] [CrossRef]
- Machado, J.S.; Oliveira Filho, L.C.I.; Santos, J.C.P.; Paulino, A.T.; Baretta, D. Morphological diversity of springtails (Hexapoda: Collembola) as soil quality bioindicators in land use systems. Biota Neotrop. 2019, 19, e20180618. [Google Scholar] [CrossRef]
- Forster, J.C. Determination of soil pH. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: London, UK, 1995; p. 55. ISBN 0125138407. [Google Scholar]
- Forster, J.C. Soil Physical Analysis. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: London, UK, 1995; p. 105. ISBN 0125138407. [Google Scholar]
- Salehi, M.H.; Beni, O.H.; Harchegani, H.B.; Esfandiarpour-Borujeni, I.; Motaghian, H.R. Refining soil organic matter determination by loss-on-ignition. Pedosphere 2011, 21, 473–482. [Google Scholar] [CrossRef]
- Krotz, L.; Leone, F.; Giazzi, G. High Accuracy of Nitrogen, Carbon and Sulfur Analysis for Agronomy Applications Using the Thermo Scientific FlashSmart Elemental Analyzer; Thermo Fisher Scientific Inc.: Waltham, MA, USA, 2016; Application Note. 2016, AN42264 0716G. [Google Scholar]
- Casida, L.; Klein, D.; Santoro, T. Soil dehydrogenase activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- Kanazawa, S.; Kiyota, H. Estimation of L-glutaminase and L-asparaginase activities in soils by the indophenol method. Soil Sci. Plant Nutr. 1995, 41, 305–311. [Google Scholar] [CrossRef]
- Alef, K.; Nannipieri, P. Saccharase activity. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: London, UK, 1995; pp. 354–355. ISBN 0125138407. [Google Scholar]
- Flegg, J.J.M.; Hooper, D.J. Extraction of free-living stages from soil. In Laboratory Methods for Work with Plant and Soil Nematodes; Southey, J.P., Ed.; Technical Bulletin of Ministry of Agriculture, Fisheries and Food: London, UK, 1970; pp. 5–23. ISBN 0112409024. [Google Scholar]
- Goodey, T. Soil and Freshwater Nematodes; John Wiley and Sons: New York, NY, USA, 1963. [Google Scholar]
- Andrássy, I. A Taxonomic Review of the Suborder Rhabditina (Nematoda: Secernentia); Office de la Recherche Scientifique et Technique Outre-Mer (ORSTOM): Paris, France, 1983; ISBN 2709906996. [Google Scholar]
- Bongers, T. The Nematodes of the Netherlands; Stichting Uitgeverij Koninklijke Nederlandse Natuurhistorische Vereniging: Utrecht, The Netherlands, 1998. (In Dutch) [Google Scholar]
- Yeates, G.W.; Bongers, T.; De Goede, R.G.M.; Freckman, D.W.; Georgieva, S.S. Feeding habits in soil nematode families and genera. An outline for soil ecologists. J. Nematol. 1993, 25, 315–331. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2619405/ (accessed on 10 May 2022).
- Macfadyen, A. Improved funnel type extractors for soil arthropods. J. Anim. Ecol. 1961, 30, 171–184. [Google Scholar] [CrossRef]
- Cielecka, D.; Salamatin, R.; Garbacewicz, A. Usage of the Hoyer’s medium for diagnostics and morphological studies of some parasites. Wiad. Parazytol. 2009, 55, 265–270. (In Polish) [Google Scholar]
- Baker, E.W.; Wharton, G.W. An Introduction to Acarology; Macmillan: New York, NY, USA, 1952. [Google Scholar]
- Chernova, N.M. Collembolan populations. In Key Book of Collembola of the USSR Fauna; Chernova, N.M., Ed.; Nauka: Moscow, Russia, 1988; pp. 45–51. (In Russian) [Google Scholar]
- Ter Braak, C.J.F.; Smilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, version 5.0; Microcomputer Power: Ithaca, NY, USA, 2012; p. 496. [Google Scholar]
- Delschen, T. Impacts of long-term application of organic fertilizers on soil quality parameters in reclaimed loess soils of the Rhineland lignite mining area. Plant Soil 1999, 213, 43–54. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Qiang, M.A.; Yu, W.-T.; Zhao, S.-H.; Zhang, L. Relationship between water-stable aggregates and nutrients in black soils after reclamation. Pedosphere 2007, 17, 538–544. [Google Scholar] [CrossRef]
- Chen, Y.F.; Mekete, T.; Dababat, A.A.; Daub, M.; Cao, Z.P.; Sikora, R.A. Response of nematode communities to reclamation of agricultural soils following degradation through brown coal strip-mining processes. Helminthologia 2014, 51, 53–62. [Google Scholar] [CrossRef]
- Kumari, S.; Maiti, S.K. Nitrogen recovery in reclaimed mine soil under different amendment practices in tandem with legume and non-legume revegetation: A review. Soil Use Manag. 2022, 38, 1113–1145. [Google Scholar] [CrossRef]
- Rousk, J.; Bååth, E. Fungal and bacterial growth in soil with plant materials of different C/N ratios. FEMS Microbiol. Ecol. 2007, 62, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Hayano, K. Cellulase complex in a tomato field soil: Induction, localization and some properties. Soil Biol. Biochem. 1986, 18, 215–219. [Google Scholar] [CrossRef]
- Rhee, Y.H.; Hah, Y.C.; Hong, S.W. Relative contributions of fungi and bacteria to soil carboxymethylcellulase activity. Soil Biol. Biochem. 1987, 19, 479–481. [Google Scholar] [CrossRef]
- Wasilewska, L. The structure and function of soil nematode communities in natural ecosystems and agrocenoses. Pol. Ecol. Stud. 1979, 5, 97–145. [Google Scholar]
- Coleman, D.C.; Crossley, D.A., Jr.; Hendrix, P.F. Fundamentals of Soil Ecology, 2nd ed.; Academic Press: Cambridge, MA, USA, 2004; ISBN 9780121797263. [Google Scholar]
- Princz, J.I.; Behan-Pelletier, V.M.; Scroggins, R.P.; Siciliano, S.D. Oribatid mites in soil toxicity testing—The use of Oppia nitens (C.L. Koch) as a new test species. Environ. Toxicol. Chem. 2010, 29, 971–979. [Google Scholar] [CrossRef]
- Minor, M.A.; Norton, R.A. Effects of soil amendments on assemblages of soil mites (Acari: Oribatida, Mesostigmata) in short-rotation willow plantings in Central New York. Can. J. For. Res. 2004, 34, 1417–1425. [Google Scholar] [CrossRef]
- Bongers, T. The Maturity Index, the evolution of nematode life history traits, adaptive radiation and c–p-scaling. Plant Soil 1999, 212, 13–22. [Google Scholar] [CrossRef]
- Insam, H.; Domsch, K.H. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microb. Ecol. 1988, 15, 177–188. [Google Scholar] [CrossRef]
- Reichel, R.; Hänsch, M.; Brüggemann, N. Indication of rapid soil food web recovery by nematode-derived indices in restored agricultural soil after open-cast lignite mining. Soil Biol. Biochem. 2017, 115, 261–264. [Google Scholar] [CrossRef]
- Ferris, H.; Venette, R.C.; van der Meulen, H.R.; Lau, S.S. Nitrogen mineralization by bacterial-feeding nematodes: Verification and measurement. Plant Soil 1998, 203, 159–171. [Google Scholar] [CrossRef]
- Ferris, H.; Venette, R.C.; Scow, K.M. Soil management to enhance bacterivore and fungivore nematode populations and their nitrogen mineralization function. Appl. Soil Ecol. 2004, 24, 19–35. [Google Scholar] [CrossRef]
- Mooshammer, M.; Wanek, W.; Hämmerle, I.; Fuchslueger, L.; Hofhansl, F.; Knoltsch, A.; Schnecker, J.; Takriti, M.; Watzka, M.; Wild, B.; et al. Adjustment of microbial nitrogen use efficiency to carbon: Nitrogen imbalances regulates soil nitrogen cycling. Nat. Commun. 2014, 5, 3694. [Google Scholar] [CrossRef] [PubMed]
- Ilieva-Makulec, K. A comparative study of the life strategies of two bacterial-feeding nematodes under laboratory conditions. II. Influence of the initial food level on the population dynamics of Acrobeloides nanus (de Man 1880) Anderson 1968 and Dolichorhabditis dolichura (Schneider 1866) Andrassy 1983. Pol. J. Ecol. 2001, 49, 123–135. [Google Scholar]
- Bokhorst, S.; Phoenix, G.K.; Bjerke, J.W.; Callaghan, T.V.; Huyer-Brugman, F.; Berg, M.P. Extreme winter warming events more negatively impact small rather than large soil fauna: Shift in community composition explained by traits not taxa. Glob. Chang. Biol. 2012, 18, 1152–1162. [Google Scholar] [CrossRef]
- Da Silva, M.P.; Carvalho, F.; Dirilgen, T.; Stone, D.; Creamer, R.; Bolger, T.; Sousa, J.P. Traits of collembolan life-form indicate land use types and soil properties across an European transect. Appl. Soil Ecol. 2016, 97, 69–77. [Google Scholar] [CrossRef]
- Holmstrup, M.; Ehlers, B.K.; Slotsbo, S.; Ilieva-Makulec, K.; Sigurdsson, D.B.; Leblans, N.I.W.; Ellers, J.; Berg, M.P. Functional diversity of Collembola is reduced in soils subjected to short-term, but not long-term, geothermal warming. Funct. Ecol. 2018, 32, 1304–1316. [Google Scholar] [CrossRef]
Characteristic | Site I | Site II |
---|---|---|
Start of reclamation | 15 years after the end of coal extraction | 5 years after the end of coal extraction |
Duration of reclamation | 6 years | 6 years |
Method of reclamation | Crop rotation | Crop rotation |
Reclamation practices and plots | Plot I 3A3H: 3 years of alfalfa cultivation followed by 3 years of hemp cultivation Plot I 3H3A: 3 years of hemp cultivation followed by 3 years of alfalfa cultivation Plot I NR: non-reclaimed (natural recovery area) with natural plant succession for 21 years. Vegetation—perennial grasses: domination of Calamagrostis canescens | Plot II 3A3H: 3 years of alfalfa cultivation followed by 3 years of hemp cultivation Plot II 3H3A: 3 years of hemp cultivation followed by 3 years of alfalfa cultivation Plot II NR: non-reclaimed (natural recovery area) with natural plant succession for 11 years. Vegetation: perennial grasses (C. canescens), herbs (Leucanthemum vulgare) |
Post-mine deposit type | Clay deposits | Sandy loam deposits |
Parameter | Site I | Site II | ||||
---|---|---|---|---|---|---|
I 3A3H | I 3H3A | I NR | II 3A3H | II 3H3A | II NR | |
pH | 6.75 ± 0.36 a | 7.39 ± 0.10 b | 7.78 ± 0.37 b | 7.83 ± 0.14 a | 8.15 ± 0.25 a | 8.10 ± 0.12 a |
WC (%) | 12.61 ± 2.11 a | 12.76 ± 1.65 a | 14.42 ± 2.26 a | 10.89 ± 1.23 a | 12.17 ± 0.78 a | 12.95 ± 3.39 a |
SOMLOI (%) | 3.38 ± 0.64 a | 3.49 ± 0.28 a | 4.56 ± 1.04 a | 2.22 ± 0.33 ab | 1.97 ± 0.28 a | 2.50 ± 0.32 b |
TOC (%) | 1.13 ± 0.30 a | 1.02 ± 0.16 a | 1.05 ± 0.33 a | 1.16 ± 0.25 a | 0.92 ± 0.29 a | 1.03 ± 0.25 a |
TN (%) | 0.13 ± 0.02 a | 0.24 ± 0.04 b | 0.10 ± 0.006 a | 0.08 ± 0.01 a | 0.09 ± 0.04 a | 0.05 ± 0.006 a |
C:N | 9:1 | 4:1 | 11:1 | 15:1 | 10:1 | 20:1 |
Variables | Reclamation Effect | |||
---|---|---|---|---|
Site I | Site II | |||
F | p | F | p | |
Enzyme activity: | ||||
Dehydrogenase | 5.854 | 0.017 | 0.016 | 0.984 |
L-asparaginase | 4.191 | 0.042 | 0.573 | 0.579 |
Invertase | 22.740 | 0.000 | 5.308 | 0.022 |
Total nematodes | 5.918 | 0.016 | 11.727 | 0.002 |
Bacterial feeders | 1.840 | 0.201 | 7.665 | 0.007 |
Hyphal feeders | 11.879 | 0.001 | 5.749 | 0.012 |
Plant feeders | 0.364 | 0.702 | 4.536 | 0.034 |
Total mites | 26.887 | 0.000 | 7.805 | 0.007 |
Oribatida | 23.498 | 0.000 | 7.572 | 0.008 |
Mesostigmata | 10.185 | 0.003 | 3.541 | 0.062 |
Total collembolans | 2.353 | 0.137 | 23.355 | 0.000 |
Epedaphic | 8.393 | 0.005 | 18.208 | 0.000 |
Hemiedaphic | 0.535 | 0.599 | 6.113 | 0.015 |
Euedaphic | 2.667 | 0.110 | 0.857 | 0.449 |
I NR | % | I 3A3H | % | I 3H3A | % | |||
Acrobeloides | Bf | 35.9 | Aphelenchus | Hf | 17.9 | Panagrolaimus | Bf | 24.9 |
Prismatolaimus | Bf | 24.9 | Plectus | Bf | 16.8 | Acrobeloides | Bf | 22.8 |
Plectus | Bf | 12.8 | Panagrolaimus | Bf | 14.6 | Aphelenchoides | Hf | 9.6 |
Eumonhystera | Bf | 7.6 | Aphelenchoides | Hf | 11.7 | Plectus | Bf | 8.9 |
Protorhabditis | Bf | 8.7 | Eumonhystera | Bf | 7.9 | |||
Ditylenchus | Hf | 8.7 | Aphelenchus | Hf | 7.1 | |||
Chiloplacus | Bf | 5.9 | Ditylenchus | Hf | 5.6 | |||
II NR | II 3A3H | II 3H3A | ||||||
Ditylenchus | Hf | 25.6 | Aphelenchoides | Hf | 31.8 | Panagrolaimus | Bf | 24.3 |
Paratylenchus | Pf | 15.6 | Panagrolaimus | Bf | 29.0 | Aphelenchoides | Hf | 20.3 |
Prismatolaimus | Bf | 10.8 | Aphelenchus | Hf | 9.1 | Plectus | Bf | 10.6 |
Cephalobus | Bf | 6.4 | Ditylenchus | Hf | 7.9 | Acrobeloides | Bf | 8.4 |
Aphelenchus | Hf | 6.3 | Aphelenchus | Hf | 7.2 | |||
Acrobeloides | Bf | 6.3 | Mesodorylaimus | OM | 5.6 | |||
Ironus | Pr | 5.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilieva-Makulec, K.; Augustyniuk-Kram, A.; Karaban, K.; Kołodziej, J.; Mańkowski, J. Assessing the Effectiveness of Rotation Growing of Industrial Hemp and Alfalfa in Post-Mining Agricultural Reclamation: Using Soil Fauna as an Indicator. Agriculture 2024, 14, 1621. https://doi.org/10.3390/agriculture14091621
Ilieva-Makulec K, Augustyniuk-Kram A, Karaban K, Kołodziej J, Mańkowski J. Assessing the Effectiveness of Rotation Growing of Industrial Hemp and Alfalfa in Post-Mining Agricultural Reclamation: Using Soil Fauna as an Indicator. Agriculture. 2024; 14(9):1621. https://doi.org/10.3390/agriculture14091621
Chicago/Turabian StyleIlieva-Makulec, Krassimira, Anna Augustyniuk-Kram, Kamil Karaban, Jacek Kołodziej, and Jerzy Mańkowski. 2024. "Assessing the Effectiveness of Rotation Growing of Industrial Hemp and Alfalfa in Post-Mining Agricultural Reclamation: Using Soil Fauna as an Indicator" Agriculture 14, no. 9: 1621. https://doi.org/10.3390/agriculture14091621
APA StyleIlieva-Makulec, K., Augustyniuk-Kram, A., Karaban, K., Kołodziej, J., & Mańkowski, J. (2024). Assessing the Effectiveness of Rotation Growing of Industrial Hemp and Alfalfa in Post-Mining Agricultural Reclamation: Using Soil Fauna as an Indicator. Agriculture, 14(9), 1621. https://doi.org/10.3390/agriculture14091621