Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (891)

Search Parameters:
Keywords = population regeneration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5479 KiB  
Article
Assessment of Three Provenances of Juglans neotropica Diels to Identify Optimal Seed Sources in the Northern Ecuadorian Andes
by Jorge-Luis Ramírez-López, Mario Añazco, Hugo Vallejos, Carlos Arcos and Kelly Estrada
Int. J. Plant Biol. 2025, 16(3), 87; https://doi.org/10.3390/ijpb16030087 (registering DOI) - 6 Aug 2025
Abstract
Identifying optimal seed sources is critical for the propagation and restoration of Juglans neotropica Diels in the northern Ecuadorian Andes, where populations are declining due to habitat loss and overexploitation. This study evaluated the seed quality and germination performance of Juglans neotropica from [...] Read more.
Identifying optimal seed sources is critical for the propagation and restoration of Juglans neotropica Diels in the northern Ecuadorian Andes, where populations are declining due to habitat loss and overexploitation. This study evaluated the seed quality and germination performance of Juglans neotropica from three ecologically distinct provenances: a natural regeneration site (Cuyuja), a pure plantation (Natabuela), and an agroforestry system (Pimampiro). Five phenotypically superior trees were selected from each site, and germination was assessed under controlled nursery conditions over a 150-day period using a completely randomized design. Initial viability tests confirmed the physiological integrity of the seeds across all provenances. Germination onset ranged from day 55 to day 73, with significant differences in germination percentage, speed, and uniformity. The agroforestry provenance showed the highest germination rate (69%) and superior performance in all physiological indices, while natural regeneration had the lowest (15%). Post-trial viability assessments indicated that a substantial proportion of non-germinated seeds from Cuyuja remained dormant or deteriorated. These findings underscore the role of agroforestry systems in enhancing seed physiological quality and support their prioritization for large-scale propagation and ecological restoration initiatives involving Juglans neotropica. Full article
(This article belongs to the Section Plant Reproduction)
Show Figures

Graphical abstract

36 pages, 21951 KiB  
Article
The Collective Dwelling of Cooperative Promotion in Caselas
by Vanda Pereira de Matos and Carlos Alberto Assunção Alho
Buildings 2025, 15(15), 2756; https://doi.org/10.3390/buildings15152756 - 5 Aug 2025
Abstract
To solve the present housing crisis, the Support for Access to Housing Program, in the context of PRR, mainly focuses on social housing to be built or on housing of social interest to be regenerated. To approach this problem, a research question was [...] Read more.
To solve the present housing crisis, the Support for Access to Housing Program, in the context of PRR, mainly focuses on social housing to be built or on housing of social interest to be regenerated. To approach this problem, a research question was raised: “What is the significance of the existing cooperative housing in solving the current housing crisis?” To analyze this issue, a multiple case study was adopted, comparing a collective dwelling of cooperative promotion at controlled costs in Caselas (1980s–1990s) with Expo Urbe (2000–2007) in Parque das Nações, a symbol of the new sustainable cooperative housing, which targets a population with a higher standard of living and thus is excluded from the PRR plan. These cases revealed the discrepancy created by the Cooperative Code of 1998 and its consequences for the urban regeneration of this heritage. They show that Caselas, built in a residential urban neighborhood, is strongly attached to a community, provides good social inclusion for vulnerable groups at more affordable prices, and it is eligible for urban regeneration and reuse (for renting or buying). However, the reuse of Caselcoop’s edifices cannot compromise their cultural and residential values or threaten the individual integrity. Full article
Show Figures

Figure 1

40 pages, 22351 KiB  
Article
The Extract of Periplaneta americana (L.) Promotes Hair Regrowth in Mice with Alopecia by Regulating the FOXO/PI3K/AKT Signaling Pathway and Skin Microbiota
by Tangfei Guan, Xin Yang, Canhui Hong, Zehao Zhang, Peiyun Xiao, Yongshou Yang, Chenggui Zhang and Zhengchun He
Curr. Issues Mol. Biol. 2025, 47(8), 619; https://doi.org/10.3390/cimb47080619 - 4 Aug 2025
Abstract
Alopecia, a prevalent dermatological disorder affecting over half of the global population, is strongly associated with psychological distress. Extracts from Periplaneta americana (L. PA), a medicinal insect resource, exhibit pharmacological activities (e.g., antioxidant, anti-inflammatory, microcirculation improvement) that align with core therapeutic targets for [...] Read more.
Alopecia, a prevalent dermatological disorder affecting over half of the global population, is strongly associated with psychological distress. Extracts from Periplaneta americana (L. PA), a medicinal insect resource, exhibit pharmacological activities (e.g., antioxidant, anti-inflammatory, microcirculation improvement) that align with core therapeutic targets for alopecia. This study aimed to systematically investigate the efficacy and mechanisms of PA extracts in promoting hair regeneration. A strategy combining network pharmacology prediction and in vivo experiments was adopted. The efficacy of a Periplaneta americana extract was validated by evaluating hair regrowth status and skin pathological staining in C57BL/6J mice. Transcriptomics, metabolomics, RT-qPCR, and 16s rRNA techniques were integrated to dissect the underlying mechanisms of its hair-growth-promoting effects. PA-011 significantly promoted hair regeneration in depilated mice via multiple mechanisms: enhanced skin superoxide dismutase activity and upregulated vascular endothelial growth factor expression; modulated FOXO/PI3K/AKT signaling pathway and restored skin microbiota homeostasis; and accelerated transition of hair follicles from the telogen to anagen phase. PA-011 exerts hair-promoting effects through synergistic modulation of FOXO/PI3K/AKT signaling and the skin microbiome. As a novel therapeutic candidate, it warrants further systematic investigation for clinical translation. Full article
Show Figures

Figure 1

33 pages, 8604 KiB  
Article
Sulforaphane-Rich Broccoli Sprout Extract Promotes Hair Regrowth in an Androgenetic Alopecia Mouse Model via Enhanced Dihydrotestosterone Metabolism
by Laxman Subedi, Duc Dat Le, Eunbin Kim, Susmita Phuyal, Arjun Dhwoj Bamjan, Vinhquang Truong, Nam Ah Kim, Jung-Hyun Shim, Jong Bae Seo, Suk-Jung Oh, Mina Lee and Jin Woo Park
Int. J. Mol. Sci. 2025, 26(15), 7467; https://doi.org/10.3390/ijms26157467 - 1 Aug 2025
Viewed by 332
Abstract
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on [...] Read more.
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on keratinocytes, dermal fibroblasts, and dermal papilla cells, showing greater in vitro activity than sulforaphane (SFN) and minoxidil under the tested conditions, while maintaining low cytotoxicity. In a testosterone-induced AGA mouse model, oral BSE significantly accelerated hair regrowth, with 20 mg/kg achieving 99% recovery by day 15, alongside increased follicle length, density, and hair weight. Mechanistically, BSE upregulated hepatic and dermal DHT-metabolizing enzymes (Akr1c21, Dhrs9) and activated Wnt/β-catenin signaling in the skin, suggesting dual actions via androgen metabolism modulation and follicular regeneration. Pharmacokinetic analysis revealed prolonged SFN plasma exposure following BSE administration, and in silico docking showed strong binding affinities of key BSE constituents to Akr1c2 and β-catenin. No systemic toxicity was observed in liver histology. These findings indicate that BSE may serve as a safe, effective, and multitargeted natural therapy for AGA. Further clinical studies are needed to validate its efficacy in human populations. Full article
Show Figures

Figure 1

13 pages, 1189 KiB  
Article
The Role of Biodegradable Temporizing Matrix in Paediatric Reconstructive Surgery
by Aikaterini Bini, Michael Ndukwe, Christina Lipede, Ramesh Vidyadharan, Yvonne Wilson and Andrea Jester
J. Clin. Med. 2025, 14(15), 5427; https://doi.org/10.3390/jcm14155427 - 1 Aug 2025
Viewed by 242
Abstract
Introduction: Biodegradable Temporizing Matrix (BTM) is a new synthetic dermal substitute suitable for wound closure and tissue regeneration. The data in paediatric population remain limited. The study purpose is to review the indications for BTM application in paediatric patients, evaluate the short-term and [...] Read more.
Introduction: Biodegradable Temporizing Matrix (BTM) is a new synthetic dermal substitute suitable for wound closure and tissue regeneration. The data in paediatric population remain limited. The study purpose is to review the indications for BTM application in paediatric patients, evaluate the short-term and long-term results, including complications and functional outcomes, as well as to share some unique observations regarding the use of BTM in paediatric population. Patients and Methods: Patients undergoing reconstructive surgery and BTM application during the last three years were included. Data collected included patient demographics, primary diagnosis, previous surgical management, post-operative complications and final outcomes. BTM was used in 32 patients. The indications varied including epidermolysis bullosa (n = 6), burns (n = 4), trauma (n = 7), infection (n = 4), ischemia or necrosis (n = 11). Results: The results were satisfying with acceptable aesthetic and functional outcomes. Complications included haematoma underneath the BTM leading to BTM removal and re-application (n = 1), BTM infection (n = 1) and split-thickness skin graft failure on top of BTM requiring re-grafting (n = 2). Conclusions: BTM can be a good alternative to large skin grafts, locoregional flaps or even free flaps. The big advantages over other dermal substitutes or skin grafts are that BTM is less prone to infection and offers excellent scarring by preserving the normal skin architecture. Specifically in children, BTM might not require grafting, resulting in spontaneous healing with good scarring. In critically ill patients, BTM reduces the operation time and there is no donor site morbidity. BTM should be considered in the reconstructive ladder when discussing defect coverage options in children and young people. Full article
(This article belongs to the Special Issue Trends in Plastic and Reconstructive Surgery)
Show Figures

Figure 1

18 pages, 14270 KiB  
Article
Long-Term Engraftment and Satellite Cell Expansion from Human PSC Teratoma-Derived Myogenic Progenitors
by Zahra Khosrowpour, Nivedha Ramaswamy, Elise N. Engquist, Berkay Dincer, Alisha M. Shah, Hossam A. N. Soliman, Natalya A. Goloviznina, Peter I. Karachunski and Michael Kyba
Cells 2025, 14(15), 1150; https://doi.org/10.3390/cells14151150 - 25 Jul 2025
Viewed by 289
Abstract
Skeletal muscle regeneration requires a reliable source of myogenic progenitor cells capable of forming new fibers and creating a self-renewing satellite cell pool. Human induced pluripotent stem cell (hiPSC)-derived teratomas have emerged as a novel in vivo platform for generating skeletal myogenic progenitors, [...] Read more.
Skeletal muscle regeneration requires a reliable source of myogenic progenitor cells capable of forming new fibers and creating a self-renewing satellite cell pool. Human induced pluripotent stem cell (hiPSC)-derived teratomas have emerged as a novel in vivo platform for generating skeletal myogenic progenitors, although in vivo studies to date have provided only an early single-time-point snapshot. In this study, we isolated a specific population of CD82+ ERBB3+ NGFR+ cells from human iPSC-derived teratomas and verified their long-term in vivo regenerative capacity following transplantation into NSG-mdx4Cv mice. Transplanted cells engrafted, expanded, and generated human Dystrophin+ muscle fibers that increased in size over time and persisted stably long-term. A dynamic population of PAX7+ human satellite cells was established, initially expanding post-transplantation and declining moderately between 4 and 8 months as fibers matured. MyHC isoform analysis revealed a time-based shift from embryonic to neonatal and slow fiber types, indicating a slow progressive maturation of the graft. We further show that these progenitors can be cryopreserved and maintain their engraftment potential. Together, these findings give insight into the evolution of teratoma-derived human myogenic stem cell grafts, and highlight the long-term regenerative potential of teratoma-derived human skeletal myogenic progenitors. Full article
Show Figures

Figure 1

17 pages, 707 KiB  
Review
Liver Regeneration as a Model for Studying Cellular Plasticity in Mammals: The Roles of Hepatocytes and Cholangiocytes
by Andrey Elchaninov, Polina Vishnyakova, Valeria Glinkina, Timur Fatkhudinov and Gennady Sukhikh
Cells 2025, 14(15), 1129; https://doi.org/10.3390/cells14151129 - 22 Jul 2025
Viewed by 238
Abstract
In most countries, liver disease is one of the most common pathologic conditions among the population. In this regard, the development of new methods to treat liver diseases is not possible without understanding the mechanisms of regeneration of this organ. A characteristic reaction [...] Read more.
In most countries, liver disease is one of the most common pathologic conditions among the population. In this regard, the development of new methods to treat liver diseases is not possible without understanding the mechanisms of regeneration of this organ. A characteristic reaction of the liver to certain damaging factors is a pronounced cellular plasticity; this primarily concerns hepatocytes and cholangiocytes. This property is also characteristic of Ito stellate cells and macrophages. In this study, we focus on the plasticity of hepatocytes and cholangiocytes. We consider such manifestations of plasticity as the ability to enter the mitotic cycle, as well as transdifferentiation. The contribution of each type of plasticity to liver regeneration is considered, as well as the molecular mechanisms providing the cellular plasticity of hepatocytes and cholangiocytes. Full article
(This article belongs to the Special Issue Cellular Differentiation in Health and Disease)
Show Figures

Figure 1

29 pages, 609 KiB  
Review
The Utility of Metabolomics in Spinal Cord Injury: Opportunities for Biomarker Discovery and Neuroprotection
by Prince Last Mudenda Zilundu, Anesuishe Blessings Gatsi, Tapiwa Chapupu and Lihua Zhou
Int. J. Mol. Sci. 2025, 26(14), 6864; https://doi.org/10.3390/ijms26146864 - 17 Jul 2025
Viewed by 364
Abstract
Brachial plexus root avulsion [BPRA] and concomitant spinal cord injury [SCI] represent devastating injuries that come with limited hope for recovery owing to the adult spinal cord’s loss of intrinsic ability to spontaneously regenerate. BPRA/SCI is an enormous public health issue the world [...] Read more.
Brachial plexus root avulsion [BPRA] and concomitant spinal cord injury [SCI] represent devastating injuries that come with limited hope for recovery owing to the adult spinal cord’s loss of intrinsic ability to spontaneously regenerate. BPRA/SCI is an enormous public health issue the world over, and its catastrophic impact goes beyond the patient, the family, businesses, and national health budgets, draining billions of dollars annually. The rising population and economic growth have seen the incidence of SCI surging. Genomic, transcriptomic, and proteomic studies have yielded loads of information on the various molecular events that precede, regulate, and support both regenerative and degenerative pathways post-SCI. Metabolomics, on the other hand, comes in as the search for a cure and the objective monitoring of SCI severity and prognosis remains on the horizon. Despite the large number of review articles on metabolomics and its application fields such as in cancer and diabetes research, there is no comprehensive review on metabolite profiling to study disease mechanisms, biomarkers, or neuroprotection in SCI. First, we present a short review on BPRA/SCI. Second, we discuss potential benefits of metabolomics as applied in BPRA/SCI cases. Next, a look at the analytical techniques that are used in metabolomics. Next, we present an overview of the studies that have used metabolomics to reveal SCI metabolic fingerprints and point out areas of further investigation. Finally, we discuss future research directions. Full article
(This article belongs to the Special Issue Current Insights on Neuroprotection)
Show Figures

Figure 1

12 pages, 1899 KiB  
Article
Climatic Factors in Beechnut Regeneration: From Seed Quality to Germination
by Ernesto C. Rodríguez-Ramírez and Beatriz Argüelles-Marrón
Stresses 2025, 5(3), 44; https://doi.org/10.3390/stresses5030044 - 16 Jul 2025
Viewed by 187
Abstract
Masting, or the synchronous and intermittent production of seeds, can have profound consequences for Tropical Montane Cloud Forest (TMCF) tree populations and the trophic webs that depend on their mass flowering and seeds. Over the past 80 years, the importance of Fagus mexicana [...] Read more.
Masting, or the synchronous and intermittent production of seeds, can have profound consequences for Tropical Montane Cloud Forest (TMCF) tree populations and the trophic webs that depend on their mass flowering and seeds. Over the past 80 years, the importance of Fagus mexicana Martínez (Mexican beech) masting has become apparent in terms of conservation and management, promoting regeneration, and conserving endangered tree species, as well as the conscientious development of edible beechnuts as a non-timber forest product. The establishment of the relict-endemic Mexican beech is unknown, and several microenvironmental factors could influence natural regeneration. Thus, this study was conducted in two well-preserved Mexican beech forests to assess the influence of light incidence and soil moisture on the natural germination and seedling establishment of beeches. During two masting years (2017 and 2024), we assessed in situ beechnut germination and establishment. We tested the effect of the microenvironment of the oldest beeches on beechnut germination and seedling establishment. Our study highlights the complexity of the microenvironment of old beeches influencing the early stages of establishment and provides insights into possible conservation actions aimed at mitigating the impact of environmental change and humans. Full article
Show Figures

Figure 1

10 pages, 2030 KiB  
Proceeding Paper
Enhancing Urban Resource Management Through Urban and Peri-Urban Agriculture
by Asmaa Moussaoui, Hicham Bahi, Imane Sebari and Kenza Ait El Kadi
Eng. Proc. 2025, 94(1), 6; https://doi.org/10.3390/engproc2025094006 - 10 Jul 2025
Viewed by 262
Abstract
Urbanization is one of the most important challenges contributing to the trend of replacing agricultural land with high-value land uses, such as housing, as well as industrial and commercial activities, as a result of significant population growth. To face these challenges and improve [...] Read more.
Urbanization is one of the most important challenges contributing to the trend of replacing agricultural land with high-value land uses, such as housing, as well as industrial and commercial activities, as a result of significant population growth. To face these challenges and improve urban sustainability, integrating an embedded concept of spatial planning, taking into account urban and peri-urban agriculture, will contribute to mitigating food security issues and the negative impact of climate change, while improving social and economic development. This project aims to analyze land use/cover changes in the Casablanca metropolitan area and its surrounding cities, which are undergoing rapid urban growth. To achieve this, time series of remote sensing data were analyzed in order to investigate the spatio-temporal changes in LU/LC and to evaluate the dynamics and spatial pattern of the city’s expansion over the past three decades, which has come at the expense of agricultural land. The study will also examine the relationship between urbanization and agricultural land use change over time. The results of this study show that Casablanca and its outskirts experience significant urban expansion and a decline in arable lands, with rates of 45% and 42%, respectively. The analysis of SDG indicator 11.3.1 has also shown that land consumption in the provinces of Mediouna, Mohammadia, and Nouaceur has exceeded population growth, due to rapid, uncontrolled urbanization at the expense of agricultural land, which highlights the need to develop a new conceptual framework for regenerating land systems based on the implementation of urban and peri-urban agriculture in vacant sites within urban and peri-urban areas. This will offer valuable insights for policymakers to investigate measures that can ensure sustainable land use planning strategies that effectively integrate agriculture into urban development. Full article
Show Figures

Figure 1

12 pages, 2590 KiB  
Article
Summer Cafe: In Vitro Case Study of Biological Repellents Against the Large Pine Weevil
by Ilze Matisone, Kristaps Ozoliņš, Roberts Matisons, Mārtiņš Spāde, Uldis Grīnfelds and Rinalds Trukšs
Forests 2025, 16(7), 1139; https://doi.org/10.3390/f16071139 - 10 Jul 2025
Viewed by 209
Abstract
Growing environmental concerns have led to the search for alternative biological repellents against the large pine weevil Hylobius abietis L., Europe’s most important coniferous forest regeneration pest. A laboratory study was carried out to assess the effectiveness (damage intensity) of six combinations of [...] Read more.
Growing environmental concerns have led to the search for alternative biological repellents against the large pine weevil Hylobius abietis L., Europe’s most important coniferous forest regeneration pest. A laboratory study was carried out to assess the effectiveness (damage intensity) of six combinations of a novel biological repellent, consisting of plant-based oils, beeswax, calcium carbonate, vanillin, pine bark extractives, terpentine, abrasive particles, solvent, and a viscosity agent, in comparison with commercially available repellent Norfort LDW 115. The application complexity of the repellents, their persistence on seedlings, and the extent of H. abietis damage were evaluated. The five alternative repellents had higher protection compared to the control repellent, highlighting the potential for new alternative repellents. The base (without additives) repellent provided the highest protection, indicating a redundancy of admixtures. A mixed cumulative link model, employed to estimate differences between the repellents, estimated 85% undamaged and none significantly damaged saplings in the case of the base repellent. However, the consistency and hence persistence of certain repellents on plantlets would benefit from improvements; further field studies are needed to upscale the test of the stability and efficiency of high levels in real environments under different H. abietis population pressures. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

18 pages, 5892 KiB  
Article
CXCL12 Drives Reversible Fibroimmune Remodeling in Androgenetic Alopecia Revealed by Single-Cell RNA Sequencing
by Seungchan An, Mei Zheng, In Guk Park, Leegu Song, Jino Kim, Minsoo Noh and Jong-Hyuk Sung
Int. J. Mol. Sci. 2025, 26(14), 6568; https://doi.org/10.3390/ijms26146568 - 8 Jul 2025
Viewed by 626
Abstract
Androgenetic alopecia (AGA) is a common form of hair loss characterized by androgen-driven tissue remodeling, including progressive follicular miniaturization and dermal fibrosis, which is accompanied by low-grade immune activation. However, the molecular mechanisms underlying this fibroimmune dysfunction remain poorly understood. Dermal fibroblasts (DFs) [...] Read more.
Androgenetic alopecia (AGA) is a common form of hair loss characterized by androgen-driven tissue remodeling, including progressive follicular miniaturization and dermal fibrosis, which is accompanied by low-grade immune activation. However, the molecular mechanisms underlying this fibroimmune dysfunction remain poorly understood. Dermal fibroblasts (DFs) have been suggested as androgen-responsive stromal cells and a potential source of CXCL12, a chemokine implicated in fibroimmune pathology, but their precise role in AGA has not been fully established. In this study, we performed single-cell transcriptomic profiling of a testosterone-induced mouse model of AGA, with or without treatment of CXCL12-neutralizing antibody, to elucidate the pathological role of CXCL12 in mediating stromal-immune interactions. Our analysis suggested that DFs are the primary androgen-responsive population driving CXCL12 expression. Autocrine CXCL12-ACKR3 signaling in DFs activated TGF-β pathways and promoted fibrotic extracellular matrix deposition. In parallel, paracrine CXCL12-CXCR4 signaling reprogrammed Sox2+Twist1+ dermal papilla cells (DPCs) and promoted the accumulation of pro-fibrotic Trem2+ macrophages, contributing to impaired hair follicle regeneration. Notably, CXCL12 blockade attenuated these stromal and immune alterations, restored the regenerative capacity of DPCs, reduced pro-fibrotic macrophage infiltration, and promoted hair regrowth. Together, these findings identify CXCL12 as a central mediator of androgen-induced fibroimmune remodeling and highlight its potential as a therapeutic target in AGA. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

13 pages, 624 KiB  
Review
Microgravity Therapy as Treatment for Decelerated Aging and Successful Longevity
by Nadine Mozalbat, Lital Sharvit and Gil Atzmon
Int. J. Mol. Sci. 2025, 26(13), 6544; https://doi.org/10.3390/ijms26136544 - 7 Jul 2025
Viewed by 1047
Abstract
Aging is a complex biological process marked by a progressive decline in cellular function, leading to age-related diseases such as neurodegenerative disorders, cancer, and cardiovascular diseases. Despite significant advancements in aging research, finding effective interventions to decelerate aging remains a challenge. This review [...] Read more.
Aging is a complex biological process marked by a progressive decline in cellular function, leading to age-related diseases such as neurodegenerative disorders, cancer, and cardiovascular diseases. Despite significant advancements in aging research, finding effective interventions to decelerate aging remains a challenge. This review explores microgravity as a novel therapeutic approach to combat aging and promote healthy longevity. The hallmarks of aging, including genomic instability, telomere shortening, and cellular senescence, form the basis for understanding the molecular mechanisms behind aging. Interestingly, microgravity has been shown to accelerate aging-like processes in model organisms and human tissues, making it an ideal environment for studying aging mechanisms in an accelerated manner. Spaceflight studies, such as NASA’s Twins Study and experiments aboard the International Space Station (ISS), reveal striking parallels between the physiological changes induced by microgravity and those observed in aging populations, including muscle atrophy, bone density loss, cardiovascular deconditioning, and immune system decline in a microgravity environment. However, upon microgravity recovery, cellular behavior, gene expression, and tissue regeneration were seen, providing vital insights into aging mechanisms and prospective therapeutic approaches. This review examines the potential of microgravity-based technologies to pioneer novel strategies for decelerating aging and enhancing healthspan under natural gravity, paving the way for breakthroughs in longevity therapies. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

23 pages, 2571 KiB  
Communication
Duchenne Muscular Dystrophy Patient iPSCs—Derived Skeletal Muscle Organoids Exhibit a Developmental Delay in Myogenic Progenitor Maturation
by Urs Kindler, Lampros Mavrommatis, Franziska Käppler, Dalya Gebrehiwet Hiluf, Stefanie Heilmann-Heimbach, Katrin Marcus, Thomas Günther Pomorski, Matthias Vorgerd, Beate Brand-Saberi and Holm Zaehres
Cells 2025, 14(13), 1033; https://doi.org/10.3390/cells14131033 - 7 Jul 2025
Viewed by 797
Abstract
Background: Duchenne muscular dystrophy (DMD), which affects 1 in 3500 to 5000 newborn boys worldwide, is characterized by progressive skeletal muscle weakness and degeneration. The reduced muscle regeneration capacity presented by patients is associated with increased fibrosis. Satellite cells (SCs) are skeletal muscle [...] Read more.
Background: Duchenne muscular dystrophy (DMD), which affects 1 in 3500 to 5000 newborn boys worldwide, is characterized by progressive skeletal muscle weakness and degeneration. The reduced muscle regeneration capacity presented by patients is associated with increased fibrosis. Satellite cells (SCs) are skeletal muscle stem cells that play an important role in adult muscle maintenance and regeneration. The absence or mutation of dystrophin in DMD is hypothesized to impair SC asymmetric division, leading to cell cycle arrest. Methods: To overcome the limited availability of biopsies from DMD patients, we used our 3D skeletal muscle organoid (SMO) system, which delivers a stable population of myogenic progenitors (MPs) in dormant, activated, and committed stages, to perform SMO cultures using three DMD patient-derived iPSC lines. Results: The results of scRNA-seq analysis of three DMD SMO cultures versus two healthy, non-isogenic, SMO cultures indicate reduced MP populations with constant activation and differentiation, trending toward embryonic and immature myotubes. Mapping our data onto the human myogenic reference atlas, together with primary SC scRNA-seq data, indicated a more immature developmental stage of DMD organoid-derived MPs. DMD fibro-adipogenic progenitors (FAPs) appear to be activated in SMOs. Conclusions: Our organoid system provides a promising model for studying muscular dystrophies in vitro, especially in the case of early developmental onset, and a methodology for overcoming the bottleneck of limited patient material for skeletal muscle disease modeling. Full article
(This article belongs to the Special Issue The Current Applications and Potential of Stem Cell-Derived Organoids)
Show Figures

Figure 1

15 pages, 10576 KiB  
Article
Mapping the Distribution of Viruses in Wild Apple Populations in the Southeast Region of Kazakhstan
by Nazym Kerimbek, Marina Khusnitdinova, Aisha Taskuzhina, Anastasiya Kapytina, Alexandr Pozharskiy, Abay Sagitov and Dilyara Gritsenko
Forests 2025, 16(7), 1119; https://doi.org/10.3390/f16071119 - 6 Jul 2025
Viewed by 361
Abstract
Kazakhstan is recognized as one of the primary centers of origin of the wild apple Malus sieversii, concentrated mainly in the mountains like Trans-Ile and Zhongar Alatau, as well as parts of the Tarbagatay, Talas Alatau, and Karatau ranges. As the wild [...] Read more.
Kazakhstan is recognized as one of the primary centers of origin of the wild apple Malus sieversii, concentrated mainly in the mountains like Trans-Ile and Zhongar Alatau, as well as parts of the Tarbagatay, Talas Alatau, and Karatau ranges. As the wild progenitor of Malus domestica, M. sieversii harbors a critical genetic diversity essential for apple breeding and conservation efforts. However, its natural populations are increasingly threatened by latent viral infection, which weakens trees, reduces reproduction, and hinders regeneration. In this study, the spread of apple chlorotic leaf spot virus (ACLSV) and apple stem pitting virus (ASPV) was documented in four wild apple populations, with detection rates of 50.2% and 42.2%, respectively. Mixed infections were observed in 28.8% of sampled trees. Apple stem grooving virus (ASGV) was detected exclusively in cultivated orchards, whereas apple mosaic virus (ApMV) and apple necrotic mosaic virus (ApNMV) were not found in either wild forests or cultivated orchards. Using Geographic Information System (GIS) technology, we developed the first spatial distribution maps of these viruses in wild apple forests in the Tian Shan region, revealing site-specific variation and infection rates. These results underscore the importance of monitoring viral infections in wild M. sieversii populations to preserve genetically valuable, virus-free germplasm critical for apple breeding, crop improvement, and sustainable orchard management. Full article
(This article belongs to the Special Issue Forest Pathogens: Detection, Diagnosis, and Control)
Show Figures

Figure 1

Back to TopTop