The Utility of Metabolomics in Spinal Cord Injury: Opportunities for Biomarker Discovery and Neuroprotection
Abstract
1. Introduction
1.1. What Is Brachial Plexus Root Avulsion and Its Link with Spinal Cord Injury?
1.2. Enter Metabolomics and Metabonomics
1.3. What Will Metabolomics Do to BPRA/SCI?
2. The Literature Search Strategy
2.1. Inclusion and Exclusion Criteria
2.2. Exclusion Criteria Were
2.3. Study Selection Process
2.4. Data Extraction and Synthesis
3. Analytical Techniques Used in Metabolomics
4. Attempts to Get Down to Metabolomics in SCI
4.1. SCI Animal Studies Involving Metabolomics
4.2. Human Studies Involving Metabolomics
4.3. Conserved Metabolic Pathways Across Animal and Human Studies
5. Potential and Future of Metabolomics in SCI
5.1. Potential of Metabolomics in SCI
5.1.1. Injury Profiling and Prognosis
5.1.2. Tailored Therapies
5.1.3. Understanding Secondary Complications
5.1.4. Drug Development and Mechanism-Based Therapeutics
5.2. Future Perspectives in SCI Metabolomics
5.2.1. Integrated Systems Biology Approach
5.2.2. Technological Advancements
5.2.3. Real-Time Monitoring
5.2.4. Enhancing Rehabilitation (Personalized Nutrition and Exercise)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rhee, P.C.; Pirola, E.; Hébert-Blouin, M.-N.; Kircher, M.F.; Spinner, R.J.; Bishop, A.T.; Shin, A.Y. Concomitant Traumatic Spinal Cord and Brachial Plexus Injuries in Adult Patients. J. Bone Jt. Surg. 2011, 93, 2271–2277. [Google Scholar] [CrossRef]
- Zhou, L.-H.; Han, S.; Xie, Y.-Y.; Wang, L.-L.; Yao, Z.-B. Differences in c-jun and nNOS expression levels in motoneurons following different kinds of axonal injury in adult rats. Brain Cell Biol. 2008, 36, 213–227. [Google Scholar] [CrossRef]
- Zilundu, P.L.M.; Xu, X.; Liaquat, Z.; Wang, Y.; Zhong, K.; Fu, R.; Zhou, L. Long-Term Suppression of c-Jun and nNOS Preserves Ultrastructural Features of Lower Motor Neurons and Forelimb Function after Brachial Plexus Roots Avulsion. Cells 2021, 10, 1614. [Google Scholar] [CrossRef]
- Eggers, R.; Tannemaat, M.R.; De Winter, F.; Malessy, M.J.A.; Verhaagen, J.; Kirik, D. Clinical and neurobiological advances in promoting regeneration of the ventral root avulsion lesion. Eur. J. Neurosci. 2016, 43, 318–335. [Google Scholar] [CrossRef]
- Wu, K.Y.; Spinner, R.J.; Shin, A.Y. Traumatic brachial plexus injury: Diagnosis and treatment. Curr. Opin. Neurol. 2022, 35, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Khani, M.; Mansoori, N.; Midha, R. Adult brachial plexus injuries: Surgical strategies and approaches. Neurol. India 2016, 64, 289. [Google Scholar] [CrossRef] [PubMed]
- Zelenski, N.A.; Oishi, T.; Shin, A.Y. Indications and Technique for the Use of Intraoperative Neuromonitoring in Brachial Plexus Surgery. J. Hand Surg. 2023, 48, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-W.; Tu, Y.-K.; Hsueh, Y.-H. Prespinal Versus Conventional Hemicontralateral C7 Nerve Transfer in the Treatment of Total Brachial Plexus Roots Avulsion Injuries: A Retrospective Study With a Minimum Follow-Up Period of 4 Years. J. Hand Surg. 2023, 48, 1175.e1–1175.e10. [Google Scholar] [CrossRef]
- Muheremu, A.; Peng, J.; Ao, Q. Stem cell based therapies for spinal cord injury. Tissue Cell 2016, 48, 328–333. [Google Scholar] [CrossRef]
- Zhou, L.-H.; Wu, W. Survival of Injured Spinal Motoneurons in Adult Rat upon Treatment with Glial Cell Line–Derived Neurotrophic Factor at 2 Weeks but Not at 4 Weeks after Root Avulsion. J. Neurotrauma 2006, 23, 920–927. [Google Scholar] [CrossRef]
- Lang, B.T.; Cregg, J.M.; DePaul, M.A.; Tran, A.P.; Xu, K.; Dyck, S.M.; Madalena, K.M.; Brown, B.P.; Weng, Y.-L.; Li, S.; et al. Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury. Nature 2015, 518, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Niknami, N.; Moghaddam, A.; Mahand, S.N.; Moghaddam, A.S.; Arjmand, M.; Alt, F.; Kruppke, B.; Khonakdar, H.A. Application of stem cells, growth factors, small molecules, and biological macromolecules on nerve regeneration: A review and future direction. Int. J. Polym. Mater. Polym. Biomater. 2023, 73, 817–849. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, Q.; Li, W.; Su, H.; Li, S.; Zhu, Y.; Zhou, J.; Feng, Z.; Liu, Z.; Mao, S.; et al. Spinal cord conduits for spinal cord injury regeneration. Eng. Regen. 2023, 4, 68–80. [Google Scholar] [CrossRef]
- Alizadeh, A.; Dyck, S.M.; Karimi-Abdolrezaee, S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front. Neurol. 2019, 10, 282. [Google Scholar] [CrossRef]
- Failli, V.; Kleitman, N.; Lammertse, D.P.; Hsieh, J.T.; Steeves, J.D.; Fawcett, J.W.; Tuszynski, M.H.; Curt, A.; Fehlings, M.M.G.; Guest, J.D.; et al. Experimental Treatments for Spinal Cord Injury: What you Should Know. Top. Spinal Cord Inj. Rehabil. 2021, 27, 50–74. [Google Scholar] [CrossRef]
- Griffin, J.M.; Bradke, F. Therapeutic repair for spinal cord injury: Combinatory approaches to address a multifaceted problem. EMBO Mol. Med. 2020, 12, e11505. [Google Scholar] [CrossRef]
- Kachramanoglou, C.; De Vita, E.; Thomas, D.L.; Wheeler-Kingshott, C.A.M.; Balteau, E.; Carlstedt, T.; Choi, D.; Thompson, A.J.; Ciccarelli, O. Metabolic changes in the spinal cord after brachial plexus root re-implantation. Neurorehabilit. Neural Repair 2013, 27, 118–124. [Google Scholar] [CrossRef]
- Zhang, J.-L.; Xian, H.; Zhao, R.; Luo, C.; Xie, R.-G.; Tian, T.; Cong, R. Brachial plexus avulsion induced changes in gut microbiota promotes pain related anxiety-like behavior in mice. Front. Neurol. 2023, 14, 1084494. [Google Scholar] [CrossRef]
- Holmes, E.; Loo, R.L.; Stamler, J.; Bictash, M.; Yap, I.K.S.; Chan, Q.; Ebbels, T.; De Iorio, M.; Brown, I.J.; Veselkov, K.A.; et al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 2008, 453, 396–400. [Google Scholar] [CrossRef]
- Wishart, D.S. Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiol. Rev. 2019, 99, 1819–1875. [Google Scholar] [CrossRef]
- Turi, K.N.; Romick-Rosendale, L.; Ryckman, K.K.; Hartert, T.V. A review of metabolomics approaches and their application in identifying causal pathways of childhood asthma. J. Allergy Clin. Immunol. 2018, 141, 1191–1201. [Google Scholar] [CrossRef]
- Züllig, T.; Köfeler, H.C. High Resolution Mass Spectrometry in Lipidomics. Mass Spectrom. Rev. 2021, 40, 162–176. [Google Scholar] [CrossRef]
- Fujieda, Y.; Ueno, S.; Ogino, R.; Kuroda, M.; Jönsson, T.J.; Guo, L.; Bamba, T.; Fukusaki, E.; Di Giovanni, S. Metabolite Profiles Correlate Closely with Neurobehavioral Function in Experimental Spinal Cord Injury in Rats. PLoS ONE 2012, 7, e43152. [Google Scholar] [CrossRef]
- Kosmides, A.K.; Kamisoglu, K.; Calvano, S.E.; Corbett, S.A.; Androulakis, I.P. Metabolomic Fingerprinting: Challenges and Opportunities. Crit. Rev. Biomed. Eng. 2013, 41, 205–221. [Google Scholar] [CrossRef]
- Blaurock, J.; Baumann, S.; Grunewald, S.; Schiller, J.; Engel, K.M. Metabolomics of Human Semen: A Review of Different Analytical Methods to Unravel Biomarkers for Male Fertility Disorders. Int. J. Mol. Sci. 2022, 23, 9031. [Google Scholar] [CrossRef]
- Hyvärinen, E.; Savolainen, M.; Mikkonen, J.J.W.; Kullaa, A.M. Salivary Metabolomics for Diagnosis and Monitoring Diseases: Challenges and Possibilities. Metabolites 2021, 11, 587. [Google Scholar] [CrossRef] [PubMed]
- Kiseleva, O.; Kurbatov, I.; Ilgisonis, E.; Poverennaya, E. Defining Blood Plasma and Serum Metabolome by GC-MS. Metabolites 2021, 12, 15. [Google Scholar] [CrossRef] [PubMed]
- Saoi, M.; Britz-McKibbin, P. New Advances in Tissue Metabolomics: A Review. Metabolites 2021, 11, 672. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, D.R.; Patel, R.; Kirsch, D.G.; Lewis, C.A.; Vander Heiden, M.G.; Locasale, J.W. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J. Clin. 2021, 71, 333–358. [Google Scholar] [CrossRef]
- Suri, G.S.; Kaur, G.; Carbone, G.M.; Shinde, D. Metabolomics in oncology. Cancer Rep. 2023, 6, e1795. [Google Scholar] [CrossRef]
- Li, J.; Hu, J.; Liang, L.; Guasch, M.; Merino, J.; Ruiz-Canela, M.; Luo, K.; Rebholz, C.; Porneala, B.; Dupuis, J.; et al. 188-OR: Circulating metabolites and type 2 diabetes [T2D] risk—An integrated metabolomics and genetics study of ~23,000 adults. Diabetes 2023, 72 (Suppl. S1), 188-OR. [Google Scholar] [CrossRef]
- Shahisavandi, M.; Wang, K.; Ghanbari, M.; Ahmadizar, F. Exploring Metabolomic Patterns in Type 2 Diabetes Mellitus and Response to Glucose-Lowering Medications—Review. Genes 2023, 14, 1464. [Google Scholar] [CrossRef]
- Chaiyachat, P.; Kaewseekhao, B.; Chaiprasert, A.; Kamolwat, P.; Nonghanphithak, D.; Phetcharaburanin, J.; Sirichoat, A.; Ong, R.T.-H.; Faksri, K. Metabolomic analysis of Mycobacterium tuberculosis reveals metabolic profiles for identification of drug-resistant tuberculosis. Sci. Rep. 2023, 13, 8655. [Google Scholar] [CrossRef]
- Escobar, M.Q.; Pontes, J.G.d.M.; Tasic, L. Metabolomics in degenerative brain diseases. Brain Res. 2021, 1773, 147704. [Google Scholar] [CrossRef]
- Pang, H.; Hu, Z. Metabolomics in drug research and development: The recent advances in technologies and applications. Acta Pharm. Sin. B 2023, 13, 3238–3251. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, Y.; Yao, H.; Lin, C.; Xie, Y.; Tang, S.; Zhang, A. Small molecule metabolites: Discovery of biomarkers and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 132. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, X.; Huang, Q.; Dou, Y.; Qu, C.; Xu, Q.; Yuan, Q.; Xian, Y.-F.; Lin, Z.-X. Quercetin enhances survival and axonal regeneration of motoneurons after spinal root avulsion and reimplantation: Experiments in a rat model of brachial plexus avulsion. Inflamm. Regen. 2022, 42, 56. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Al Mamun, A.; Yuan, Y.; Lu, Q.; Xiong, J.; Yang, S.; Wu, C.; Wu, Y.; Wang, J. Acute spinal cord injury: Pathophysiology and pharmacological intervention. Mol. Med. Rep. 2021, 23, 417. [Google Scholar] [CrossRef] [PubMed]
- Yip, P.K.; Malaspina, A. Spinal cord trauma and the molecular point of no return. Mol. Neurodegener. 2012, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Yuan, M.-Z.; Sun, T.-Y.; Xie, Y.-Y.; Liu, L.-L.; Tang, Y.; Ling, Z.-M.; Li, Y.-Q.; Yu, G.-Y.; Zhou, L.H. Identification of the Avulsion-Injured Spinal Motoneurons. J. Mol. Neurosci. 2015, 57, 142–151. [Google Scholar] [CrossRef]
- Wang, L.-L.; Zhao, X.-C.; Yan, L.-F.; Wang, Y.-Q.; Cheng, X.; Fu, R.; Zhou, L.-H. C-jun phosphorylation contributes to down regulation of neuronal nitric oxide synthase protein and motoneurons death in injured spinal cords following root-avulsion of the brachial plexus. Neuroscience 2011, 189, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Heneghan, C.; Goldacre, B.; Mahtani, K.R. Why clinical trial outcomes fail to translate into benefits for patients. Trials 2017, 18, 122. [Google Scholar] [CrossRef] [PubMed]
- Guest, J.; Datta, N.; Jimsheleishvili, G.; Gater, D.R. Pathophysiology, Classification and Comorbidities after Traumatic Spinal Cord Injury. J. Pers. Med. 2022, 12, 1126. [Google Scholar] [CrossRef] [PubMed]
- Dietz, V.A.; Roberts, N.; Knox, K.; Moore, S.; Pitonak, M.; Barr, C.; Centeno, J.; Leininger, S.; New, K.C.; Nowell, P.; et al. Fighting for recovery on multiple fronts: The past, present, and future of clinical trials for spinal cord injury. Front. Cell. Neurosci. 2022, 16, 977679. [Google Scholar] [CrossRef]
- Emwas, A.-H. Theory and Applications of NMR-Based Metabolomics in Human Disease Diagnosis; Bentham Science Publishers: Sharjah, United Arab Emirates, 2015; pp. 93–130. [Google Scholar]
- Gonzalez-Covarrubias, V.; Martínez-Martínez, E.; del Bosque-Plata, L. The Potential of Metabolomics in Biomedical Applications. Metabolites 2022, 12, 194. [Google Scholar] [CrossRef]
- Cho, K.; Mahieu, N.G.; Johnson, S.L.; Patti, G.J. After the Feature Presentation: Technologies Bridging Untargeted Metabolomics and Biology. Curr. Opin. Biotechnol. 2014, 28, 143–148. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Pang, Y.; Liu, X.; Zhao, C.; Shi, X.; Zhang, J.; Zhou, T.; Xiong, H.; Gao, X.; Zhao, X.; Yang, X.; et al. LC–MS/MS-based arachidonic acid metabolomics in acute spinal cord in’jury reveals the upregulation of 5-LOX and COX-2 products. Free Radic. Biol. Med. 2022, 193, 363–372. [Google Scholar] [CrossRef]
- Domenichiello, A.F.; Sapio, M.R.; Loydpierson, A.J.; Maric, D.; Goto, T.; Horowitz, M.S.; Keyes, G.S.; Yuan, Z.-X.; Majchrzak-Hong, S.F.; Mannes, A.J.; et al. Molecular Pathways Linking Oxylipins to Nociception in Rats. J. Pain 2021, 22, 275–299. [Google Scholar] [CrossRef]
- Rodgers, H.M.; Patton, R.; Yow, J.; Zeczycki, T.N.; Kew, K.; Clemens, S.; Brewer, K.L. Morphine resistance in spinal cord injury-related neuropathic pain in rats is associated with alterations in dopamine and dopamine-related metabolomics. J. Pain 2022, 23, 772–783. [Google Scholar] [CrossRef]
- Pukale, D.D.; Adkins-Travis, K.; Aryal, S.R.; Shriver, L.P.; Patti, G.J.; Leipzig, N.D. Investigating post-traumatic syringomyelia and local fluid osmoregulation via a rat model. Fluids Barriers CNS 2024, 21, 19. [Google Scholar] [CrossRef] [PubMed]
- Ni, S.; Yang, B.; Xia, L.; Zhang, H.; Xia, Y. EZH2 Mediates miR-146a-5p/HIF-1α to Alleviate Inflammation and Glycolysis after Acute Spinal Cord Injury. Mediat. Inflamm. 2021, 2021, 5591582. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, J.; Ying, X.; Hu, R.; Huang, Y.; Wang, R.; Wu, L.; Han, D.; Ma, R.; He, K. Metagenomic and metabolomic analysis of gut microbiome’s role in spinal cord injury recovery in rats. Biomol. Biomed. 2025; Online ahead of print. [Google Scholar] [CrossRef]
- Liang, W.; Zhang, T.; Zhang, M.; Gao, J.; Huang, R.; Huang, X.; Chen, J.; Cheng, L.; Zhang, L.; Huang, Z.; et al. Daphnetin Ameliorates Neuropathic Pain via Regulation of Microglial Responses and Glycerophospholipid Metabolism in the Spinal Cord. Pharmaceuticals 2024, 17, 789. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Zhao, X.; Zhang, Y.; Jiao, Y.; Liu, Y.; Gao, C.; Zhang, J.; Ma, Y.; Wang, Z.; Li, T. Using Integrated Network Pharmacology and Metabolomics to Reveal the Mechanisms of the Combined Intervention of Ligustrazine and Sinomenine in CCI-Induced Neuropathic Pain Rats. Int. J. Mol. Sci. 2025, 26, 2604. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Zeng, Z.; He, H.; Li, M.; Lan, Y.; Hui, J.; Bie, P.; Chen, Y.; Liu, H.; Fan, H.; et al. Lycium Barbarum Glycopeptide alleviates neuroinflammation in spinal cord injury via modulating docosahexaenoic acid to inhibiting MAPKs/NF-kB and pyroptosis pathways. J. Transl. Med. 2023, 21, 770. [Google Scholar] [CrossRef]
- Zeng, Z.; Li, M.; Jiang, Z.; Lan, Y.; Chen, L.; Chen, Y.; Li, H.; Hui, J.; Zhang, L.; Hu, X.; et al. Integrated Transcriptomic and Metabolomic Profiling Reveals Dysregulation of Purine Metabolism During the Acute Phase of Spinal Cord Injury in Rats. Front. Neurosci. 2022, 16, 1066528. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Gong, Q.; Wang, Y.-K.; Shuang, W.-B. Time-Dependent Changes in the Bladder Muscle Metabolome After Traumatic Spinal Cord Injury in Rats Using Metabolomics. Int. Neurourol. J. 2023, 27, 88–98. [Google Scholar] [CrossRef]
- Zhang, B.; Yan, R.; Lu, J.; Ma, Z.; Zhang, X.; Li, L.; Gao, J.; Xia, L.; Zhang, K.; Zhang, F.; et al. Metabolic Changes in Serum in the Rat Model of Cauda Equina Injury. World Neurosurg. 2019, 130, e1051–e1060. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, P.; Xie, M.; Luo, J.; Zhang, J.; Zhang, G.; Wang, Y.; Lin, H.; Ji, Z. Parallel Metabolomic Profiling of Cerebrospinal Fluid, Plasma, and Spinal Cord to Identify Biomarkers for Spinal Cord Injury. J. Mol. Neurosci. 2022, 72, 126–135. [Google Scholar] [CrossRef]
- Huffman, E.E.; Dong, B.E.; Clarke, H.A.; Young, L.E.; Gentry, M.S.; Allison, D.B.; Sun, R.C.; Waters, C.M.; Alilain, W.J. Cervical spinal cord injury leads to injury and altered metabolism in the lungs. Brain Commun. 2023, 5, fcad091. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, Z.; Zhang, Z.; Zhou, W.; Guo, B.; Li, M. Multi-platform omics sequencing dissects the atlas of plasma-derived exosomes in rats with or without depression-like behavior after traumatic spinal cord injury. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2024, 132, 110987. [Google Scholar] [CrossRef]
- Wang, C.; Wu, L.; Zhou, R.; Song, C.; Chen, P.; Huang, S.; Ali Khan, A.; Lu, D.; Hu, Y.; Chen, L. Integration of microbiota and metabolomics reveals the analgesic mechanisms of emodin against neuropathic pain. Int. Immunopharmacol. 2023, 125 Pt A, 111170. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Niu, Z.; Hu, X.; Liu, H.; Li, S.; Chen, L.; Zheng, D.; Liu, Z.; Liu, T.; Xu, F.; et al. Regional cerebral metabolic levels and turnover in awake rats after acute or chronic spinal cord injury. FASEB J. 2020, 34, 10547–10559. [Google Scholar] [CrossRef] [PubMed]
- Lyu, C.; Tang, Y.; Shang, F.-F. In situ mass spectrometry imaging reveals metabolite alterations in gray and white matter after spinal cord injury. Exp. Ther. Med. 2025, 29, 117. [Google Scholar] [CrossRef] [PubMed]
- Francos-Quijorna, I.; Santos-Nogueira, E.; Gronert, K.; Sullivan, A.B.; Kopp, M.A.; Brommer, B.; David, S.; Schwab, J.M.; López-Vales, R. Maresin 1 Promotes Inflammatory Resolution, Neuroprotection, and Functional Neurological Recovery After Spinal Cord Injury. J. Neurosci. 2017, 37, 11731–11743. [Google Scholar] [CrossRef]
- Chen, P.; Wang, C.; Ren, Y.-N.; Ye, Z.-J.; Jiang, C.; Wu, Z.-B. Alterations in the gut microbiota and metabolite profiles in the context of neuropathic pain. Mol. Brain 2021, 14, 50. [Google Scholar] [CrossRef]
- Shi, Y.; Zheng, M.; Luo, Y.; Li, J.; Ouyang, F.; Zhao, Y.; Wang, J.; Ma, Z.; Meng, C.; Bi, Y.; et al. Targeting transcription factor pu.1 for improving neurologic outcomes after spinal cord injury. Front. Neurosci. 2024, 18, 1418615. [Google Scholar] [CrossRef]
- Ohnishi, Y.; Yamamoto, M.; Sugiura, Y.; Setoyama, D.; Kishima, H. Rostro-caudal different energy metabolism leading to differences in degeneration in spinal cord injury. Brain Commun. 2021, 3, fcab058. [Google Scholar] [CrossRef]
- Shi, C.; Xu, J.; Ding, Y.; Chen, X.; Yuan, F.; Zhu, F.; Duan, C.; Hu, J.; Lu, H.; Wu, T.; et al. MCT1-mediated endothelial cell lactate shuttle as a target for promoting axon regeneration after spinal cord injury. Theranostics 2024, 14, 5662–5681. [Google Scholar] [CrossRef]
- Graham, Z.A.; Siedlik, J.A.; Harlow, L.; Sahbani, K.; Bauman, W.A.; Tawfeek, H.A.; Cardozo, C.P. Key Glycolytic Metabolites in Paralyzed Skeletal Muscle Are Altered Seven Days after Spinal Cord Injury in Mice. J. Neurotrauma 2019, 36, 2722–2731. [Google Scholar] [CrossRef]
- Kang, J.-N.; Sun, Z.-F.; Li, X.-Y.; Zhang, X.-D.; Jin, Z.-X.; Zhang, C.; Zhang, Y.; Wang, H.-Y.; Huang, N.-N.; Jiang, J.-H.; et al. Alterations in gut microbiota are related to metabolite profiles in spinal cord injury. Neural Regen. Res. 2023, 18, 1076–1083. [Google Scholar] [CrossRef]
- Zhang, C.; Shao, Q.; Zhang, Y.; Liu, W.; Kang, J.; Jin, Z.; Huang, N.; Ning, B. Therapeutic application of nicotinamide: As a potential target for inhibiting fibrotic scar formation following spinal cord injury. CNS Neurosci. Ther. 2024, 30, e14826. [Google Scholar] [CrossRef]
- Rong, Z.-J.; Cai, H.-H.; Wang, H.; Liu, G.-H.; Zhang, Z.-W.; Chen, M.; Huang, Y.-L. Ursolic Acid Ameliorates Spinal Cord Injury in Mice by Regulating Gut Microbiota and Metabolic Changes. Front. Cell. Neurosci. 2022, 16, 872935. [Google Scholar] [CrossRef] [PubMed]
- Scholpa, N.E.; Simmons, E.C.; Snider, J.M.; Barrett, K.; Buss, L.G.; Schnellmann, R.G. Evolution of Lipid Metabolism in the Injured Mouse Spinal Cord. J. Neurotrauma 2025, 42, 182–196. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Chen, J.; Tang, Y.; Wei, C.; Yu, P.; Ding, X.; Zhu, L.; Yao, J.; Ouyang, Z.; Qiao, J.; et al. Multi-omics uncovers immune-modulatory molecules in plasma contributing to resistance exercise-ameliorated locomotor disability after incomplete spinal cord injury. Genome Med. 2025, 17, 10. [Google Scholar] [CrossRef]
- Potter, L.A.; Toro, C.A.; Harlow, L.; Lavin, K.M.; Cardozo, C.P.; Wende, A.R.; Graham, Z.A. Assessing the impact of boldine on the gastrocnemius using multiomics profiling at 7 and 28 days post-complete spinal cord injury in young male mice. Physiol. Genom. 2023, 55, 297–313. [Google Scholar] [CrossRef] [PubMed]
- Graham, Z.A.; DeBerry, J.J.; Cardozo, C.P.; Bamman, M.M. SS-31 does not prevent or reduce muscle atrophy 7 days after a 65 kdyne contusion spinal cord injury in young male mice. Physiol. Rep. 2022, 10, e15266. [Google Scholar] [CrossRef]
- Zhao, Y.-Y.; Wu, Z.-J.; Hao, S.-J.; Dong, B.-B.; Zheng, Y.-X.; Liu, B.; Li, J. Common alterations in parallel metabolomic profiling of serum and spinal cord and mechanistic studies on neuropathic pain following PPARα administration. Neuropharmacology 2024, 254, 109988. [Google Scholar] [CrossRef]
- Jing, Y.; Yang, D.; Bai, F.; Wang, Q.; Zhang, C.; Yan, Y.; Li, Z.; Li, Y.; Chen, Z.; Li, J.; et al. Spinal cord injury-induced gut dysbiosis influences neurological recovery partly through short-chain fatty acids. NPJ Biofilms Microbio. 2023, 9, 99. [Google Scholar] [CrossRef]
- Singh, A.; Srivastava, R.N.; Agrahari, A.; Singh, S.; Raj, S.; Chatterji, T.; Mahdi, A.A.; Garg, R.K.; Roy, R. Proton NMR based serum metabolic profile correlates with the neurological recovery in treated acute spinal cord injury [ASCI] subjects: A pilot study. Clin. Chim. Acta 2018, 480, 150–160. [Google Scholar] [CrossRef]
- Yarar-Fisher, C.; Kulkarni, A.; Li, J.; Farley, P.; Renfro, C.; Aslam, H.; Bosarge, P.; Wilson, L.; Barnes, S. Evaluation of a ketogenic diet for improvement of neurological recovery in individuals with acute spinal cord injury: A pilot, randomized safety and feasibility trial. Spinal Cord Ser. Cases 2018, 4, 88. [Google Scholar] [CrossRef]
- Singh, A.; Srivastava, R.N.; Chatterji, T.; Singh, S.; Raj, L.; Mahdi, A.A.; Garg, R.K.; Roy, R. 1H NMR urine metabolomics is an effective prognostic indicator in acute spinal cord injury [ASCI]: A prospective case-control study. J. Metabolom. Syst. Biol. 2020, 4, 1–21. [Google Scholar]
- Bykowski, E.A.; Petersson, J.N.; Dukelow, S.; Ho, C.; Debert, C.T.; Montina, T.; Metz, G.A. Urinary biomarkers indicative of recovery from spinal cord injury: A pilot study. IBRO Neurosci. Rep. 2021, 10, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Morrow, C.; Barnes, S.; Wilson, L.; Womack, E.D.; McLain, A.; Yarar-Fisher, C. Gut Microbiome Composition and Serum Metabolome Profile Among Individuals With Spinal Cord Injury and Normal Glucose Tolerance or Prediabetes/Type 2 Diabetes. Arch. Phys. Med. Rehabil. 2022, 103, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Bykowski, E.A.; Petersson, J.N.; Dukelow, S.; Ho, C.; Debert, C.T.; Montina, T.; Metz, G.A.S. Identification of Serum Metabolites as Prognostic Biomarkers Following Spinal Cord Injury: A Pilot Study. Metabolites 2023, 13, 605. [Google Scholar] [CrossRef]
- Kong, G.; Zhang, W.; Zhang, S.; Chen, J.; He, K.; Zhang, C.; Yuan, X.; Xie, B. The gut microbiota and metabolite profiles are altered in patients with spinal cord injury. Mol. Brain 2023, 16, 26. [Google Scholar] [CrossRef]
- Zhang, D.; Peng, R.; Yang, D. A preliminary study on the changes of fecal short chain fatty acids in patients with traumatic spinal cord injury in the chronic phase. Spinal Cord Ser. Cases 2025, 11, 3. [Google Scholar] [CrossRef]
- David, A.; Rostkowski, P. Chapter 2—Analytical techniques in metabolomics. In Environmental Metabolomics; Álvarez-Muñoz, D., Farré, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 35–64. [Google Scholar] [CrossRef]
- Segers, K.; Declerck, S.; Mangelings, D.; Heyden, Y.V.; Eeckhaut, A.V. Analytical techniques for metabolomic studies: A review. Bioanalysis 2019, 11, 2297–2318. [Google Scholar] [CrossRef]
- Huang, K.; Thomas, N.; Gooley, P.R.; Armstrong, C.W. Systematic Review of NMR-Based Metabolomics Practices in Human Disease Research. Metabolites 2022, 12, 963. [Google Scholar] [CrossRef]
- Ivanisevic, J.; Want, E.J. From Samples to Insights into Metabolism: Uncovering Biologically Relevant Information in LC-HRMS Metabolomics Data. Metabolites 2019, 9, 308. [Google Scholar] [CrossRef]
- Danzi, F.; Pacchiana, R.; Mafficini, A.; Scupoli, M.T.; Scarpa, A.; Donadelli, M.; Fiore, A. To metabolomics and beyond: A technological portfolio to investigate cancer metabolism. Signal Transduct. Target. Ther. 2023, 8, 137. [Google Scholar] [CrossRef]
- Khalikova, M.; Jireš, J.; Horáček, O.; Douša, M.; Kučera, R.; Nováková, L. What is the role of current mass spectrometry in pharmaceutical analysis? Mass Spectrom. Rev. 2024, 43, 560–609. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Eticha, T.; Hymete, A.; Ashenef, A. Principles and Applications of Ultra-High-Performance Liquid Chromatography. IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Gao, Z.; Zhong, W. Recent [2018–2020] development in capillary electrophoresis. Anal. Bioanal. Chem. 2022, 414, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Doerr, A. Global metabolomics. Nat. Methods 2017, 14, 32. [Google Scholar] [CrossRef]
- Blackburn, P.R.; Gass, J.M.; e Vairo, F.P.; Farnham, K.M.; Atwal, H.K.; Macklin, S.; Klee, E.W.; Atwal, P.S. Maple syrup urine disease: Mechanisms and management. Appl. Clin. Genet. 2017, 10, 57–66. [Google Scholar] [CrossRef]
- Chou, F.-J.; Liu, Y.; Lang, F.; Yang, C. D-2-Hydroxyglutarate in glioma biology. Cells 2021, 10, 2345. [Google Scholar] [CrossRef]
- Wishart, D. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov. 2016, 15, 473–484. [Google Scholar] [CrossRef]
- Jacob, M.; Lopata, A.L.; Dasouki, M.; Rahman, A.M.A. Metabolomics toward personalized medicine. Mass Spectrom. Rev. 2019, 38, 221–238. [Google Scholar] [CrossRef]
- Demirel, A.; Li, J.; Morrow, C.; Barnes, S.; Jansen, J.; Gower, B.; Kirksey, K.; Redden, D.; Yarar-Fisher, C. Evaluation of a ketogenic diet for improvement of neurological recovery in individuals with acute spinal cord injury: Study protocol for a randomized controlled trial. Trials 2020, 21, 372. [Google Scholar] [CrossRef]
- Wu, Y.; Streijger, F.; Wang, Y.; Lin, G.; Christie, S.; Mac-Thiong, J.-M.; Parent, S.; Bailey, C.S.; Paquette, S.; Boyd, M.C.; et al. Parallel Metabolomic Profiling of Cerebrospinal Fluid and Serum for Identifying Biomarkers of Injury Severity after Acute Human Spinal Cord Injury. Sci. Rep. 2016, 6, 38718. [Google Scholar] [CrossRef]
- Astarita, G.; Kelly, R.S.; Lasky-Su, J. Metabolomics and lipidomics strategies in modern drug discovery and development. Drug Discov. Today 2023, 28, 103751. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pan, S.; Yin, L.; Liu, J.; Tong, J.; Wang, Z.; Zhao, J.; Liu, X.; Chen, Y.; Miao, J.; Zhou, Y.; et al. Metabolomics-driven approaches for identifying therapeutic targets in drug discovery. Medcomm 2024, 5, e792. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, T.; Liu, Q.; Sutcharitchan, C.; Zhou, Z.; Zhang, D.; Li, S. Elucidating the role of artificial intelligence in drug development from the perspective of drug-target interactions. J. Pharm. Anal. 2025, 15, 101144. [Google Scholar] [CrossRef]
- Bellerba, F.; Chatziioannou, A.C.; Jasbi, P.; Robinot, N.; Keski-Rahkonen, P.; Trolat, A.; Vozar, B.; Hartman, S.J.; Scalbert, A.; Bonanni, B.; et al. Metabolomic profiles of metformin in breast cancer survivors: A pooled analysis of plasmas from two randomized placebo-controlled trials. J. Transl. Med. 2022, 20, 629. [Google Scholar] [CrossRef] [PubMed]
- Pinu, F.R.; Beale, D.J.; Paten, A.M.; Kouremenos, K.; Swarup, S.; Schirra, H.J.; Wishart, D. Systems Biology and Multi-Omics Integration: Viewpoints from the Metabolomics Research Community. Metabolites 2019, 9, 76. [Google Scholar] [CrossRef]
- Olivier, M.; Asmis, R.; Hawkins, G.A.; Howard, T.D.; Cox, L.A. The need for multi-omics biomarker signatures in precision medicine. Int. J. Mol. Sci. 2019, 20, 4781. [Google Scholar] [CrossRef]
- Gowda, G.A.N.; Raftery, D. NMR Metabolomics Methods for Investigating Disease. Anal. Chem. 2023, 95, 83–99. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hsieh, W.-C.; Budiarto, B.R.; Wang, Y.-F.; Lin, C.-Y.; Gwo, M.-C.; So, D.K.; Tzeng, Y.-S.; Chen, S.-Y. Spatial multi-omics analyses of the tumor immune microenvironment. J. Biomed. Sci. 2022, 29, 96. [Google Scholar] [CrossRef]
- Peng, R.; Zhang, L.; Xie, Y.; Guo, S.; Cao, X.; Yang, M. Spatial multi-omics analysis of the microenvironment in traumatic spinal cord injury: A narrative review. Front. Immunol. 2024, 15, 1432841. [Google Scholar] [CrossRef]
- Wishart, D.S.; Cheng, L.L.; Copié, V.; Edison, A.S.; Eghbalnia, H.R.; Hoch, J.C.; Gouveia, G.J.; Pathmasiri, W.; Powers, R.; Schock, T.B.; et al. NMR and Metabolomics-A Roadmap for the Future. Metabolites 2022, 12, 678. [Google Scholar] [CrossRef]
- Plekhova, V.; De Windt, K.; De Spiegeleer, M.; De Graeve, M.; Vanhaecke, L. Recent advances in high-throughput biofluid metabotyping by direct infusion and ambient ionization mass spectrometry. TrAC Trends Anal. Chem. 2023, 168, 117163. [Google Scholar] [CrossRef]
- Zaitsu, K.; Hayashi, Y.; Murata, T.; Yokota, K.; Ohara, T.; Kusano, M.; Tsuchihashi, H.; Ishikawa, T.; Ishii, A.; Ogata, K.; et al. In Vivo Real-Time Monitoring System Using Probe Electrospray Ionization/Tandem Mass Spectrometry for Metabolites in Mouse Brain. Anal. Chem. 2018, 90, 4695–4701. [Google Scholar] [CrossRef]
- Lombard-Banek, C.; Li, J.; Portero, E.P.; Onjiko, R.M.; Singer, C.D.; Plotnick, D.O.; Al Shabeeb, R.Q.; Nemes, P. In Vivo Subcellular Mass Spectrometry Enables Proteo-Metabolomic Single-Cell Systems Biology in a Chordate Embryo Developing to a Normally Behaving Tadpole [X. laevis]*. Angew. Chem. Int. Ed. Engl. 2021, 60, 12852–12858. [Google Scholar] [CrossRef]
- Richter, J.K.; Vallesi, V.; Zölch, N.; Chan, K.L.; Hunkeler, N.; Abramovic, M.; Hashagen, C.; Christiaanse, E.; Shetty, G.; Verma, R.K.; et al. Metabolic profile of complete spinal cord injury in pons and cerebellum: A 3T 1H MRS study. Sci. Rep. 2023, 13, 7245. [Google Scholar] [CrossRef]
Study | Animal | Tissue Used | Technique | Metabolite | Potential Use as a Biomarker |
---|---|---|---|---|---|
Pang et al., 2022 [49] | female Wistar rats (n = 5/group/time point) at 4 h, 24 h and 48 h post SCI | spinal cord | LC-MS (Liquid Chromatography-Tandem Mass Spectrometry) | Arachidonic metabolites including Prostaglandin E2 (PGE2), Leukotriene B4 (LTB4), Thromboxane B2 (TXB2), HETEs (2-HETE, 8-HETE & 12-HETE), Dihydroxyeicosatrienoic acids (8-DHET, 14-DHETs) | Markers of arachidonic acid metabolism in acute SCI, PGE2 (COX-2 product) and LTB4 were consistently elevated at all three acute time points post-injury and were highlighted as critical inflammatory mediators and potential biomarkers |
Domenichiello et al., 2021 [50] | Male Sprague Dawley rats (n = 39), n = 4 per group for lipidomics, | Dorsal horn of spinal cord, Hind paw skin, sciatic nerve, dorsal root ganglia | LC-MS/MS lipidomics | OXLAMs (Oxidized Linoleic Acid Metabolites) 9-HODE (9-Hydroxy-octadecadienoic acid), oxoODE, 13-HODE, Prostanoids (from Arachidonic Acid) PGE2 (Prostaglandin E2), TBX2, 5-HETE, 11-HETE, 15-HETE | Oxylipins and OXLAMs associated with nociceptive hypersensitivity and potential pain biomarkers, 5-HETE proposed as possible marker of immune cell infiltration and inflammatory pain. |
Rodgers et al., 2022 [51] | Female Long-Evans rats (n = 45, 5 per goup), | striatum and spinal cord | LC–MS/MS (Eksigent 425 microLC/SCIEX 5600+ TOF-MS and AB SCIEX 3200 QqQ-MS) | dopamine, L-DOPA, tyrosine pathway metabolites, sphingolipids | propose that dopamine pathway metabolites may serve as markers for opioid responsiveness and targets for overcoming opioid resistance in SCI-related neuropathic pain. |
Pukale et al., 2024 [52] | Male Wistar rats (n = 20), n = 5 per group for metabolomics | spinal cord (syrinx site, rostral & caudal) | LC-MS (liquid chromatography-mass spectrometry) and Mass Spectrometry Imaging (MSI) | betaine, carnitine, alpha-glycerophosphocholine, arginine, creatine, guanidinoacetate, spermidine | Osmolyte biomarkers for syrinx formation and expansion in post-traumatic syringomyelia |
Ni et al., 2021 [53] | Rats/n = 12 SCI + treatment, n = 6 control | spinal cord | LC-MS/MS | Lactic acid, fructose 1,6-bisphosphate, citric acid, glucose 6-phosphate, pyruvic acid | Metabolites proposed as indicators of metabolic dysregulation and inflammation post-SCI |
# Zhang et al., 2025 [54] | Male Sprague-Dawley rats; n = 8 SCI, n = 8 sham (n = 36) | serum (paired with gut metagenomics) | Untargeted metabolomics (UPLC-MS/MS for serum); | Pyruvic acid, lactic acid, carnosine, aspartic acid, 3-hydroxyisovaleric acid, isocitric acid, isobutyric acid, ethylmethylacetic acid | Pyruvate and lactic acid are proposed as functional markers of metabolic disturbance and oxidative stress after SCI, and as potential targets for microbiome-based therapeutic interventions |
Liang et al., 2024 [55] | Male Sprague-Dawley rats; n = 6 per group for metabolomics (n = 45) | spinal cord dorsal horn | Untargeted metabolomics (LC-MS/MS) and proteomics | Glycerophospholipids (PC-PC(16:0/18:1), PC(18:0/20:4), PE (18:0/22:6), PS), fatty acyls (Arachidonic acid, Docosahexaenoic acid (DHA), Palmitic acid), steroids (Cholesteryl ester), sphingolipids (Ceramide (Cer)) | PEs, PCs, and PA(15:0/20:3-O(5,6)) metabolites serve as markers for neuropathic pain state and therapeutic efficacy, reflecting neuroinflammation and microglial activation status in the spinal cord. |
Yuan et al., 2025 [56] | Adult male Sprague Dawley rats, n = 6 per group (n = 42) | plasma and cerebrospinal fluid (CSF) | LC-MS metabolomics and network pharmacology | dopamine, L-DOPA, normetanephrine, spermine, 5-HTP, phenylpyruvate, N-methyl-L-glutamic acid, carnosine, epinephrine, tryptophan, spermine | 5-hydroxytryptophan, normetanephrine, dopamine, tryptophan, and phenylpyruvate are associated with pain modulation and inflammatory response, serving as functional biomarkers of neuropathic pain and therapeutic efficacy of LGZ + SIN through improvements in neurotransmitter balance and inflammation. |
Jiang et al., 2023 [57] | Male Sprague-Dawley rats (n = 70), metabolomics: n = 6/group, 7 days post-SCI | spinal cord and microglial supernatant | GC-MS metabolomics | Docosahexaenoic acid (DHA), ethanolamine | DHA is proposed as a functional metabolite marker for neuroinflammation resolution and repair after SCI, and as a mechanistic biomarker for LbGp efficacy via NF-κB/MAPK signaling in SCI |
Zeng et al., 2022 [58] | Adult male Sprague-Dawley rats; n = 5 per group for metabolomics (n = 28), 3 days post-SCI | spinal cord | Integrated LC-MS/MS metabolomics | purine metabolites: xanthine, inosine, guanidoacetic acid, sphingosine, pantothenic acid, AMP, IMP, GMP, L-glutamine, xanthosine | These purine metabolites are proposed as functional markers of acute SCI microenvironmental disturbance, energy metabolism failure, and targets for neural repair and regeneration strategies |
* Liu et al., 2023 [59] | Male Sprague-Dawley rats; n = 6 per group (n = 42) | bladder muscle, collected at 30 min, 6 h, 12 h, 24 h, 5 d, 2 w post-TSCI | LC-MS untargeted metabolomics | α-ketoglutaric acid, fructose 1,6-bisphosphate, phosphocreatine (energy metabolism); steroid hormones (corticosterone, estrogen, estradiol, 17α-hydroxyprogesterone, etc.); neurotransmitters (acetylcholine, histamine, noradrenaline); ascorbic acid, taurine | α-ketoglutaric acid, fructose 1,6-bisphosphate, and phosphocreatine serve as markers of the three main muscle energy pathways, while steroid hormones and neurotransmitters (acetylcholine, histamine, noradrenaline) reflect stress and neuromuscular signaling changes post-TSCI; ascorbic acid indicates antioxidant response—together, their time-dependent changes act as functional biomarkers of detrusor dysfunction and neurogenic bladder progression, supporting targeted metabolic interventions. |
Zhang et al., 2019 [60] | Sprague-Dawley rats; n = 10 per group (sham, 12 h, 1 d, 2 d, 7 d post-CEI; total n = 50) | serum | UHPLC-Q-TOF-MS (ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry) | corticosterone, 3b,17a,21-trihydroxypregnenone, L-tryptophan, 5-methoxyindoleacetate, liothyronine, homovanillin, t-leucine, α-ketoisovaleric acid, L-valine, 4-methyl-2-oxopentanoate, xanthosine, docosapentaenoic acid, docosahexaenoic acid, eicosapentaenoic acid, decanoic acid, linoleic acid, palmitic acid, sphingosine, glutathione | Xanthosine, L-tryptophan, glutathione, sphingosine, and DHA proposed as diagnostic and prognostic markers for early-stage cauda equina injury (CEI), providing insight into energy, lipid, amino acid, and nucleotide metabolic changes relevant to injury severity and repair. |
Yang et al., 2022 [61] | Female Sprague-Dawley rats; n = 6 per group (n = 24) | spinal cord, CSF, plasma | Untargeted LC-MS (UHPLC-Q-Exactive Orbitrap) | phosphorylcholine, pyridoxine, guanidoacetic acid, uric acid plus citric acid, creatine, stearic acid, linoleic acid, N-acetylaspartylglutamic acid | Uric acid, phosphorylcholine, pyridoxine, and guanidoacetic acid are proposed as potential metabolite biomarkers for SCI severity assessment and prognosis; These markers may facilitate early diagnosis, severity grading, and translational research in SCI. |
Huffman et al., 2023 [62] | Female Sprague Dawley rats; n = 15 SCI, n = 15 naïve, n = 3 sham (for metabolomics: (n = 30) | lung tissue, 14 days post-SCI | GC-MS, MALDI-MSI, metabolomics | glutamate, alanine, glycine, palmitate, myo-inositol; N-linked glycans | glutamate, glycine, and N-linked glycosylation are proposed as early biomarkers of SCI-induced acute lung injury (ALI/ARDS). They may serve as sensitive indicators for early detection, monitoring progression, and identifying therapeutic targets for SCI-associated lung injury |
Wang et al., 2024 [63] | Male Sprague-Dawley rats; n = 5 per group for metabolomics (n = 15) | plasma-derived exosomes | Non-targeted UPLC-MS/MS (ACQUITY UPLC-Xevo TQ-S) | butyric acid, isobutyric acid, dihomo-γ-linolenic acid, heptanoic acid, tridecanoic acid | Plasma exosome metabolites associated with depression-like behavior after SCI; potential biomarkers of neuropsychiatric susceptibility |
Wu et al., 2023 [64] | Male Sprague-Dawley rats (n = 24) | Spinal cord tissue | Untargeted LC-MS metabolomics | Lactic acid, Glutamate, Taurine, GABA, Inosine, Citrate, L-Glutamine, L-Glutamate, N-Acetylneuraminic acid, Phosphorylcholine, | Glutamate is a biomarker of excitotoxicity, Xanthine-oxidative stress, L-Glutamine-inflammation, Creatine-energy metabolism disturbance, |
Wu et al., 2020 [65] | Sprague-Dawley rats (n = 41) | Lumbar spinal cord segments | LC-MS (untargeted metabolomics | glutamate, lactate, creatine, myo-inositol, and taurine. | Markers of excitotoxicity, mitochondrial dysfunction, energy metabolism disturbance, gliosis, and neuroprotection |
Lyu et al., 2025 [66] | Adult female Sprague-Dawley rats (n = 12; 6 SCI, 6 sham) | Spinal cord | Ambient air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) (Q Exactive Orbitrap) | Lipids (phosphatidylserine [PS], phosphatidylethanolamine [PE], phosphatidylglycerophosphate [PGP], cholesterol ester [CE], ceramide [Cer], phosphatidic acid [PA]), inosine, lactic acid, spermidine | PS, PE, PA, inosine, and spermidine proposed as region-specific markers for inflammation, oxidative stress, and neural repair after SCI; spatial profiling supports precision treatment strategies |
Francos-Quijorna et al., 2017 [67] | C57BL/6J mice (n = 142) | Whole spinal cord lysate | LC-MS/MS (targeted lipidomics) | PGE2, 14-HDHA, 17-HDHA, 5-HETE, 12-HETE, 15-HETE | Indicators of inflammation onset (PGE2) and delayed resolution (14-HDHA, 17-HDHA); lipid mediators of injury and repair dynamics |
Chen et al., 2021 [68] | Male Sprague-Dawley rats; n = 8 per group (CCI, sham) | Serum, spinal cord | Untargeted metabolomics (LC-MS/MS) | L-tyrosine, dopamine, 1,4-dihydroxybenzene, anthranilic acid, kynurenic acid, L-histidine, phosphorylcholine, choline, acetyl-DL-leucine, arachidonic acid, indolepropionic acid, glycerophosphocholine, uracil, uric acid, beta-hydroxybutyric acid | beta-hydroxybutyric acid, L-tyrosine, dopamine, anthranilic acid, and kynurenic acid, are proposed as functional serum biomarkers reflecting gut microbiota–metabolite–pain axis disturbances in neuropathic pain. |
Shi et al., 2024 [69] | Female C57BL/6J mice 1-day & 28-days postSCI, (n = 18, 6 per group) | spinal cord | non-targeted LC-MS/MS (UPLC-HSS T3 C18 column; both positive and negative ion modes)-lipid focused | Neutral lipid droplets, cholesterol crystals, lipid metabolism intermediates | Lipid droplet and cholesterol crystal accumulation may serve as indicators of lipid metabolism dysfunction and chronic inflammation post-SCI; targeting pu.1 shown to reverse these changes thus useful as marker for therapeutic efficacy |
Ohnishi et al., 2021 [70] | Mice/n = 10 SCI, n = 6 sham | Spinal cord | CE-TOF/MS | taurine, glutamate, creatine | Glutamate and taurine proposed as biomarkers of neuronal injury and excitotoxic stress |
Shi et al., 2024 [71] | Adult C57BL/6 mice; n = 3 per group for metabolomics (sham and 7 days post-SCI) n = 18 | spinal cord-injury epicentre | LC-MS/MS (targeted energy metabolite profiling) | lactate, glucose-6-phosphate, β-D-fructose-6-phosphate, fructose-6-phosphate, adenosine monophosphate (AMP) | Lactate is proposed as a key marker of metabolic dysfunction and a therapeutic target for restoring neuronal energy supply thereby promoting axon regeneration and functional recovery post-SCI. |
* Graham et al., 2019 [72] | C57BL/6 mice; Sham (n = 8), SCI + Vehicle (n = 9), SCI + SS-31 (n = 9) (n = 26). 7 days post-SCI | Gastrocnemius muscle | GC-TOF MS (untargeted metabolomics) | glucose-6-phosphate, fructose-6-phosphate, lactic acid, amino acids, creatine, carnitine detected but No significant metabolomic differences between SCI + Vehicle and SCI + SS-31 groups; metabolite variation failed to meet FDR significance, | Although indicators of mitochondrial dysfunction, no single metabolite robustly distinguishing groups; no effect from antioxidant treatment either |
# Kang et al., 2023 [73] | Female C57BL/6J mice; n = 36 per group (sham, SCI) (n = 72). 14 days post-SCI | spinal cord | LC-ESI-MS/MS (widely targeted) | L-leucine, L-methionine, L-phenylalanine, L-isoleucine, L-valine | Branched-chain amino acids strongly correlated with gut microbiota dysbiosis and inflammation via gut-brain axis, proposed as biomarkers of markers of metabolic dysfunction and neuroinflammation, contributing to oxidative stress and inflammatory responses in secondary SCI. |
Zhang et al., 2024 [74] | Female C57BL/6J mice (n = 3 per group for metabolomics) (n = 48), 14 days post-SCI | spinal cord | Targeted LC-ESI-MS/MS with transcriptomic correlation | nicotinamide (NAM), niacinamide, fumaric acid | NAM proposed as a functional metabolite marker and therapeutic candidate for inhibiting fibrotic scar formation and improving outcomes after SCI. |
Rong et al. (2024) [75] | Mice (C57BL/6N, n = 40) | Feces | Untargeted metabolomics (LC-MS) | Atrolactic acid, 3-(3-hydroxyphenyl) propionic acid, 3-(4-hydroxyphenyl) propionic acid, L-Glutamine, L-Glutamate, L-Methionine, L-Valine, L-Tryptophan, L-Proline, 5-Oxo-D-proline, Taurine, Taurocholate | Identified metabolites showed altered metabolic pathways related to gut-brain communication, inflammation, and neural repair, highlighting their potential as biomarkers for assessing spinal cord injury and treatment efficacy |
Scholpa et al., 2024 [76] | Female C57BL/6J mice; n = 6 sham, n = 8 (7 days post-injury), n = 9 (21 days post-injury) | spinal cord | Untargeted metabolomics (LC-MS and GC-MS | phospholipids [PLs]: phosphatidylcholines, phosphatidylserines, phosphatidylethanolamines, phosphatidylglycerols, phosphatidylinositols; lysophospholipids [LPLs]: LPC, LPE, LPS, LPG, LPI; fatty acids [FAs]: arachidonate, DHA, long-chain FAs; carnitine and acylcarnitines; TCA cycle intermediates: citrate, aconitate, fumarate | PL/LPL/FA/carnitine profiles, especially increased LPLs and FAs and decreased carnitine/acylcarnitines, are proposed as biomarkers for injury progression, mitochondrial dysfunction, and the transition from recovery to plateau after SCI. |
Zhou et al., 2025 [77] | Mice C57BL/6J mice (n = 7–8 per group for plasma metabolomics) (n = 24) | plasma | LC-ESI-MS/MS (UPLC, QTRAP SCIEX, targeted and untargeted metabolomics) | Lysoglycerophospholipids/lipid metabolism products (8,15-Dihete, 2-Ethyl-2-hydroxybutyric acid, 3-Hydroxy-4-ethoxybenzoic acid, FFA (16:1), LPE(P-17:0)), S-Allyl-L-cysteine, immunoglobulin heavy chains (IGHG2B, IGHG2C, IGHV5-12, IGHV1-31, IGHV1-82) | Lysoglycerophospholipids and associated immunoglobulin heavy chains are proposed as functional biomarkers and mechanistic mediators of exercise-induced neuroprotection and recovery after SCI |
Potter et al., 2023 [78] | Mice/n = 8 SCI, n = 8 sham, n = 8 treated, day 7 and day 28 | Skeletal muscle | GC-TOF mass spectroscopy | proline, phenylalanine, lysine, leucine, isoleucine, glucose, fructose, lactate | these metabolites as markers of SCI-induced muscle catabolism, oxidative stress, and altered glucose metabolism |
* Graham et al., 2019 [79] | Female C57BL/6 mice; n = 5 per group (sham, 7 d post-SCI, 28 d post-SCI) (n = 25) | skeletal muscle | Untargeted liquid chromatography-mass spectrometry (LC-MS) or gas chromatography-mass spectrometry (GC-MS). | glucose, pyruvic acid, lactic acid, sorbitol, maltose, maltotriose, oxoproline, | Glucose, lactate, and pyruvate proposed as markers of acute glycolytic dysfunction and glucose uptake impairment in skeletal muscle after SCI |
Zhao et al., 2024 [80] | Male C57BL/6 mice (n = 48) | Serum, Spinal cord | Untargeted LC MS/MS metabolomics | Alanine (dimethyl), serine, citrate, 5-oxo-L-proline, 2-(2-ethoxyethoxy)-2,4,4-trimethylpentan-3-one, 10,16-heptadecadien-8-ynoic acid, ethanediamide, 2-hexyl-1-decanol | alanine (dimethyl) and serine are biomarkers of altered amino acid metabolism; 2-(2-ethoxyethoxy)-2,4,4-trimethylpentan-3-one and 10,16-heptadecadien-8-ynoic acid are biomarkers of changes in lipid and xenobiotic metabolism, |
# Jing et al., 2023 [81] | Female C57BL/6N mice (n = 4–6 per group) | Feces, serum | Targeted GC-MS for SCFAs profiling | acetic acid (AA), propionic acid (PA), butyric acid (BA), isobutyric acid, isovaleric acid | AA, PA, and BA are proposed as functional biomarkers of gut-brain axis disruption and as therapeutic markers for inflammation reduction and neurological recovery after SCI. |
Study | Sample | Tissue Used | Technique | Metabolite | Potential Use as a Biomarker |
---|---|---|---|---|---|
Singh et al., 2018 [82] | 20 ASCI subjects (10 surgical fixation alone, 10 stem cell adjuvant), 10 healthy controls | Serum at baseline and 6 months post-injury | 1H NMR spectroscopy (Bruker Avance III 800) untargeted metabolomics | Alanine, acetone, acetate, glucose, formate, glutamine, glycine, threonine, isoleucine, lactate, histidine, phenylalanine, succinate, tyrosine, valine | Glycine, acetone, acetate, lactate, isoleucine, valine, and succinate are potential serum biomarkers for SCI severity and neurological recovery. lactate and glycine inversely correlated with recovery. |
Yarar-Fisher et al., 2018 [83] | 7 individuals with acute SCI (AIS A-D); randomized to ketogenic diet (n = 4) or standard diet (n = 3) | Serum | Untargeted LC-MS/MS metabolomics | LysoPC 16:0, fibrinogen alpha and beta subunits | LysoPC 16:0 and fibrinogen may serve as early markers to monitor the efficacy of ketogenic diet interventions and neurological improvement in acute SCI. |
Singh et al., 2020 [84] | 70 healthy controls 31 ASCI (fixation + stem cell therapy) 34 ASCI (fixation alone) | Urine at baseline, 6 weeks, 3 months, 6 months | 1H NMR spectroscopy (Bruker Avance III 800 MHz) untargeted metabolomics | alanine, acetate, β-hydroxybutyrate, choline-containing compounds, creatine, creatine phosphate, creatinine, phenylalanine, propylene glycol, urea. | Alanine, acetate, β-hydroxybutyrate, creatine, phenylalanine, urea are promising non-invasive biomarkers for ASCI severity and neurological recovery. |
Bykowski et al., 2021 [85] | 6 male SCI patients (4 incomplete, 2 complete) | Paired (6 am & 9 am) Urine samples at 1 month and 6 months post-injury | 1H NMR (700 MHz Bruker), quantitative metabolomics | Caffeine, 3-hydroxymandelic acid, L-valine, N-methylhydantoin, dopamine, Sumiki’s acid. | Caffeine, 3-hydroxymandelic acid, L-valine, and N-methylhydantoin are robust, non-invasive urinary biomarkers for SCI recovery and prognosis. Purine and tyrosine metabolism are key pathways. |
* Li et al., 2022 [86] | 25 adults with SCI (16 Normal Glucose Tolerance, 9 prediabetes/type 2 diabetes) | serum ≥ 3 years post-injury) | LC-MS/MS (Liquid chromatography-tandem mass spectrometry) untargeted metabolomics | Indoxyl sulfate (IS), phenylacetylglutamine, L-5-oxoproline, glutamine | Phenylacetylglutamine and indoxyl sulfate proposed as biomarkers for metabolic and cardiovascular risk in SCI patients. Increased levels reflect dysbiosis and impaired metabolic health in SCI with P/DM. |
Bykowski et al., 2023 [87] | 7 male SCI patients (5 incomplete, 2 complete) | Paired (6 am & 9 am) serum samples at ~1–3 months and 6 months post-injury | 1H NMR (700 MHz Bruker), quantitative metabolomics | 1,3,7-trimethyluric acid, 1,9-dimethyluric acid, acetic acid, citric acid, dimethyl sulfone, succinic acid, lactate, D-glucose, D-mannose. | 1,3,7-trimethyluric acid, 1,9-dimethyluric acid, and acetic acid are promising serum biomarkers for SCI outcome and recovery (SCIM score). Pathways indicate altered energy and amino acid metabolism post-injury. |
* Kong et al., 2023 [88] | 11 SCI patients (cervical/thoracic, ASIA A–D, mean duration ~23 months), 10 healthy controls (age/gender matched) | Serum | Untargeted metabolomics (UHPLC-QTOF/MS, Agilent 6550 iFunnel & SCIEX Triple TOF 6600) | Uridine, hypoxanthine, PC(18:2/0:0), kojic acid | Uridine, hypoxanthine, PC(18:2/0:0), and kojic acid are promising serum biomarkers for SCI severity, progression, and therapeutic targeting. gut dysbiosis drives metabolic disturbance. |
* Jing et al., 2023 [81] | humans (59 SCI patients, 21 healthy controls) | Feces, serum | Targeted GC-MS for SCFAs profiling | short-chain fatty acids (SCFAs): acetic acid (AA), propionic acid (PA), butyric acid (BA), isobutyric acid, isovaleric acid | AA, PA, and BA are proposed as functional biomarkers of gut-brain axis disruption and as therapeutic markers for inflammation reduction and neurological recovery after SCI. |
Zhou et al., 2025 [77] | 20 incomplete SCI patients | Plasma of (non-acute, >3 months post-injury, exercise for 4 weeks | LC-ESI-MS/MS (SCIEX QTRAP), untargeted & targeted, MetWare DB | lysoglycerophospholipids (LPE(P-17:0), lipids: 8,15-Dihete, FFA (16:1), PA (18:1(9Z)/18:1(9Z)), S-Allyl-L-cysteine, immunoglobulin heavy chains (IGHG2B, IGHG2C) | Plasma lipid metabolites, especially lysoglycerophospholipids and their correlation with immune proteins, are proposed as biomarkers for rehabilitation response (functional recovery) and neuroprotection in incomplete SCI. |
Zhang et al., 2025 [89] | Human (patients with TSCI, n = 38; healthy controls, n = 21; all male, age 18–60) | Feces | Gas Chromatography-Mass Spectrometry (GC-MS) | Acetic acid, propionic acid, butyric acid, valeric acid, isobutyric acid, isovaleric acid, caproic acid | The altered fecal SCFA profile, specifically reduced butyric and acetic acid and increased isobutyric and isovaleric acid, may serve as biomarkers for neurogenic bowel dysfunction and delayed recovery after TSCI. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zilundu, P.L.M.; Gatsi, A.B.; Chapupu, T.; Zhou, L. The Utility of Metabolomics in Spinal Cord Injury: Opportunities for Biomarker Discovery and Neuroprotection. Int. J. Mol. Sci. 2025, 26, 6864. https://doi.org/10.3390/ijms26146864
Zilundu PLM, Gatsi AB, Chapupu T, Zhou L. The Utility of Metabolomics in Spinal Cord Injury: Opportunities for Biomarker Discovery and Neuroprotection. International Journal of Molecular Sciences. 2025; 26(14):6864. https://doi.org/10.3390/ijms26146864
Chicago/Turabian StyleZilundu, Prince Last Mudenda, Anesuishe Blessings Gatsi, Tapiwa Chapupu, and Lihua Zhou. 2025. "The Utility of Metabolomics in Spinal Cord Injury: Opportunities for Biomarker Discovery and Neuroprotection" International Journal of Molecular Sciences 26, no. 14: 6864. https://doi.org/10.3390/ijms26146864
APA StyleZilundu, P. L. M., Gatsi, A. B., Chapupu, T., & Zhou, L. (2025). The Utility of Metabolomics in Spinal Cord Injury: Opportunities for Biomarker Discovery and Neuroprotection. International Journal of Molecular Sciences, 26(14), 6864. https://doi.org/10.3390/ijms26146864