Assessment of Three Provenances of Juglans neotropica Diels to Identify Optimal Seed Sources in the Northern Ecuadorian Andes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites and Environmental Conditions
- San Francisco de Natabuela (Plantation): Located in Antonio Ante canton, Imbabura Province (2255 m a.s.l.), this site features a pure plantation system with annual precipitation ranging from 750 to 1000 mm and an average temperature of 16 °C [18].
- Pimampiro (Agroforestry System): This site in Pimampiro canton (2165 m a.s.l.) integrates Juglans neotropica and Coffea arabica in an agroforestry matrix, with lower precipitation (500–750 mm) and comparable temperature (16 °C) [19].
- Cuyuja (Natural Regeneration): Located in Quijos canton, Napo Province (2310 m a.s.l.), this montane site has significantly higher rainfall (1750–2000 mm) and a cooler climate (10 °C), supporting natural forest regeneration [20].
2.2. Selection of Seed Trees
2.3. Seed Quality Assessment
2.4. Germination Trials
2.5. Statistical Analysis
3. Results
3.1. Dasometric Characteristics of Selected Trees
3.2. Phenotypic Traits of Seed Trees
3.3. Seed Physical Quality
3.4. Germination Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DBH | Diameter at Breast Height |
TH | Total Height |
CH | Commercial Height |
PG | Germination Percentage |
IG | Germination Index |
M | Germination Speed Index |
CV | Germination Speed Coefficient |
CUG | Germination Uniformity Coefficient |
LMM | Linear Mixed Model |
MANOVA | Multivariate Analysis of Variance |
ISTA | International Seed Testing Association |
INAMHI | Instituto Nacional de Meteorología e Hidrología (Ecuador) |
PDOT | Plan de Desarrollo y Ordenamiento Territorial |
References
- Palacios-Herrera, B.; Pereira-Lorenzo, S.; Pucha-Cofrep, D. Natural and Artificial Occurrence, Structure, and Abundance of Juglans neotropica Diels in Southern Ecuador. Agronomy 2023, 13, 2531. [Google Scholar] [CrossRef]
- Toro Vanegas, E.; Roldán Rojas, I.C. State of the Art, Propagation and Conservation of Juglans neotropica Diels in Andean Zones. Madera Bosques 2018, 24, e11560. [Google Scholar] [CrossRef]
- Valverde-Rodríguez, J.X. Composición química de la madera de Juglans neotropica Diels y su relación con las propiedades químicas del suelo en la parroquia Valladolid, provincia de Zamora Chinchipe, Ecuador. Rev. Investig. Agrar. 2020, 2, 68–82. [Google Scholar] [CrossRef]
- Vilcacundo, E.; Alvarez, M.; Silva, M.; Carpio, C.; Morales, D.; Carrillo, W. Walnut protein concentrate (Juglans neotropica Diels), gastrointestinal digests and their antioxidant capacity. Asian J. Pharm. Clin. Res. 2018, 11, 395–398. [Google Scholar] [CrossRef]
- Bourque, N. Ritual and remembrance in the Ecuadorian Andes. Mt. Res. Dev. 2012, 32, 489–490. [Google Scholar] [CrossRef]
- Medina, J.; Quizhpe, W.; Déleg, J.; Gonzalez, K.; Aguirre, Z.; Aguirre, N.; Montaño, L.; Benítez, Á. Are Juglans neotropica plantations useful as a refuge of bryophytes diversity in tropical areas? Life 2021, 11, 434. [Google Scholar] [CrossRef] [PubMed]
- Ministerio del Ambiente [MAE]. Estadísticas del Patrimonio Natural del Ecuador Continental, 2nd ed.; Ministerio del Ambiente: Quito, Ecuador, 2018; Available online: https://proamazonia.org/wp-content/uploads/2019/10/ECUADOR_Folleto_Patrimonio_Natural_compressed.pdf (accessed on 4 November 2024).
- Cuenca, P.; Robalino, J.; Arriagada, R.; Echeverría, C. Are government incentives effective for avoided deforestation in the tropical Andean forest? PLoS ONE 2018, 13, e0203545. [Google Scholar] [CrossRef]
- Jones, K.W.; Holland, M.B.; Naughton-Treves, L.; Morales, M.; Suarez, L.; Keenan, K. Forest conservation incentives and deforestation in the Ecuadorian Amazon. Environ. Conserv. 2017, 44, 56–65. [Google Scholar] [CrossRef]
- Mohebalian, P.M.; Aguilar, F.X. Additionality and design of forest conservation programs: Insights from Ecuador’s Socio Bosque Program. For. Policy Econ. 2016, 71, 103–114. [Google Scholar] [CrossRef]
- Fremout, T.; Thomas, E.; Bocanegra-González, K.T.; Aguirre-Morales, C.A.; Morillo-Paz, A.T.; Atkinson, R.; Kettle, C.; González-M, R.; Alcázar-Caicedo, C.; González, M.A.; et al. Dynamic seed zones to guide climate-smart seed sourcing for tropical dry forest restoration in Colombia. For. Ecol. Manage. 2021, 490, 119127. [Google Scholar] [CrossRef]
- Tsegaye, M.; Lemage, B.; Hido, A. Seedling performance of different provenances of selected indigenous tree species in Debub Ari District, Southern Ethiopia. Glob. J. Earth Environ. Sci. 2021, 6, 38–43. [Google Scholar] [CrossRef]
- Stevens, K.A.; Woeste, K.; Chakraborty, S.; Crepeau, M.W.; Leslie, C.A.; Martínez-García, P.J.; Puiu, D.; Romero-Severson, J.; Coggeshall, M.; Dandekar, A.M.; et al. Genomic variation among and within six Juglans species. G3 Genes Genomes Genet. 2018, 8, 2153–2165. [Google Scholar] [CrossRef] [PubMed]
- Collevatti, R.G.; Novaes, E.; Silva-Junior, O.B.; Vieira, L.D.; Lima-Ribeiro, M.S.; Grattapaglia, D. A genome-wide scan shows evidence for local adaptation in a widespread keystone Neotropical forest tree. Heredity 2019, 123, 117–137. [Google Scholar] [CrossRef] [PubMed]
- Cortés, A.J.; Restrepo-Montoya, M.; Bedoya-Canas, L.E. Modern strategies to assess and breed forest tree adaptation to changing climate. Front. Plant Sci. 2020, 11, 583323. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, S.; Chen, S.; Xia, D.; Yang, C.; Zhao, X. Genetic variation and superior provenances selection for wood properties of Larix olgensis at four trials. J. For. Res. 2022, 33, 1867–1879. [Google Scholar] [CrossRef]
- Rodríguez-Vásquez, M.E.; Rodríguez-Ortiz, G.; Enríquez-Del Valle, J.R.; Campos-Ángeles, G.V.; Velasco-Velasco, V.A.; Hernández-Hernández, A. Ensayos de progenies y huertos semilleros de especies forestales en México. Rev. Mex. Agroecosistemas 2021, 8, 79–88. [Google Scholar]
- GADP San Francisco de Natabuela. Plan de Desarrollo y Ordenamiento Territorial (PDOT) 2019–2023; Gobierno Autónomo Descentralizado Parroquial de San Francisco de Natabuela: Imbabura, Ecuador, 2019; Available online: https://www.gadnatabuela.gob.ec/documents/PDOT-OFICIAL-NATABUELA-2019-2023-.pdf (accessed on 4 November 2024).
- GADM Pimampiro. Actualización del Plan de Desarrollo y Ordenamiento Territorial del Cantón San Pedro de Pimampiro 2014–2027; Gobierno Autónomo Descentralizado Municipal de Pimampiro: Imbabura, Ecuador, 2015; Available online: https://www.imbabura.gob.ec/index.php/componente-territorial/instrumentos-de-planificacion/pdot-cantonal/file/506-pdot-pimampiro (accessed on 21 October 2024).
- GADP Cuyuja. Plan de Desarrollo y Ordenamiento Territorial 2030; Gobierno Autónomo Descentralizado Parroquial de Cuyuja: Napo, Ecuador, 2019; Available online: https://sil.napo.gob.ec/wp-content/uploads/2022/09/PDOT-Cuyuja.pdf (accessed on 4 November 2024).
- Instituto Nacional de Meteorología e Hidrología [INAMHI]. Visor de Estaciones Meteorológicas e Hidrológicas—Estación Meteorológica Ibarra-1 (M1240). Available online: http://www.inamhi.gob.ec/visor/estaciones (accessed on 28 May 2024).
- Ordóñez, L.; Aguirre, N.; Hofstede, R. Sitios de Recolección de Semillas Forestales Andinas del Ecuador; Ediciones Abya-Yala: Quito, Ecuador, 2001; ISBN 9978-04-745-X. [Google Scholar]
- International Seed Testing Association (ISTA). Reglas Internacionales Para El Análisis de Las Semillas 2016 (International Rules for Seed Testing, 2016 ed.); ISTA: Bassersdorf, Switzerland, 2016; ISSN 2310-3655. [Google Scholar]
- González-Zertuche, L.; Orozco-Segovia, A. Métodos de análisis de datos en la germinación de semillas, un ejemplo: Manfreda brachystachya. Bot. Sci. 1996, 58, 15–30. [Google Scholar] [CrossRef]
- Ahmad, R. A robustness evaluation of homogeneity test of covariance matrices. In Lecture Notes on Data Engineering and Communications Technologies, Proceedings of the Fifteenth International Conference on Management Science and Engineering Management (ICMSEM 2021), Toledo, Spain, 2–3 August 2021; Xu, J., García Márquez, F.P., Ali Hassan, M.H., Duca, G., Hajiyev, A., Altiparmak, F., Eds.; Springer: Cham, Switzerland, 2021; Volume 78, pp. 313–324. [Google Scholar] [CrossRef]
- Kim, N. Omnibus tests for multivariate normality based on Mardia’s skewness and kurtosis using normalizing transformation. Commun. Stat. Appl. Methods 2020, 27, 501–510. [Google Scholar] [CrossRef]
- Tanaka, E.; Hui, F.K.C. Symbolic formulae for linear mixed models. In Statistics and Data Science: Research School on Statistics and Data Science, RSSDS 2019, Melbourne, Australia, 24–26 July 2019, Proceedings; Nguyen, H., Ed.; Communications in Computer and Information Science; Springer: Singapore, 2019; Volume 1150, pp. 3–21. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, Version 4.1.0; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org/ (accessed on 4 November 2024).
- Gouveia-Barrocas, E.; Gonçalves, A.C. A new methodology to evaluate natural regeneration: A case study of Quercus ilex in the Montado in Portugal. Front. For. Glob. Chang. 2023, 6, 1123248. [Google Scholar] [CrossRef]
- Iwaizumi, M.G.; Takahashi, M.; Yano, K. Temporal variation in regeneration events affecting population structure in different size- and life-stages contributes to overall genetic diversity of natural Zelkova serrata population. J. For. Res. 2021, 26, 32–42. [Google Scholar] [CrossRef]
- Verbylaitė, R.; Aravanopoulos, F.A.; Baliuckas, V.; Juškauskaitė, A. Genetic monitoring of Alnus glutinosa natural populations using two generation cohorts. Forests 2023, 14, 330. [Google Scholar] [CrossRef]
- Del Río, M.; Condés, S.; Pretzsch, H. Analyzing size-symmetric vs. size-asymmetric and intra- vs. inter-specific competition in beech (Fagus sylvatica L.) mixed stands. For. Ecol. Manag. 2014, 325, 90–98. [Google Scholar] [CrossRef]
- Zhou, W.; Cheng, X.; Wu, R.; Han, H.; Kang, F.; Zhu, J.; Tian, P. Effect of intraspecific competition on biomass partitioning of Larix principis-rupprechtii. J. Plant Interact. 2018, 13, 1–8. [Google Scholar] [CrossRef]
- Defrenet, E.; Roupsard, O.; Van Den Meersche, K.; Charbonnier, F.; Pérez-Molina, J.P.; Khac, E.; Prieto, I.; Stokes, A.; Roumet, C.; Rapidel, B.; et al. Root biomass, turnover and net primary productivity of a coffee agroforestry system in Costa Rica: Effects of soil depth, shade trees, distance to row and coffee age. Ann. Bot. 2016, 118, 833–851. [Google Scholar] [CrossRef]
- Santos, P.Z.F.; Crouzeilles, R.; Sansevero, J.B.B. Can agroforestry systems enhance biodiversity and ecosystem service provision in agricultural landscapes? A meta-analysis for the Brazilian Atlantic Forest. For. Ecol. Manag. 2019, 433, 140–145. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Rankoth, L.M.; Jose, S. Agroforestry for Biodiversity Conservation; Springer: Cham, Switzerland, 2021; ISBN 978-3-030-80060-4. [Google Scholar]
- Raurau Quisiyupanqui, M.N. Caracterización de Fuentes Semilleras Para uso Sostenible y Conservación de Recursos Forestales de los Bosques Andinos de Loja, Ecuador. Master’s Thesis, Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Turrialba, Costa Rica, 2012. [Google Scholar]
- Ortiz Muñoz, E.; Acosta Hernández, C.C.; Linares Márquez, P.; Morales Romero, Z.; Rebolledo Camacho, V. Selección de árboles semilleros de Juglans pyriformis Liebm. en poblaciones naturales de Coatepec y Coacoatzintla, Veracruz. Rev. Mex. Cienc. For. 2016, 7, 43–58. [Google Scholar] [CrossRef]
- Olsson, S.; Dauphin, B.; Jorge, V.; Grivet, D.; Farsakoglou, A.M.; Climent, J.; Alizoti, P.; Faivre-Rampant, P.; Pinosio, S.; Milesi, P.; et al. Diversity and enrichment of breeding material for resilience in European forests. For. Ecol. Manag. 2023, 530, 120748. [Google Scholar] [CrossRef]
- Ruņgis, D.; Luguza, S.; Baders, E.; Šķipars, V.; Jansons, A. Comparison of genetic diversity in naturally regenerated Norway spruce stands and seed orchard progeny trials. Forests 2019, 10, 926. [Google Scholar] [CrossRef]
- Herrera Herrera, C.M. Evaluación de Fuentes Semilleras de Especies Forestales Nativas Como Apoyo a Programas y Políticas de Reforestación de la Provincia de Loja. Master’s Thesis, Universidad Nacional de Loja, Loja, Ecuador, 2016. [Google Scholar]
- Marinho, O.A.; Martinelli, L.A.; Duarte-Neto, P.J.; Mazzi, E.A.; King, J.Y. Photodegradation influences litter decomposition rate in a humid tropical ecosystem, Brazil. Sci. Total Environ. 2020, 715, 136601. [Google Scholar] [CrossRef]
- Ceballos-Freire, Á.J.; López-Ríos, J.A. Conservación de la calidad de semillas forestales nativas en almacenamiento. Cenicafé 2007, 58, 265–292. [Google Scholar]
- Wu, H.; Meng, H.; Wang, S.; Wei, X.; Jiang, M. Geographic patterns and environmental drivers of seed traits of a relict tree species. For. Ecol. Manag. 2018, 422, 59–68. [Google Scholar] [CrossRef]
- Cuyckens, G.E.E.; Hensen, I.; López, V.L.; Cellini, J.M.; Renison, D. Germination of high Andean treeline species of contrasting environments and along elevational gradients in northwest Argentina. Neotrop. Biodivers. 2021, 7, 111–120. [Google Scholar] [CrossRef]
- Garcias-Morales, C.; Orozco-Segovia, A.; Soriano, D.; Zuloaga-Aguilar, S. Effects of in situ burial and sub-optimal storage on seed longevity and reserve resources in sub-tropical mountain cloud forest tree species of Mexico. Trop. Conserv. Sci. 2021, 14, 1940082921989196. [Google Scholar] [CrossRef]
- Simsek, M.; Gulsoy, E.; Beyhan, O.; Osmanoglu, A.; Turgut, Y. Determination of some botanical, phenological, physical and chemical characteristics of walnut (Juglans regia L.) genotypes grown in Turkey. Appl. Ecol. Environ. Res. 2017, 15, 1279–1291. [Google Scholar] [CrossRef]
- Keshavarzian, M.; Gerivani, Z.; Sadeghipour, H.R.; Aghdasi, M.; Azimmohseni, M. Suppression of mitochondrial dehydrogenases accompanying post-glyoxylate cycle activation of gluconeogenesis and reduced lipid peroxidation events during dormancy breakage of walnut kernels by moist chilling. Sci. Hortic. 2013, 161, 314–323. [Google Scholar] [CrossRef]
- Vijay, D.; Gupta, S.K.; Mishra, S.M. Seed yield and quality enhancement of pollarded subabul (Leucaena leucocephala) by nutrient supplementation. Agrofor. Syst. 2017, 91, 613–621. [Google Scholar] [CrossRef]
- Stöcker, C.M.; Bamberg, A.L.; Stumpf, L.; Monteiro, A.B.; Cardoso, J.H.; de Lima, A.C.R. Short-term soil physical quality improvements promoted by an agroforestry system. Agrofor. Syst. 2020, 94, 2053–2064. [Google Scholar] [CrossRef]
- de Carvalho, A.F.; Fernandes-Filho, E.I.; Daher, M.; Gomes, L.C.; Cardoso, I.M.; Fernandes, R.B.A.; Schaefer, C.E.G.R. Microclimate and soil and water loss in shaded and unshaded agroforestry coffee systems. Agrofor. Syst. 2021, 95, 119–134. [Google Scholar] [CrossRef]
- Cué-García, J.L.; Ramírez-López, J.-L.; Chagna Ávila, E.J. Tratamientos pregerminativos y diferentes sustratos en la germinación de semillas de Juglans neotropica Diels, Ecuador. Ciênc. Florest. 2024, 34, e83757. [Google Scholar] [CrossRef]
- Klupczyńska, E.A.; Pawłowski, T.A. Regulation of seed dormancy and germination mechanisms in a changing environment. Int. J. Mol. Sci. 2021, 22, 1357. [Google Scholar] [CrossRef]
- Zeng, X.; Durka, W.; Welk, E.; Fischer, M. Heritability of early growth traits and their plasticity in 14 woody species of Chinese subtropical forest. J. Plant Ecol. 2017, 10, 222–231. [Google Scholar] [CrossRef]
- Engelhardt, K.A.M.; Lloyd, M.W.; Neel, M.C. Effects of genetic diversity on conservation and restoration potential at individual, population, and regional scales. Biol. Conserv. 2014, 179, 6–16. [Google Scholar] [CrossRef]
Parameter | Equation | Description | |
---|---|---|---|
Germination Percentage (%) | PG =× 100 | (1) | n: Number of seeds germinated on a given day; N: Total number of seeds sown. |
Germination Speed Coefficient | (2) | : Number of seeds germinated on day i; : Number of days since sowing. | |
Germination Index | (3) | : Number of seeds germinated on day i; : Day after sowing; N: Total number of seeds sown. | |
Germination Speed Index | (4) | : Number of seeds germinated per day; : Time from sowing to germination of each seed. | |
Germination Uniformity Coefficient | (5) | g: Mean germination time; : Days after sowing; : Number of seeds germinated on day i. |
(a) MANOVA Results | ||||||
---|---|---|---|---|---|---|
FV | Df | Pillai | approx F | num Df | den Df | Pr(>F) |
Ecosystem | 2 | 1.07 | 12.35 | 10.00 | 108.00 | 0.0000 |
Error | 57 | |||||
(b) Multivariate means and grouping | ||||||
Ecosystem | PG | CV | IG | M | CUG | Group |
Plantation | 32.50 | 0.85 | 38.32 | 0.03 | 0.10 | a |
Natural Regeneration | 15.00 | 0.71 | 15.10 | 0.02 | 0.00 | b |
Agroforestry System | 69.00 | 0.96 | 72.76 | 0.07 | 0.01 | c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-López, J.-L.; Añazco, M.; Vallejos, H.; Arcos, C.; Estrada, K. Assessment of Three Provenances of Juglans neotropica Diels to Identify Optimal Seed Sources in the Northern Ecuadorian Andes. Int. J. Plant Biol. 2025, 16, 87. https://doi.org/10.3390/ijpb16030087
Ramírez-López J-L, Añazco M, Vallejos H, Arcos C, Estrada K. Assessment of Three Provenances of Juglans neotropica Diels to Identify Optimal Seed Sources in the Northern Ecuadorian Andes. International Journal of Plant Biology. 2025; 16(3):87. https://doi.org/10.3390/ijpb16030087
Chicago/Turabian StyleRamírez-López, Jorge-Luis, Mario Añazco, Hugo Vallejos, Carlos Arcos, and Kelly Estrada. 2025. "Assessment of Three Provenances of Juglans neotropica Diels to Identify Optimal Seed Sources in the Northern Ecuadorian Andes" International Journal of Plant Biology 16, no. 3: 87. https://doi.org/10.3390/ijpb16030087
APA StyleRamírez-López, J.-L., Añazco, M., Vallejos, H., Arcos, C., & Estrada, K. (2025). Assessment of Three Provenances of Juglans neotropica Diels to Identify Optimal Seed Sources in the Northern Ecuadorian Andes. International Journal of Plant Biology, 16(3), 87. https://doi.org/10.3390/ijpb16030087