Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (413)

Search Parameters:
Keywords = polyvinylidene fluoride membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1617 KB  
Article
Adsorption of Methylene Blue on PVDF Membrane and PVDF/TiO2 Hybrid Membrane: Batch and Cross-Flow Filtration Studies
by Fengmei Shi, Boming Fan, Shuqi Ma, Hao Lv, Chao Lin, Jin Ma, Wei Jiang and Yuxin Ma
Polymers 2026, 18(2), 233; https://doi.org/10.3390/polym18020233 - 16 Jan 2026
Viewed by 135
Abstract
The adsorption of methylene blue (MB) on poly(vinylidene fluoride) (PVDF) and PVDF/titanium dioxide(TiO2) membranes with 1.5 wt% dosage was examined through batch adsorption and dynamic cross-flow filtration experiments. The effects of pH, temperature, and initial MB concentration on adsorption performance were [...] Read more.
The adsorption of methylene blue (MB) on poly(vinylidene fluoride) (PVDF) and PVDF/titanium dioxide(TiO2) membranes with 1.5 wt% dosage was examined through batch adsorption and dynamic cross-flow filtration experiments. The effects of pH, temperature, and initial MB concentration on adsorption performance were evaluated via batch experiments. The Thomas model was applied to analyze the membrane filtration process, while kinetic, isothermal, and thermodynamic models were integrated to elucidate the adsorption mechanisms. Results demonstrated that low temperature and high initial MB concentration significantly improved MB adsorption on both membranes. Under neutral pH conditions (pH = 7), the maximum adsorption capacities of PVDF and PVDF/TiO2 membranes reached 1.518 ± 0.025 mg/g and 0.189 ± 0.008 mg/g, respectively. The adsorption processes on both membranes conformed to the pseudo-second-order kinetic model, with optimal fitting to the Langmuir isotherm model. Thermodynamic analysis revealed physical adsorption mechanisms, as evidenced by adsorption free energy (E) calculated via the Dubinin–Radushrevich model Notably, PVDF membrane exhibited a more pronounced mass transfer zone height (hZ = 2.3 ± 0.1 cm) and achieved higher adsorption capacity (2.1 ± 0.09 mg/g) than PVDF/TiO2 membranes (0.25 ± 0.01 mg/g). The TiO2 incorporation reduced hybrid membrane adsorption capacity and significantly mitigated membrane fouling caused by adsorption, with PVDF/TiO2 membranes showing a 32 ± 2.5% lower flux decline rate than PVDF membranes with less MB into the pores. This study provides fundamental data supporting the combined application of “adsorption–subsequent oxidation” using PVDF-based membranes in dye wastewater treatment. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

19 pages, 4847 KB  
Article
The Influence of PVDF Membrane Ageing on the Efficiency of Bacterial Rejection During the Ultrafiltration Treatment of Carwash Wastewater
by Piotr Woźniak and Marek Gryta
Materials 2026, 19(2), 324; https://doi.org/10.3390/ma19020324 - 13 Jan 2026
Viewed by 161
Abstract
This study investigated the influence of two years of ultrafiltration (UF) on the separation properties of tubular polyvinylidene fluoride membranes used for treating carwash wastewater, particularly with regard to bacterial rejection. Fouling was mitigated by washing the membranes with alkaline cleaning agents (pH [...] Read more.
This study investigated the influence of two years of ultrafiltration (UF) on the separation properties of tubular polyvinylidene fluoride membranes used for treating carwash wastewater, particularly with regard to bacterial rejection. Fouling was mitigated by washing the membranes with alkaline cleaning agents (pH > 11.5). Repeated applications of these agents enlarged the membrane pores to approximately 300 nm. This affected bacterial retention, and for feed containing bacteria (determined as colony-forming units, CFU) at a concentration of 3.11 × 106 CFU/mL, over 13,000 CFU/mL were detected in the permeate. Interestingly, fouling improved retention, reducing bacterial counts present in the permeate from 13,689 to 2889 CFU/mL. Fouling also enhanced the retention of surfactants (80%), chemical oxide domain (60%), and turbidity (below 0.5 NTU), yielding results comparable to new membranes. Daily 60-min membrane washing with Wheel Cleaner solution (pH = 11.5) improved the membranes performance; however, it did not remove deposits from large pores, allowing good rejection performance and a permeate flux of 65 LMH to be maintained. It was found that bacteria also developed on the permeate side. Disinfection of the module housing with a NaOH/NaOCl solution reduced the number of bacteria in the permeate from 5356 to 66 CFU/mL. Microbiological tests revealed that some of these bacteria were antibiotic-resistant. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Graphical abstract

16 pages, 2948 KB  
Article
Visualizing the Effect of Process Pause on Virus Entrapment During Constant Flux Virus Filtration
by Wenbo Xu, Xianghong Qian, Hironobu Shirataki, Daniel Straus and Sumith Ranil Wickramasinghe
Membranes 2026, 16(1), 6; https://doi.org/10.3390/membranes16010006 - 26 Dec 2025
Viewed by 555
Abstract
Virus filtration is an essential unit operation used to validate clearance of adventitious virus during the manufacture of biopharmaceutical products such as monoclonal antibodies. Obtaining at least a 10,000-fold reduction in virus particles in the permeate is challenging as monoclonal antibodies are about [...] Read more.
Virus filtration is an essential unit operation used to validate clearance of adventitious virus during the manufacture of biopharmaceutical products such as monoclonal antibodies. Obtaining at least a 10,000-fold reduction in virus particles in the permeate is challenging as monoclonal antibodies are about half the size of the virus particles. Minute virus of mice, FDA-recommended model adventitious virus, was labeled with a fluorescent dye. Laser scanning confocal microscopy was used to determine the location of virus entrapment within the virus filtration membrane. Three different hollow fiber membranes made of regenerated cellulose and polyvinylidene fluoride were tested. Feed streams consisted of MVM spiked in buffer and MVM spiked in 5 g L−1 bovine serum albumin known to contain aggregates similar in size to the MVM. After filtering the feed, a buffer flush was used, with and without 30 min pause before the buffer flush. For all virus filters, a 30 min process pause led to broadening and movement of the virus entrapment zone deeper into the membrane. The presence of aggregates led to greater broadening of the entrapment zone. Both effects could lead to reduced virus clearance. Visualization of virus entrapment helps improve understanding of the behavior of virus filtration membranes. Full article
Show Figures

Figure 1

12 pages, 5636 KB  
Article
Enhancement of Piezoelectric Properties in Electrospun PVDF Nanofiber Membranes via In Situ Doping with ZnO or BaTiO3
by Zhizhao Ouyang, Jinghua Lin, Renhao Rao, Guoqin Huang, Gaofeng Zheng and Changcai Cui
Micromachines 2026, 17(1), 12; https://doi.org/10.3390/mi17010012 - 23 Dec 2025
Viewed by 410
Abstract
High-performance piezoelectric poly(vinylidene fluoride) (PVDF) has great application potential in the field of microsensors, but achieving efficient polarization remains a challenge. Here, the in situ doping electrospinning technique is employed to enhance the piezoelectric properties by introducing a single dose of zinc oxide [...] Read more.
High-performance piezoelectric poly(vinylidene fluoride) (PVDF) has great application potential in the field of microsensors, but achieving efficient polarization remains a challenge. Here, the in situ doping electrospinning technique is employed to enhance the piezoelectric properties by introducing a single dose of zinc oxide (ZnO) or barium titanate (BaTiO3,BTO) dopants. The effects of key processing parameters on the morphology of nanofiber membranes were systematically investigated. In addition, the influence of zinc oxide (ZnO) or barium titanate (BTO) dopant concentrations on the piezoelectric properties of PVDF was examined. The microstructure, electrical performance, and β-phase content of the composite membranes were characterized. Results indicate that the composite film with a doping formulation of 16 wt% PVDF and 10 wt% ZnO exhibits optimal overall performance: the β-phase content of PVDF reaches 52.8%, and the output voltage reaches 1.5 V, which is 2.5 times higher than that of the undoped PVDF nanofiber membranes. This study provides an effective doping strategy for the fabrication of high-performance piezoelectric nanofiber membranes. Full article
(This article belongs to the Special Issue Emerging Technologies and Applications for Semiconductor Industry)
Show Figures

Figure 1

16 pages, 5463 KB  
Article
Preparation of Cu-MnO2/GO/PVDF Catalytic Membranes via Phase Inversion Method and Application for Separation Removal of Dyes
by Fei Wang, Xinyu Hou, Runze He, Jiachen Song, Yifan Xie, Zhaohui Yang and Xiao Liu
Membranes 2025, 15(12), 384; https://doi.org/10.3390/membranes15120384 - 18 Dec 2025
Viewed by 432
Abstract
To address the issues of hydrophobicity, easy fouling, and limited application of polyvinylidene fluoride (PVDF) membranes in water treatment processes, this study prepared Cu-MnO2/GO/PVDF catalytic membranes via the immersion precipitation phase inversion method. Graphene oxide (GO) was incorporated to facilitate the [...] Read more.
To address the issues of hydrophobicity, easy fouling, and limited application of polyvinylidene fluoride (PVDF) membranes in water treatment processes, this study prepared Cu-MnO2/GO/PVDF catalytic membranes via the immersion precipitation phase inversion method. Graphene oxide (GO) was incorporated to facilitate the construction of good water channels, while copper-doped manganese dioxide (Cu-MnO2) was added to enhance catalytic activity. The structure, morphology, and performance of the membranes were characterized comprehensively. Results showed that Cu-MnO2 was well interspersed between GO sheets, thereby increasing membrane surface roughness, effective filtration area, and hydrophilicity. The best catalytic membrane CM-5 exhibited the highest pure water flux (1391.20 L·m−2·h−1) and methyl blue (MBE) rejection rate (98.06%), and it also displayed excellent reusability and stability. EPR tests confirmed the generation of HO· and HOO· in the Fenton-like system, which mediated dye degradation. The Cu-MnO2/GO/PVDF catalytic membrane demonstrated excellent hydrophilicity, antifouling properties, and catalytic efficiency, thus providing a viable solution for dye wastewater treatment. Full article
Show Figures

Figure 1

13 pages, 6821 KB  
Article
Rapid In Situ Coating of Covered Stents with Highly Tough, Biocompatible Membrane for Emergency Coronary Artery Perforation
by Yuan Ji, Mingyue Fan, Bing Li, Guolin Gao and Zaixing Jiang
Biomolecules 2025, 15(11), 1608; https://doi.org/10.3390/biom15111608 - 17 Nov 2025
Viewed by 555
Abstract
Covered stents have made a significant contribution to managing coronary artery perforation (CAP). Biocompatibility and toughness are critical properties for the covering membrane of covered stents. The mismatch between covered stents and patient coronary arteries in the clinic restricts the application of covered [...] Read more.
Covered stents have made a significant contribution to managing coronary artery perforation (CAP). Biocompatibility and toughness are critical properties for the covering membrane of covered stents. The mismatch between covered stents and patient coronary arteries in the clinic restricts the application of covered stents for emergency CAP. The ability to rapidly in situ coating of the stent at the rescue scene has so far been elusive, especially for small-diameter coronary artery covered stents. Here, we investigate a rapid coating technology of covered stents with polyvinylidene fluoride (PVDF)/dibutyl phthalate (DBP) covering membrane for CAP. The highly tough membrane and the short coating timeframe make it possible to prepare the covered stent suitable for patients with emergency CAP. In vitro cell assays demonstrated the excellent biocompatibility of the covering membrane. Moreover, in vivo evaluation in a rabbit model demonstrated successful delivery of the covered stent through the sheath system and effective sealing of vascular perforation. Full article
(This article belongs to the Special Issue Applications of Biomaterials in Medicine and Healthcare)
Show Figures

Figure 1

15 pages, 2918 KB  
Article
Fouling Mitigation of PVDF Membrane Induced by Sodium Dodecyl Sulfate (SDS)-TiO2 Micelles
by Jie Zhang, Shiying Bo, Chunhua Wang, Zicong Jian, Yuehuan Chu, Si Qiu, Hongyan Chen, Qiancheng Xiong, Xiaofang Yang, Zicheng Xiao and Guocong Liu
Membranes 2025, 15(11), 330; https://doi.org/10.3390/membranes15110330 - 30 Oct 2025
Viewed by 932
Abstract
As a favorable hydrophilic additive for antifouling modification of polyvinylidene fluoride (PVDF) membrane, titanium dioxide (TiO2) nanoparticles have been applied for years. Sodium dodecyl sulfonate (SDS), a representative anionic surfactant, has been proven to benefit the dispersion of nano-TiO2 via [...] Read more.
As a favorable hydrophilic additive for antifouling modification of polyvinylidene fluoride (PVDF) membrane, titanium dioxide (TiO2) nanoparticles have been applied for years. Sodium dodecyl sulfonate (SDS), a representative anionic surfactant, has been proven to benefit the dispersion of nano-TiO2 via an electro-spatial stabilizing mechanism. In this study, various proportionally SDS-functionalized TiO2 nanoparticles were adopted to modify PVDF membrane. Dispersion and stability of SDS-functionalized TiO2 nanoparticles in casting solutions were evaluated by multiple light scattering technology. The properties and antifouling performance of PVDF/SDS-TiO2 composite membranes were assessed. The uniformity of surface pores as well as structures on cross-section morphologies was modified. The finger-like structure of PVDF/SDS-TiO2 composite membrane was adequately developed at the SDS/TiO2 mass ratio of 1:1. The improved antifouling performance was corroborated by the increasing free energy of cohesion and adhesion as well as the interaction energy barrier between membrane surfaces and approaching foulants assessed by classic extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory, the low flux decline during bovine serum albumin (BSA) solution filtration process, and the high critical flux (38 L/(m2·h·kPa)) in membrane bioreactor. This study exploits a promising way to modify PVDF membrane applicable to the wastewater treatment field. Full article
(This article belongs to the Special Issue Membrane Fouling Control: Mechanism, Properties, and Applications)
Show Figures

Figure 1

18 pages, 3033 KB  
Article
Self-Sufficient Aflatoxin Decontamination System: MOF-Based Composite Membrane with Peroxidase-Mimic and Controlled H2O2 Generation
by Xiaofei Cheng, Wenzhong Zhu, Xueting Zhu, Jinmin Zhang, Jia Yang, Huali Wang, Xiaoqin Mo, Chi Zhang and Lina Wu
Toxins 2025, 17(10), 516; https://doi.org/10.3390/toxins17100516 - 20 Oct 2025
Viewed by 896
Abstract
Aflatoxin B1 (AFB1) and its metabolite aflatoxin M1 (AFM1) are stable and carcinogenic mycotoxins that are commonly found in dairy products, posing serious food safety concerns. However, conventional degradation methods face limited degradation efficiency and high energy demand. Here, we develop an innovative [...] Read more.
Aflatoxin B1 (AFB1) and its metabolite aflatoxin M1 (AFM1) are stable and carcinogenic mycotoxins that are commonly found in dairy products, posing serious food safety concerns. However, conventional degradation methods face limited degradation efficiency and high energy demand. Here, we develop an innovative polyvinylidene fluoride (PVDF) composite membrane incorporating Fe/Co-based metal-organic frameworks (MOF) (Named Fe/Co-MIL-88B(NH2)) and CaO2 for targeted aflatoxin removal from milk. This system integrates two synergistic mechanisms: (1) hierarchical porous MOF structures enabling superior aflatoxin adsorption capacity and peroxidase-like catalytic activity, and (2) CaO2 acts as a controllable-release H2O2 donor, supplying a steady flux of reactive oxygen species without the addition of exogenous H2O2. Moreover, the PVDF membrane with mechanical stability offers uniform immobilization of active components, which prevents the aggregation of nanozymes. As a result, the integrated membrane achieves high degradation efficiency for AFB1 and AFM1, exceeding 95% within 60 min. By eliminating external oxidant addition and minimizing collateral nutrient damage, the technology demonstrates remarkable operational stability (>10 cycles) and milk quality preservation capability. This breakthrough establishes an efficient and reusable detoxification method, providing new opportunities for mycotoxin mitigation in dairy products through spatiotemporal control of reactive oxygen species. Full article
(This article belongs to the Special Issue Detection, Biosynthesis and Control of Mycotoxins (4th Edition))
Show Figures

Figure 1

21 pages, 1832 KB  
Article
Copper (II) Complex Decorated PVDF Membranes for Enhanced Removal of Organic Pollutants from Textile and Oily Wastewater
by Felipe P. da Silva, Aline C. F. Pereira, Juliana C. Pinheiro, Annelise Casellato, Cristiano P. Borges and Fabiana V. da Fonseca
Water 2025, 17(20), 2988; https://doi.org/10.3390/w17202988 - 16 Oct 2025
Viewed by 645
Abstract
This study reports the development of polyvinylidene fluoride (PVDF) membranes decorated with a copper(II) complex (CuL) for the removal of organic pollutants from wastewater. Using Drimaren Red X-6BN (DRX-6BN) as a probe, the PVDF membrane with the lowest CuL loading (PVDF/PDA/CuL-4) reached an [...] Read more.
This study reports the development of polyvinylidene fluoride (PVDF) membranes decorated with a copper(II) complex (CuL) for the removal of organic pollutants from wastewater. Using Drimaren Red X-6BN (DRX-6BN) as a probe, the PVDF membrane with the lowest CuL loading (PVDF/PDA/CuL-4) reached an adsorption capacity of 19.78 mg/g at 300 min, with removal of up to 50% DRX-6BN. Kinetic analysis favored Elovich (R2 > 0.9928; RMSE < 0.4489) and the pseudo-second-order model (R2 > 0.9540; RMSE < 1.1388), consistent with chemisorption. Intraparticle diffusion occurred in two steps. In the presence of 20 mg/L of hydrogen peroxide (H2O2), the removal was >80% within 180 min at higher CuL loadings (PVDF/PDA/CuL-40). In oily wastewater, PVDF/PDA/CuL-4 achieved ~100% COD removal in 120 min with H2O2, whereas pristine PVDF achieved 38.5%. Storage stability tests demonstrated the preservation of catalytic and separation performance for at least three months. All tests were conducted at pH ≈ 6.0 and a temperature of 25 °C. In contrast to many catalytic membranes, these membranes operate at near-neutral pH and ambient temperature in the absence of radiation. The results highlight PVDF membranes decorated with CuL as a robust and sustainable approach for the treatment of oily effluents, particularly by combining Fenton-like processes under mild conditions. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

16 pages, 2875 KB  
Article
Clarification of Copper Sulfide Precipitates by Polymeric Microfiltration Membranes
by Michelle Quilaqueo, Nicolás Barraza, Lorena Barros, Karla Pérez, René Ruby-Figueroa, Elizabeth Troncoso and Humberto Estay
Processes 2025, 13(10), 3292; https://doi.org/10.3390/pr13103292 - 15 Oct 2025
Viewed by 669
Abstract
The recovery of copper from metallurgical effluents is critical for advancing sustainable mining and circular economy practices. This study evaluated a hybrid process combining copper sulfide precipitation with clarification using polymeric polyvinylidene fluoride (PVDF) microfiltration membranes. Laboratory-scale experiments were performed under controlled cyanide [...] Read more.
The recovery of copper from metallurgical effluents is critical for advancing sustainable mining and circular economy practices. This study evaluated a hybrid process combining copper sulfide precipitation with clarification using polymeric polyvinylidene fluoride (PVDF) microfiltration membranes. Laboratory-scale experiments were performed under controlled cyanide conditions (100 mg/L free CN, 1800 mg/L Cu2+), focusing on permeate flux behavior, fouling mechanisms, and cleaning strategies. Optimal performance was achieved at moderate transmembrane pressures (<2.0 bar) and higher flow rates, which provided a balance between productivity and fouling control. Flux decline was attributed to a combination of pore blocking and cake layer formation, confirming the multifactorial nature of fouling dynamics. Cleaning tests revealed that oxidizing solutions (HCl + H2O2) restored up to 96% of the initial permeability, while combined treatments with NaCN achieved complete recovery (>100%), albeit with potential risks of membrane aging under prolonged exposure. A techno-economic assessment comparing polymeric and ceramic membranes revealed similar capital and operational costs, with polymeric membranes offering slight reductions in CAPEX (10%) and OPEX (2.3%). Overall, the findings demonstrate the technical feasibility and economic competitiveness of polymeric membranes for copper sulfide clarification, while emphasizing the need to improve long-term chemical resistance to ensure reliable industrial-scale implementation. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Graphical abstract

12 pages, 1639 KB  
Article
Assessing the Stability of Polymer Inclusion Membranes: The Case of Aliquat 336-Based Membranes
by Kalina Velikova, Todor Dudev, Tsveta Sarafska, Lea Kukoc-Modun, Spas D. Kolev and Tony Spassov
Membranes 2025, 15(10), 309; https://doi.org/10.3390/membranes15100309 - 13 Oct 2025
Viewed by 861
Abstract
Leaching of the extractant from polymer inclusion membranes (PIMs) into the feed and receiving aqueous solutions shortens their life. Therefore, when a particular PIM extractant has been selected, it is important to choose a base polymer that will minimize to the greatest extent [...] Read more.
Leaching of the extractant from polymer inclusion membranes (PIMs) into the feed and receiving aqueous solutions shortens their life. Therefore, when a particular PIM extractant has been selected, it is important to choose a base polymer that will minimize to the greatest extent extractant leaching compared to other base polymers, thus providing the best stability of the PIM. However, comparisons of the stability of PIMs composed of the same extractant and different base polymers is usually conducted by multiple cycles of extraction and back-extraction steps, which are time-consuming and labor-intensive. An alternative approach based on thermal analysis (thermogravimetric analysis (TGA) and differential thermal analysis (DTA)) was developed and applied to PIMs containing 40 wt.% Aliquat 336, one of the most frequently used PIM extractants, and the three most frequently used PIM base polymers, i.e., poly(vinyl chloride) (PVC), cellulose triacetate (CTA), and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). The temperatures and enthalpies associated with Aliquat 336 release were compared, with PVDF-HFP exhibiting the highest values, indicating the strongest interaction between the extractant and the polymer matrix and, thus, the highest stability. The PVC-based PIM was predicted to be the most prone to extractant leaching among the PIMs studied. This stability ranking was confirmed theoretically by quantum chemistry (DFT) calculations, which provided molecular-level insights into the likely interaction sites between Aliquat 336 and the polymer chains. An experimental validation of the above leaching order was also provided by PIM leaching experiments in aqueous 0.1 M and 0.05 M NaCl solutions, where membrane mass losses over a 24 h period were determined. The results of the current study demonstrated thermal analysis to be a fast and viable approach in comparing the stability of PIMs with the same extractant but different base polymers. Full article
Show Figures

Graphical abstract

24 pages, 1590 KB  
Article
Synthesis of NiCu–Polymeric Membranes for Electro-Oxidizing Ethylene Glycol Molecules in Alkaline Medium
by Ayman Yousef, R. M. Abdel Hameed, Ibrahim M. Maafa and Ahmed Abutaleb
Catalysts 2025, 15(10), 959; https://doi.org/10.3390/catal15100959 - 6 Oct 2025
Cited by 1 | Viewed by 921
Abstract
Binary metallic nickel–copper nanocatalysts were anchored onto a polyvinylidene fluoride-co-hexafluoropropylene membrane [NiCu/PVdF–HFP] using the electrospinning technique, followed by the chemical reduction of the relevant precursor salts by introducing sodium borohydride to the synthesis mixture. A series of varied Ni:Cu weight % proportions was [...] Read more.
Binary metallic nickel–copper nanocatalysts were anchored onto a polyvinylidene fluoride-co-hexafluoropropylene membrane [NiCu/PVdF–HFP] using the electrospinning technique, followed by the chemical reduction of the relevant precursor salts by introducing sodium borohydride to the synthesis mixture. A series of varied Ni:Cu weight % proportions was developed in order to optimize the electroactivity of this binary nanocomposite towards the investigated oxidation process. A number of physicochemical tools were used to ascertain the morphology and chemical structure of the formed metallic species on polymeric films. Cyclic voltammetric studies revealed a satisfactory performance of altered NiCu/PVdF–HFP membranes in alkaline solution. Ethylene glycol molecules were successfully electro-oxidized at their surfaces, showing the highest current intensity [564.88 μA cm−2] at the one with Ni:Cu weight ratios of 5:5. The dependence of these metallic membranes’ behavior on the added alcohol concentration to the reaction electrolyte and the adjusted scan rate during the electrochemical measurement was carefully investigated. One hundred repeated scans did not significantly deteriorate the NiCu/PVdF–HFP nanostructures’ durability. Decay percentages of 76.90–87.95% were monitored at their surfaces, supporting the stabilized performance for prolonged periods. A much-decreased Rct value was estimated at Ni5Cu5/PVdF–HFP [392.6 Ohm cm2] as a consequence of the feasibility of the electron transfer step for the electro-catalyzing oxidation process of alcohol molecules. These enhanced study results will hopefully motivate the interested workers to explore the behavior of many binary and ternary combinations of metallic nanomaterials after their deposition onto convenient polymeric films for vital electrochemical reactions. Full article
Show Figures

Graphical abstract

16 pages, 2907 KB  
Article
Polyvinylidene Fluoride Membrane Modified by PEG Additive for Tofu Industrial Wastewater Treatment
by Sutrasno Kartohardjono, Michael Gabriell Owen, Sherlyta Estella, Irfan Purnawan and Woei Jye Lau
ChemEngineering 2025, 9(5), 106; https://doi.org/10.3390/chemengineering9050106 - 1 Oct 2025
Viewed by 858
Abstract
This study investigates the enhancement of polyvinylidene fluoride (PVDF) membranes with polyethylene glycol (PEG) to improve their efficacy in treating tofu wastewater through the ultrafiltration (UF) process. PVDF membranes with varying PEG concentrations of 0, 0.5, 1, and 1.5% in the dope solution [...] Read more.
This study investigates the enhancement of polyvinylidene fluoride (PVDF) membranes with polyethylene glycol (PEG) to improve their efficacy in treating tofu wastewater through the ultrafiltration (UF) process. PVDF membranes with varying PEG concentrations of 0, 0.5, 1, and 1.5% in the dope solution were produced, characterized via FTIR, mechanical strength, porosity, and contact angle measurements, and evaluated in wastewater treatment at varying pressures of 3, 4, and 5 bar in the UF process. The incorporation of PEG increased the membrane’s porosity from 28.2% for M-0 to 43.5% for M-1.5. The contact angle decreased from 65.3° for M-0 to 53.3° for M-1.5, indicating an increase in hydrophilicity. Elongation increased from 36.0% for M-0 to 113.5% for M-1.5; however, the tensile strength decreased from 11.8 MPa for M-0 to 5.4 MPa for M-1.5. Although PEG-modified membranes demonstrated enhanced flux, with values of 6.3 L∙m−2∙h−1 for M-0 and 15.7 L∙m−2∙h−1 for M-1.5 at a pressure of 5 bar, pure PVDF membranes (M-0) showed greater rejection rates for chemical oxygen demand (COD), total dissolve solid (TDS), total suspended solid (TSS), and turbidity at 3 bar, achieving values of 66.3%, 41.6%, 99.6%, and 99.1%, respectively. Following ultrafiltration, the pH and TDS levels conformed to Indonesian government guidelines; however, the COD levels were non-compliant, indicating the need for additional treatment. The findings suggest that PVDF/PEG ultrafiltration membranes are suitable for pre-treatment; however, nanofiltrationor reverse osmosis may be necessary to meet the stringent regulatory standards for tofu wastewater treatment. The modified M-1.5 membrane is recommended as the primary ultrafiltration membrane for tofu wastewater treatment due to its superior flux, prior to nanofiltration or reverse osmosis, to comply with the stringent regulatory standards established by the Government of the Republic of Indonesia. Full article
Show Figures

Graphical abstract

22 pages, 3810 KB  
Article
Nanofibrous Polymer Filters for Removal of Metal Oxide Nanoparticles from Industrial Processes
by Andrzej Krupa, Arkadiusz Tomasz Sobczyk and Anatol Jaworek
Membranes 2025, 15(10), 291; https://doi.org/10.3390/membranes15100291 - 25 Sep 2025
Viewed by 1502
Abstract
Filtration of submicron particles and nanoparticles is an important problem in nano-industry and in air conditioning and ventilation systems. The presence of submicron particles comprising fungal spores, bacteria, viruses, microplastic, and tobacco-smoke tar in ambient air is a severe problem in air conditioning [...] Read more.
Filtration of submicron particles and nanoparticles is an important problem in nano-industry and in air conditioning and ventilation systems. The presence of submicron particles comprising fungal spores, bacteria, viruses, microplastic, and tobacco-smoke tar in ambient air is a severe problem in air conditioning systems. Many nanotechnology material processes used for catalyst, solar cells, gas sensors, energy storage devices, anti-corrosion and hydrophobic surface coating, optical glasses, ceramics, nanocomposite membranes, textiles, and cosmetics production also generate various types of nanoparticles, which can retain in a conveying gas released into the atmosphere. Particles in this size range are particularly difficult to remove from the air by conventional methods, e.g., electrostatic precipitators, conventional filters, or cyclones. For these reasons, nanofibrous filters produced by electrospinning were developed to remove fine particles from the post-processing gases. The physical basis of electrospinning used for nanofilters production is an employment of electrical forces to create a tangential stress on the surface of a viscous liquid jet, usually a polymer solution, flowing out from a capillary nozzle. The paper presents results for investigation of the filtration process of metal oxide nanoparticles: TiO2, MgO, and Al2O3 by electrospun nanofibrous filter. The filter was produced from polyvinylidene fluoride (PVDF). The concentration of polymer dissolved in dimethylacetamide (DMAC) and acetone mixture was 15 wt.%. The flow rate of polymer solution was 1 mL/h. The nanoparticle aerosol was produced by the atomization of a suspension of these nanoparticles in a solvent (methanol) using an aerosol generator. The experimental results presented in this paper show that nanofilters made of PVDF with surface density of 13 g/m2 have a high filtration efficiency for nano- and microparticles, larger than 90%. The gas flow rate through the channel was set to 960 and 670 l/min. The novelty of this paper was the investigation of air filtration from various types of nanoparticles produced by different nanotechnology processes by nanofibrous filters and studies of the morphology of nanoparticle deposited onto the nanofibers. Full article
Show Figures

Figure 1

13 pages, 2146 KB  
Article
PVDF/Polypyrrole Composite Ultrafiltration Membrane with Enhanced Hydrophilicity, Permeability, and Antifouling Properties for Efficient Crude Oil Wastewater Separation
by Banan Hudaib, Rund Abu-Zurayk, Asma Eskhan and Muayad Esaifan
Polymers 2025, 17(19), 2566; https://doi.org/10.3390/polym17192566 - 23 Sep 2025
Cited by 2 | Viewed by 1237
Abstract
The treatment of oily wastewater poses a significant environmental challenge, creating a demand for advanced separation technologies. Membrane technologies, especially ultrafiltration (UF), offer a promising solution. A novel composite polyvinylidene fluoride (PVDF) and polypyrrole (PPy) membrane was created via an in situ polymerization [...] Read more.
The treatment of oily wastewater poses a significant environmental challenge, creating a demand for advanced separation technologies. Membrane technologies, especially ultrafiltration (UF), offer a promising solution. A novel composite polyvinylidene fluoride (PVDF) and polypyrrole (PPy) membrane was created via an in situ polymerization method, which enhances the membrane’s functionality by combining the chemical stability of PVDF with the outstanding properties of PPy, through a simple two-step process that decreases manufacturing costs. The PPy content in the PVDF matrix varies from 0 to 1.5 wt%. The membranes were analyzed for their structure, morphology, hydrophilicity, porosity, mechanical strength, flux, oil rejection, and antifouling performance. Fourier-transform infrared spectroscopy (FTIR) confirmed the successful integration of PPy, which increased hydrophilicity; the contact angle dropped from 68° for pure PVDF to 55.6° at a 1.5% PPy concentration. Scanning electron microscopy (SEM) images showed an evident increase in surface porosity and macrovoid formation; calculated porosity increased from 59.5% to 79.9%, and the hydraulic pore size increased from 2.8 nm to 28.5 nm with 1.5% PPy. Although porosity improved, mechanical strength decreased due to the formation of voids. The enhancement in hydrophilicity and porosity resulted in improved flux recovery (FR), with the PP-1 membrane achieving 93% FR and 93% fouling resistance (Rt), indicating an optimal balance for practical use. These modified membranes successfully reduce fouling, making them easier to clean in oil–water separation applications. PP-1 showed only a reduction in flux but maintained an oil rejection rate over 99%, demonstrating high stability. This combination of PVDF’s durability and PPy’s functionality makes a cost-effective, high-performance membrane that transforms oil/water separation processes for sustainable water security. Full article
Show Figures

Figure 1

Back to TopTop