Copper (II) Complex Decorated PVDF Membranes for Enhanced Removal of Organic Pollutants from Textile and Oily Wastewater
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Supplies
2.2. Obtaining and Characterizing PVDF Membranes Decorated with CuL
2.3. Evaluation of Membrane Performance in Agitated Systems
2.4. Evaluation of Membrane Performance in Filtration Systems
2.5. Analytical Determinations
2.6. Data Analysis
3. Results and Discussion
3.1. Characterization
3.2. Evaluation of DRX-6BN Adsorption on Membranes in Stirred Systems
3.3. Evaluation of the Catalytic Activity of CuL Decorated Membranes
3.4. Enhanced Removal of Organic Compounds from Oily Effluents Aided by CuL Decorated Membranes in Filtration Systems
3.5. Fouling Mechanisms
3.6. Storage Stability of CuL Decorated Membranes
3.7. Comparison Between the Obtained PVDF Membranes and Other Membranes in o/w Separation and Removal of Organic Compounds
Membrane | o/w Separation | Permeate Flux (L/m2 h) | Target Compound (Removal) | Catalytic Conditions | Ref. |
---|---|---|---|---|---|
Celulose/PVDF-HFP | Petroleum in water (90.1%) | 124.62 (0.65 bar) | - | - | [71] |
PVDF/PEMA/β-FeOOH | Soybean oil in water stabilized with surfactant (98.8%) | 694.56 | Methylene blue (99.8%) | 50 mL of target compound at 10 mg/L, 1 mL of H2O2 (30%), removal 7 h after equilibration, UV light, stirred system. | [72] |
Fe@PVDF | Rapeseed oil, toluene, liquid paraffin, petroleum ether, carbon tetrachloride stabilized with Tween 80 (>99.0%) | ~2300 | Tetracycline and other drugs (>99.0%) | 100 mL of target compound at 50 mg/L, 0.1 mL of H2O2, removal after 50 min, visible light, thermostatic stirrer. | [73] |
PVDF/PAMPS/β-FeOOH | Hexadecane in water stabilized by sodium dodecyl sulfate (>99.0%) | - | Methylene blue (~100%) | 50 mL of target compound at 10 mg/L, 10 mmol H2O2, removal after 40 min after equilibration (30 min), visible light. | [74] |
PVDF/PDA/CuL | Petroleum in water (91.02% and 98.67%) | 857.34 | DRX-6BN (up to 84.94 ± 0.44%) | 200 mL of the target compound at 20 mg/L, 20 mg/L of H2O2, removal after 120 min and 300 min, absence of light, stirred system. | This study |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bani-Atta, S.A.; Darwish, A.A.A.; Shwashreh, L.; Alotaibi, F.A.; Al-Tweher, J.N.; Al-Aoh, A.H.; El-Zaidia, E.F.M. Efficient Photocatalytic Degradation of Methylene Blue and Methyl Orange Using Calcium-Polyoxometalate Under Ultraviolet Irradiation. Processes 2024, 12, 2769. [Google Scholar] [CrossRef]
- Brillas, E. A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. Chemosphere 2020, 250, 126198–126227. [Google Scholar] [CrossRef] [PubMed]
- Thang, N.Q.; Sabbah, A.; Chen, L.; Chen, K.; Thi, C.M.; Viet, P.V. High-efficient Photocatalytic Degradation of Commercial Drugs for Pharmaceutical Wastewater Treatment Prospects: A Case Study of Ag/g-C3N4/ZnO Nanocomposite Materials. Chemosphere 2021, 282, 130971. [Google Scholar] [CrossRef]
- The Sustainable Development Goals in Brazil, United Nations Brazil. Available online: https://brasil.un.org/pt-br/sdgs (accessed on 17 July 2025). (In Portuguese).
- Varatharajan, G.R.; Ndayishimiye, J.C.; Nyirabuhoro, P. Emerging Contaminants: A Rising Threat to Urban Water and a Barrier to Achieving SDG-Aligned Planetary Protection. Water 2025, 17, 2367. [Google Scholar] [CrossRef]
- Grigg, N.S. Integrated Water Resources Management After 2030: An Agenda for Educators. Water 2025, 17, 189. [Google Scholar] [CrossRef]
- Sen, T.K. Adsorptive Removal of Dye (Methylene Blue) Organic Pollutant from Water by Pine Tree Leaf Biomass Adsorbent. Processes 2023, 11, 1877. [Google Scholar] [CrossRef]
- Gao, Y.; Zeng, J.; Zhu, S.; Liu, Q. Co-modification of Lignocellulosic Biomass by Maleic Anhydride and Ferric Hydroxide for the Highly Efficient Biosorption of Methylene Blue. New J. Chem. 2021, 45, 19678–19690. [Google Scholar] [CrossRef]
- Dai, J.; Gao, Y.; Shah, K.J. Recent Advances in Organic Pollutant Removal Technologies for High-Salinity Wastewater. Water 2025, 17, 2494. [Google Scholar] [CrossRef]
- Gonçalves, J.O.; Leones, A.R.; De Farias, B.S.; Da Silva, M.D.; Jaeschke, D.P.; Fernandes, S.S.; Ribeiro, A.C.; Junior, T.R.S.C.; Pinto, L.A.A. A Comprehensive Review of Agricultural Residue-Derived Bioadsorbents for Emerging Contaminant Removal. Water 2025, 17, 2141. [Google Scholar] [CrossRef]
- Al-Ajmi, F.; Al-Marri, M.; Almomani, F. Electrocoagulation Process as an Efficient Method for the Treatment of Produced Water Treatment for Possible Recycling and Reuse. Water 2025, 17, 23. [Google Scholar] [CrossRef]
- AlSawaftah, N.; Abuwatfa, W.; Darwish, N.; Husseini, G. A Comprehensive Review on Membrane Fouling: Mathematical Modelling, Prediction, Diagnosis, and Mitigation. Water 2021, 13, 1327. [Google Scholar] [CrossRef]
- Ullah, A.; Tanudjaja, H.J.; Ouda, M.; Hasan, S.W.; Chew, J.W. Membrane Fouling Mitigation Techniques for Oily Wastewater: A Short Review. J. Water Process Eng. 2021, 43, 102293. [Google Scholar] [CrossRef]
- Ferreira, A.D.; Coelho, D.R.B.; dos Santos, R.V.G.; Nascimento, K.S.; Presciliano, F.A.; Silva, F.P.; Campos, J.C.; Fonseca, F.V.; Borges, C.P.; Weschenfelder, S.E. Fouling Mitigation in Produced Water Treatment by Conjugation of Advanced Oxidation Process and Microfiltration. Environ. Sci. Pollut. Res. 2021, 28, 12803–12816. [Google Scholar] [CrossRef]
- Asif, M.B.; Zhang, Z. Ceramic Membrane Technology for Water and Wastewater Treatment: A Critical Review of Performance, full-scale Applications, Membrane Fouling and Prospects. Chem. Eng. J. 2021, 418, 129481. [Google Scholar] [CrossRef]
- Rodrigues, R.A.; de Campos, M.B.M.; Tonello, P.S. Degradation of Phenolic Compounds and Organic Matter from Real Winery Wastewater by Fenton and Photo-Fenton Processes Combined with Ultrasound. Water 2025, 17, 763. [Google Scholar] [CrossRef]
- Grosser, A.; Neczaj, E.; Krzemińska, D.; Ratman-Kłosińska, I. Hybrid System of Fenton Process and Sequencing Batch Reactor for Coking Wastewater Treatment. Water 2025, 17, 751. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, C.; Su, P.; Lu, W.; Zhang, Z.; Wang, X.; Hu, W. Fenton Process for Treating Acrylic Manufacturing Wastewater: Parameter Optimization, Performance Evaluation, Degradation Mechanism. Water 2022, 14, 2913. [Google Scholar] [CrossRef]
- Mukherjee, J.; Lodh, B.K.; Sharma, R.; Mahata, N.; Shah, M.P.; Mandal, S.; Ghanta, S.; Bhunia, B. Advanced Oxidation Process for the Treatment of Industrial Wastewater: A Review on Strategies, Mechanisms, Bottlenecks and Prospects. Chemosphere 2023, 345, 140473. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, S.S.F.; Rodrigues, A.C.C.; Lima, J.F. Photocatalytic Degradation of Dyes by Mononuclear Copper(II) Complexes from Bis-(2-pyridylmethyl)amine NNN-Derivative Ligands. Inorganica Chim. Acta 2020, 512, 119924. [Google Scholar] [CrossRef]
- da Silva, F.P.; Casellato, A.; da Fonseca, F.V. Organic Compounds Removal Aided by a Copper(II) Complex: Kinetic Investigation, Mechanism Evaluation, and Catalyst Reuse and Stability. Int. J. Environ. Sci. Technol. 2024, 21, 1605–1618. [Google Scholar] [CrossRef]
- Li, J.; Pham, A.N.; Dai, R.; Wang, Z.; Waite, T.D. Recent Advances in Cu-Fenton Systems for the Treatment of Industrial Wastewaters: Role of Cu Complexes and Cu Composites. J. Hazard. Mater. 2020, 392, 122261–122279. [Google Scholar] [CrossRef]
- da Silva, F.P.; Felippe, L.C.; Borges, C.P.; Casellato, A.; da Fonseca, F.V. Enhanced Removal of Organic Compounds Assisted by Activated Carbon/Copper (II) Complex Composite. Processes 2025, 13, 447. [Google Scholar] [CrossRef]
- Araújo, F.V.F.; Yokoyama, L.; Teixeira, L.A.C.; Campos, J.C. Heterogeneous Fenton Process Using the Mineral Hematite for the Discolouration of a Reactive dye Solution. Braz. J. Chem. Eng. 2011, 28, 605–6016. [Google Scholar] [CrossRef]
- Danforth, C.; Chiu, W.A.; Rusyn, I.; Schultz, K.; Bolden, A.; Kwiatkowski, C.; Craft, E. An Integrative Method for Identification and Prioritization of Constituents of Concern in Produced Water from Onshore Oil and Gas Extraction. Environ. Int. 2020, 134, 105280. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Al-Kaabi, M.A.; Ashfaq, M.Y.; Da’na, D.A. Produced Water Characteristics, Treatment, and Reuse: A Review. J. Water Process Eng. 2019, 28, 222–239. [Google Scholar] [CrossRef]
- Yu, R.; Chen, W.; Zhang, J.; Liu, J.; Li, X.-Y.; Lin, L. Catalytic Membranes for Water Treatment: Perspectives and Challenges. J. Hazard. Mater. Adv. 2024, 13, 100414. [Google Scholar] [CrossRef]
- Ma, X.; Deng, X.; Yuan, F.; Wang, Q.; Low, Z.-X.; Zhong, Z.; Wang, H.; Xing, W. Challenges and Opportunities in Catalytic Membrane-Based Oxidation-Filtration Systems for Water Remediation. Chem. Eng. J. 2025, 519, 165546. [Google Scholar] [CrossRef]
- da Silva, F.P.; Borges, C.P.; da Fonseca, F.V. Trends in Fouling Resistant Membranes Containing Metals or Metallic Nanoparticles for the Separation of Oil-in-Water Emulsions. ACS Omega 2025, 10, 7510–7529. [Google Scholar] [CrossRef]
- Dionízio, T.P.; dos Santos, A.C.; da Silva, F.P.; Moura, F.S.; D’Elia, E.; Garrido, F.M.S.; Medeiros, M.E.; Casellato, A. Copper(II) Schiff Base Complex with Electrocatalytic Activity Towards the Oxygen Reduction Reaction and Its Catalase Activity. Electrocatalysis 2021, 12, 137–145. [Google Scholar] [CrossRef]
- Sun, X.; Zheng, H.; Jiang, S.; Zhu, M.; Zhou, Y.; Wang, D.; Fan, Y.; Zhang, D.; Zhang, L. Fabrication of FeOCl/MoS2 Catalytic Membranes for Pollutant Degradation and Alleviating Membrane Fouling with Peroxymonosulfate Activation. J. Environ. Chem. Eng. 2022, 10, 107717. [Google Scholar] [CrossRef]
- American Public Health Association—APHA. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA; American Water Works Association: Denver, CO, USA; Water Environment Federation: Alexandria, VA, USA, 2012. [Google Scholar]
- Zhang, S.; Li, Y.; Yuan, Y.; Jiang, L.; Wu, H.; Dong, Y. Biomimetic Hydrophilic Modification of Poly (vinylidene fluoride) Membrane for Efficient Oil-in-Water Emulsions Separation. Sep. Purif. Technol. 2024, 329, 125227. [Google Scholar] [CrossRef]
- Ni, P.; Zeng, J.; Chen, H.; Yang, F.; Yi, X. Effect of Different Factors on Treatment of Oily Wastewater by TiO2/Al2O3-PVDF Ultrafiltration Membrane. Environ. Technol. 2022, 43, 2981–2989. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, R.F.P.; Oliveira, M.C.; Paterlini, W.C. Simple and Fast Spectrophotometric Determination of H2O2 in Photo-Fenton Reactions Using Metavanadate. Talanta 2005, 66, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Anari, Z.; Sengupta, A.; Sardari, K.; Wickramasinghe, S.R. Surface modification of PVDF membranes for treating produced waters by direct contact membrane distillation. Sep. Purif. Technol. 2019, 224, 388–396. [Google Scholar] [CrossRef]
- Kamaz, M.; Sengupta, A.; Gutierrez, A.; Chiao, Y.-H.; Wickramasinghe, R. Surface Modification of PVDF Membranes for Treating Produced Waters by Direct Contact Membrane Distillation. Environ. Res. Public Health 2019, 16, 685. [Google Scholar] [CrossRef]
- Cui, J.; Zhou, Z.; Xie, A.; Meng, M. Bio-inspired fabrication of superhydrophilic nanocomposite membrane based on surface modification of SiO2 anchored by polydopamine towards effective oil-water emulsions separation. Sep. Purif. Technol. 2019, 209, 434–442. [Google Scholar] [CrossRef]
- Jiang, J.-H.; Zhu, L.-P.; Zhang, H.-T.; Zhu, B.-K.; Xu, Y.-Y. Improved hydrodynamic permeability and antifouling properties of poly (vinylidene fluoride) membranes using polydopamine nanoparticles as additives. J. Membr. Sci. 2014, 457, 73–81. [Google Scholar] [CrossRef]
- Li, G.; Liu, B.; Bai, L.; Shi, Z.; Tang, X.; Wang, J.; Liang, H.; Zhang, Y.; Van der Bruggen, B. Improving the performance of loose nanofiltration membranes by poly-dopamine/zwitterionic polymer coating with hydroxyl radical activation. Sep. Purif. Technol. 2020, 238, 116412. [Google Scholar] [CrossRef]
- Yang, S.; Zou, Q.; Wang, T.; Zhang, L. Effects of GO and MOF@GO on the permeation and antifouling properties of cellulose acetate ultrafiltration membrane. J. Membr. Sci. 2019, 569, 48–59. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Z.; He, W.; Chen, M.; Tu, W.; Zhu, M.; Gan, D.; Liu, S. Multifunctional stable PDA/RGO/MOFs&SiO2-COOH membrane with excellent flux and anti-fouling performance for the separation of organic dye and oil/water. Surf. Interfaces 2022, 33, 102183. [Google Scholar] [CrossRef]
- Kwon, I.S.; Bettinger, C.J. Polydopamine Nanostructures as Biomaterials for Medical Applications. J. Mater. Chem. B 2018, 6, 6895–6903. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, H.-C.; He, F.; Peng, S.; Li, Y.; Shao, L.; Darling, S.B. Mussel-Inspired Surface Engineering for Water-Remediation Materials. Matter 2019, 1, 115–155. [Google Scholar] [CrossRef]
- Badu Latip, N.M.; Gopal, K.; Suwaibatu, M.; Hashim, N.M.; Rahim, N.Y.; Raoov, M.; Yahaya, N.; Mohamad Zain, N.N. Removal of 2,4-dichlorophenol from wastewater by an efficient adsorbent of magnetic activated carbon. Sep. Sci. Technol. 2020, 56, 252–265. [Google Scholar] [CrossRef]
- Ho, Y.-S. Review of second-order models for adsorption systems. J. Hazard. Mater. 2006, 136, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Li, X.; Ye, S.; Yin, G.; Zeng, Q. Catalyzed oxidative degradation of methylene blue by in situ generated cobalt (II)-Bicarbonate complexes with hydrogen peroxide. Appl. Catalysis B Environ. 2011, 102, 37–43. [Google Scholar] [CrossRef]
- El-Baradie, K.; El-Sharkawy, R.; El-Ghamry, H.; Sakai, K. Synthesis and characterization of Cu(II), Co(II) and Ni(II) complexes of a number of sulfadrug azodyes and their application for wastewater treatment. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 121, 180–187. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Ngo, Q.N.; Van, H.T.; Thai, V.N.; Nguyen, T.P.; Phan Thi, K.O. Reutilization of Fe-containing tailings ore enriched by iron(III) chloride as a heterogeneous Fenton catalyst for decolorization of organic dyes. RSC Adv. 2021, 11, 15871–15884. [Google Scholar] [CrossRef]
- Zhou, P.; Dai, Z.; Lu, T.; Ru, X.; Ofori, M.A.; Yang, W.; Hou, J.; Jin, H. Degradation of Rhodamine B in Wastewater by Iron-Loaded Attapulgite Particle Heterogeneous Fenton Catalyst. Catalysts 2022, 12, 669. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, F.; Shen, C.; Zhu, C.; Li, A. A green and energy-saving microwave-based method to prepare magnetic carbon beads for catalytic wet peroxide oxidation. J. Clean. Prod. 2019, 215, 232–244. [Google Scholar] [CrossRef]
- Acisli, O.; Khataee, A.; Soltani, R.D.C.; Karaca, S. Ultrasound-assisted Fenton process using siderite nanoparticles prepared via planetary ball milling for removal of reactive yellow 81 in aqueous phase. Ultrason. Sonochem. 2017, 35, 210–218. [Google Scholar] [CrossRef]
- Legrini, O.; Oliveros, E.; Braun, A.M. Photochemical processes for water treatment. Chem. Rev. 1993, 93, 671–698. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Gandhimathi, R.; Ramesh, S.T. Degradation of dyes from aqueous solution by Fenton processes: A review. Env. Sci. Pollut. Res. 2013, 20, 2099–2132. [Google Scholar] [CrossRef]
- Singh, J.; Sharma, S.; Aanchal; Basu, S. Synthesis of Fe2O3/TiO2 monoliths for the enhanced degradation of industrial dye and pesticide via photo-Fenton catalysis. J. Photochem. Photobiol. A Chem. 2019, 376, 32–42. [Google Scholar] [CrossRef]
- Ortiz, D.; Munoz, M.; Garcia, J.; Cirés, S.; de Pedro, Z.M.; Quesada, A.; Casas, J.A. Photo-Fenton oxidation of cylindrospermopsin at neutral pH with LEDs. Environ. Sci. Pollut. Res. 2023, 30, 21598–21607. [Google Scholar] [CrossRef]
- Liu, P.; Liu, Y.; Cheng, J.; Xia, Y.; Yang, Y. Copper exposure causes alteration in the intestinal microbiota and metabolites in Takifugu rubripes. Ecotoxicol. Environ. Saf. 2024, 272, 116064. [Google Scholar] [CrossRef]
- Fu, Z.; Wu, F.; Chen, L.; Xu, B.; Feng, C.; Bai, Y.; Liao, H.; Sun, S.; Giesy, J.P.; Guo, W. Copper and zinc, but not other priority toxic metals, pose risks to native aquatic species in a large urban lake in Eastern China. Environ. Pollut. 2016, 219, 1069–1076. [Google Scholar] [CrossRef]
- Xu, S.; Ren, L.-F.; Zhou, Q.; Bai, H.; Li, J.; Shao, J. Facile ZIF-8 functionalized hierarchical micronanofiber membrane for high-efficiency separation of water-in-oil emulsions. J. Appl. Polym. Sci. 2018, 135, 46462. [Google Scholar] [CrossRef]
- Sun, Y.; Zong, Y.; Yang, N.; Zhang, N.; Jiang, B.; Zhang, L.; Xiao, X. Surface hydrophilic modification of PVDF membranes based on tannin and zwitterionic substance towards effective oil-in-water emulsion separation. Sep. Purif. Technol. 2020, 234, 116015. [Google Scholar] [CrossRef]
- Liang, L.; Ji, L.; Ma, Z.; Ren, Y.; Zhou, S.; Long, X.; Cao, C. Application of Photo-Fenton-Membrane Technology in Wastewater Treatment: A Review. Membranes 2023, 13, 369. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Lu, X.; He, M.; Duan, X.; Yan, B.; Chen, G.; Wang, S. Catalytic membrane-based oxidation-filtration systems for organic wastewater purification: A review. J. Hazard. Mater. 2021, 414, 125478. [Google Scholar] [CrossRef]
- Che, A.-F.; Huang, X.-J.; Xu, Z.K. Polyacrylonitrile-based nanofibrous membrane with glycosylated surface for lectin affinity adsorption. J. Membr. Sci. 2011, 366, 272. [Google Scholar] [CrossRef]
- Huang, Z.-H.; Zhang, X.; Wang, Y.-X.; Sun, J.-Y.; Zhang, H.; Liu, W.-L.; Li, M.-P.; Ma, X.-H.; Xu, Z.-L. Fe3O4/PVDF catalytic membrane treatment organic wastewater with simultaneously improved permeability, catalytic property and anti-fouling. Environ. Res. 2020, 187, 109617. [Google Scholar] [CrossRef]
- Dickhout, J.M.; Moreno, J.; Biesheuvel, P.M.; Boels, L.; Lammertink, R.G.H.; de Vos, W.M. Produced water treatment by membranes: A review from a colloidal perspective. J. Colloid Interface Sci. 2017, 487, 523–534. [Google Scholar] [CrossRef]
- Huang, S.; Ras, R.H.A.; Tian, X. Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling. Curr. Opin. Colloid Interface Sci. 2018, 36, 90–109. [Google Scholar] [CrossRef]
- Tummons, E.; Han, Q.; Tanudjaja, H.J.; Hejase, C.A.; Chew, J.W.; Tarabara, V.V. Membrane fouling by emulsified oil: A review. Sep. Purif. Technol. 2020, 248, 16919. [Google Scholar] [CrossRef]
- Zhang, T.; Kong, F.-X.; Li, X.-C.; Liu, Q.; Chen, J.-F.; Guo, C.-M. Comparison of the performance of prepared pristine and TiO2 coated UF/NF membranes for two types of oil-in-water emulsion separation. Chemosphere 2020, 244, 125386. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Sun, M.; Huang, D.; Chu, C.; Hedtke, T.; Wang, X.; Zhao, Y.; Kim, J.-H.; Elimelech, M. Catalytic Membrane with Copper Single-Atom Catalysts for Effective Hydrogen Peroxide Activation and Pollutant Destruction. Environ. Sci. Technol. 2022, 56, 8733–8745. [Google Scholar] [CrossRef] [PubMed]
- del Castillo-Velilla, I.; Romero-Muñiz, I.; Marini, C.; Montoro, C.; Platero-Prats, A.E. Copper single-site engineering in MOF-808 membranes for improved water treatment. Nanoscale 2024, 16, 6627–6635. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Lalia, B.S.; Hilal, N.; Hashaikeh, R. Underwater superoleophobic cellulose/electrospun PVDF-HFP membranes for efficient oil/water separation. Desalination 2014, 344, 48–54. [Google Scholar] [CrossRef]
- Li, C.; Shi, M.; Xu, D.; Liao, Q.; Liu, G.; Guo, Y.; Zhang, H.; Zhu, H. Fabrication of photo-Fenton self-cleaning PVDF composite membrane for highly efficient oil-in-water emulsion separation. RSC Adv. 2022, 12, 35543–35555. [Google Scholar] [CrossRef]
- Wang, M.; Mu, L.; Zhang, H.; Mao, X.; Zhang, M.; Dong, C.; Lei, H.; Shen, R.; Ju, A.; Hu, J.; et al. A superwettable PVDF membrane with durably chelated Fe(III) for excellent photo-Fenton self-cleaning and effective oil-in-water emulsion separation. J. Membr. Sci. 2025, 713, 123245. [Google Scholar] [CrossRef]
- Tang, Y.; Zhu, T.; Liu, H.; Tang, Z.; Kuang, X.; Qiao, Y.; Zhang, H.; Zhu, C. Hydrogel/β-FeOOH-Coated Poly(vinylidene fluoride) Membranes with Superhydrophilicity/Underwater Superoleophobicity Facilely Fabricated via an Aqueous Approach for Multifunctional Applications. Polymers 2023, 15, 839. [Google Scholar] [CrossRef] [PubMed]
Models | PVDF | PVDF/PDA | PVDF/PDA/CuL-4 | PVDF/PDA/CuL-20 | PVDF/PDA/CuL-40 | |||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
PPO | 0.9219 | 0.6882 | 0.7929 | 2.1501 | 0.8886 | 1.7897 | 0.9190 | 1.3466 | 0.9167 | 1.1437 |
PPO linear | 0.9493 | 1.3270 | 0.9676 | 4.2668 | 0.8550 | 9.5857 | 0.7629 | 10.1828 | 0.6469 | 10.1003 |
PSO | 0.9013 | 0.7736 | 0.8915 | 1.5559 | 0.9540 | 1.1388 | 0.9702 | 0.8168 | 0.9708 | 0.6770 |
PSO linear | 0.9736 | 0.4407 | 0.9892 | 1.0362 | 0.9951 | 1.0892 | 0.9942 | 1.1560 | 0.9977 | 0.8628 |
Elovich | 0.8496 | 0.9549 | 0.9674 | 0.8526 | 0.9928 | 0.4489 | 0.9947 | 0.3443 | 0.9950 | 0.2792 |
Elovich linear | 0.9389 | 0.5744 | 0.9498 | 0.6644 | 0.9706 | 0.4205 | 0.9644 | 0.3194 | 0.9439 | 0.1879 |
Membrane | Segment 1 | Segment 2 | ||||||
---|---|---|---|---|---|---|---|---|
kd | BL | R2 | RMSE | kd | BL | R2 | RMSE | |
PVDF | 0.4369 | 0.0551 | 0.9889 | 0.1167 | 0.2581 | 3.2260 | 0.9858 | 0.1036 |
PVDF/PDA | 1.5551 | 0.4004 | 0.9283 | 0.9940 | 0.7185 | 4.8344 | 0.9727 | 0.4431 |
PVDF/PDA/CuL-4 | 2.3739 | 0.5593 | 0.9392 | 1.3884 | 0.4976 | 10.9762 | 0.9542 | 0.4011 |
PVDF/PDA/CuL-20 | 2.4865 | 0.5064 | 0.9539 | 1.2569 | 0.3793 | 10.9929 | 0.9659 | 0.2624 |
PVDF/PDA/CuL-40 | 2.3503 | 0.5878 | 0.9321 | 1.4590 | 0.1829 | 11.1235 | 0.9609 | 0.1359 |
Models | PVDF/PDA/CuL-4 | PVDF/PDA/CuL-20 | PVDF/PDA/CuL-40 | |||
---|---|---|---|---|---|---|
kap | R2 | kap | R2 | kap | R2 | |
PFOr | 1.2 × 10−3 min−1 | 0.9571 | 4.9 × 10−3 min−1 | 0.9572 | 6.1 × 10−3 min−1 | 0.9351 |
PSOr | 1.0 × 10−4 L/(mg min) | 0.9700 | 7.0 × 10−4 L/(mg min) | 0.9336 | 10.0 × 10−4 L/(mg min) | 0.9493 |
Models | Parameters | PVDF | PVDF/PDA/CuL-4 | PVDF/PDA/CuL-4 + H2O2 |
---|---|---|---|---|
BTP | K (h−1) | 1.17 × 10−2 | 0.792 × 10−2 | 1.31 × 10−2 |
R2 | 0.9660 | 0.8757 | 0.6659 | |
OP | K (m/(L0.5 h0.5)) | 2.95 × 10−4 | 1.80 × 10−4 | 3.74 × 10−4 |
R2 | 0.9623 | 0.9187 | 0.7334 | |
BPP | K (m2/L) | 3.09 × 10−5 | 1.68 × 10−5 | 4.57 × 10−5 |
R2 | 0.9421 | 0.9495 | 0.8047 | |
TF | K (m4 h/L) | 1.85 × 10−7 | 0.767 × 10−7 | 4.00 × 10−7 |
R2 | 0.8616 | 0.9651 | 0.9230 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, F.P.; Pereira, A.C.F.; Pinheiro, J.C.; Casellato, A.; Borges, C.P.; da Fonseca, F.V. Copper (II) Complex Decorated PVDF Membranes for Enhanced Removal of Organic Pollutants from Textile and Oily Wastewater. Water 2025, 17, 2988. https://doi.org/10.3390/w17202988
da Silva FP, Pereira ACF, Pinheiro JC, Casellato A, Borges CP, da Fonseca FV. Copper (II) Complex Decorated PVDF Membranes for Enhanced Removal of Organic Pollutants from Textile and Oily Wastewater. Water. 2025; 17(20):2988. https://doi.org/10.3390/w17202988
Chicago/Turabian Styleda Silva, Felipe P., Aline C. F. Pereira, Juliana C. Pinheiro, Annelise Casellato, Cristiano P. Borges, and Fabiana V. da Fonseca. 2025. "Copper (II) Complex Decorated PVDF Membranes for Enhanced Removal of Organic Pollutants from Textile and Oily Wastewater" Water 17, no. 20: 2988. https://doi.org/10.3390/w17202988
APA Styleda Silva, F. P., Pereira, A. C. F., Pinheiro, J. C., Casellato, A., Borges, C. P., & da Fonseca, F. V. (2025). Copper (II) Complex Decorated PVDF Membranes for Enhanced Removal of Organic Pollutants from Textile and Oily Wastewater. Water, 17(20), 2988. https://doi.org/10.3390/w17202988