Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = polysulfide chemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3537 KiB  
Article
A New Sulfur-Containing Copolymer Created Through the Thermally Induced Radical Copolymerization of Elemental Sulfur with N2,N2-Diallylmelamine Comonomer for Potential CO2 Capture
by Dharrinesh Narendiran, Nurul Hazirah Sumadi, Ali Shaan Manzoor Ghumman, Noor Ashikin Mohamad, Mohamed Mahmoud Nasef, Amin Abbasi and Rashid Shamsuddin
J. Compos. Sci. 2025, 9(7), 362; https://doi.org/10.3390/jcs9070362 - 11 Jul 2025
Viewed by 435
Abstract
Sulfur-containing polymers are unique sustainable materials with promise for the development of various adsorbents for environmental remediation. However, they have not been explored for CO2 capture despite reports on its ability to decontaminate various aqueous pollutants. This study reports on the single-step [...] Read more.
Sulfur-containing polymers are unique sustainable materials with promise for the development of various adsorbents for environmental remediation. However, they have not been explored for CO2 capture despite reports on its ability to decontaminate various aqueous pollutants. This study reports on the single-step synthesis of a diamine-functionalized sulfur-containing copolymer by the thermally induced radical copolymerization of N2,N2-Diallylmelamine (NDAM), a difunctional monomer, with sulfur and explores its use for CO2 capture. The influence of reaction parameters such as the weight ratios of sulfur to NDAM, reaction temperature, time, and the addition of a porogen on the properties of aminated copolymer was investigated. The resulting copolymers were characterized using FTIR, TGA, DSC, SEM, XRD, and BET surface area analyses. The incorporation of NDAM directly imparted amine functionality while stabilizing the polysulfide chains by crosslinking, leading to a thermoset copolymer with an amorphous structure. The addition of a NaCl particle porogen to the S/NDAM mixture generated a mesoporous structure, enabling the resulting copolymer to be tested for CO2 adsorption under varying pressures, leading to an adsorption capacity as high as 517 mg/g at 25 bar. This work not only promotes sustainable hybrid materials that advance green chemistry while aiding CO2 mitigation efforts but also adds value to the abundant amount of sulfur by-products from petroleum refineries. Full article
Show Figures

Graphical abstract

25 pages, 8308 KiB  
Review
Construction of MXene-Based Heterostructured Hybrid Separators for Lithium–Sulfur Batteries
by Xiao Zhang, Guijie Jin, Min Mao, Zirui Wang, Tianyu Xu, Tongtao Wan and Jinsheng Zhao
Molecules 2025, 30(8), 1833; https://doi.org/10.3390/molecules30081833 - 19 Apr 2025
Viewed by 819
Abstract
The advancement of lithium–sulfur (Li-S) batteries has been hindered by the shuttle effect of lithium polysulfides (LiPSs) and sluggish redox kinetics. The engineering of functional hybrid separators is a relatively simple and effective coping strategy. Layered transition-metal carbides, nitrides, and carbonitrides, a class [...] Read more.
The advancement of lithium–sulfur (Li-S) batteries has been hindered by the shuttle effect of lithium polysulfides (LiPSs) and sluggish redox kinetics. The engineering of functional hybrid separators is a relatively simple and effective coping strategy. Layered transition-metal carbides, nitrides, and carbonitrides, a class of emerging two-dimensional materials termed MXenes, have gained popularity as catalytic materials for Li-S batteries due to their metallic conductivity, tunable surface chemistry, and terminal groups. Nonetheless, the self-stacking flaws and easy oxidation of MXenes pose disadvantages, and developing MXene-based heterostructures is anticipated to circumvent these issues and yield other remarkable physicochemical characteristics. Herein, recent advances in the construction of MXene-based heterostructured hybrid separators for improving the performance of Li-S batteries are reviewed. The diverse conformational forms of heterostructures and their constitutive relationships with LiPS conversion are discussed, and the general principles of MXene surface chemistry alterations and heterostructure designs for enhancing electrochemical performance are summarized. Lastly, tangible challenges are addressed, and advisable insights for future research are shared. This review aims to highlight the immense superiority of MXene-based heterostructures in Li-S battery separator modification and inspire researchers. Full article
Show Figures

Figure 1

14 pages, 5956 KiB  
Article
Cement/Sulfur for Lithium–Sulfur Cells
by Tzu-Ming Hung, Cheng-Che Wu, Chung-Chan Hung and Sheng-Heng Chung
Nanomaterials 2024, 14(4), 384; https://doi.org/10.3390/nano14040384 - 19 Feb 2024
Cited by 2 | Viewed by 2471
Abstract
Lithium–sulfur batteries represent a promising class of next-generation rechargeable energy storage technologies, primarily because of their high-capacity sulfur cathode, reversible battery chemistry, low toxicity, and cost-effectiveness. However, they lack a tailored cell material and configuration for enhancing their high electrochemical utilization and stability. [...] Read more.
Lithium–sulfur batteries represent a promising class of next-generation rechargeable energy storage technologies, primarily because of their high-capacity sulfur cathode, reversible battery chemistry, low toxicity, and cost-effectiveness. However, they lack a tailored cell material and configuration for enhancing their high electrochemical utilization and stability. This study introduces a cross-disciplinary concept involving cost-efficient cement and sulfur to prepare a cement/sulfur energy storage material. Although cement has low conductivity and porosity, our findings demonstrate that its robust polysulfide adsorption capability is beneficial in the design of a cathode composite. The cathode composite attains enhanced cell fabrication parameters, featuring a high sulfur content and loading of 80 wt% and 6.4 mg cm−2, respectively. The resulting cell with the cement/sulfur cathode composite exhibits high active-material retention and utilization, resulting in a high charge storage capacity of 1189 mA∙h g−1, high rate performance across C/20 to C/3 rates, and an extended lifespan of 200 cycles. These attributes contribute to excellent cell performance values, demonstrating areal capacities ranging from 4.59 to 7.61 mA∙h cm−2, an energy density spanning 9.63 to 15.98 mW∙h cm−2, and gravimetric capacities between 573 and 951 mA∙h g−1 per electrode. Therefore, this study pioneers a new approach in lithium–sulfur battery research, opting for a nonporous material with robust polysulfide adsorption capabilities, namely cement. It effectively showcases the potential of the resulting cement/sulfur cathode composite to enhance fabrication feasibility, cell fabrication parameters, and cell performance values. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

21 pages, 7180 KiB  
Article
Structures and Spectroscopic Properties of Polysulfide Radical Anions: A Theoretical Perspective
by Tristram Chivers and Richard T. Oakley
Molecules 2023, 28(15), 5654; https://doi.org/10.3390/molecules28155654 - 26 Jul 2023
Cited by 8 | Viewed by 2745
Abstract
The potential involvement of polysulfide radical anions Sn•− is a recurring theme in discussions of the basic and applied chemistry of elemental sulfur. However, while the spectroscopic features for n = 2 and 3 are well-established, information on the structures and [...] Read more.
The potential involvement of polysulfide radical anions Sn•− is a recurring theme in discussions of the basic and applied chemistry of elemental sulfur. However, while the spectroscopic features for n = 2 and 3 are well-established, information on the structures and optical characteristics of the larger congeners (n = 4–8) is sparse. To aid identification of these ephemeral species we have performed PCM-corrected DFT calculations to establish the preferred geometries for Sn•− (n = 4–8) in the polar media in which they are typically generated. TD-DFT calculations were then used to determine the number, nature and energies of the electronic excitations possible for these species. Numerical reliability of the approach was tested by comparison of the predicted and experimental excitation energies found for S2•− and S3•−. The low-energy (near-IR) transitions found for the two acyclic isomers of S4•− (C2h and C2v symmetry) and for S5•− (Cs symmetry) can be understood by extension of the simple HMO π-only chain model that serves for S2•− and S3•−. By contrast, the excitations predicted for the quasi-cyclic structures Sn•− (n = 6–8) are better described in terms of σσ* processes within a localized 2c-3e manifold. Full article
Show Figures

Graphical abstract

19 pages, 8137 KiB  
Review
Advances in Cathodes for High-Performance Magnesium-Sulfur Batteries: A Critical Review
by Ying Ying Yao, Yang Zhan, Xin Yu Sun, Zhao Li, Hao Xu, Richard M. Laine and Jian Xin Zou
Batteries 2023, 9(4), 203; https://doi.org/10.3390/batteries9040203 - 29 Mar 2023
Cited by 9 | Viewed by 4264
Abstract
Large-scale energy storage with high performance and at a reasonable cost are prerequisites for promoting clean energy utilization. With a high theoretical energy density of 1722 Wh·kg−2, high element abundance (e.g., Mg of 23,000 ppm, S of 950 ppm on earth), [...] Read more.
Large-scale energy storage with high performance and at a reasonable cost are prerequisites for promoting clean energy utilization. With a high theoretical energy density of 1722 Wh·kg−2, high element abundance (e.g., Mg of 23,000 ppm, S of 950 ppm on earth), and low theoretical cost, Mg-S batteries offer considerable potential as candidates for electrical energy storage. However, due to the intrinsic complex reaction chemistry of sulfur cathodes and metal anodes, such as slow diffusion of the divalent ion, the shuttle of soluble polysulfide, and irreversible deposition of Mg ions on metal electrodes, Mg-S batteries still need further optimization to meet requirements for practical applications. In addition to stabilizing metal anodes, developing a suitable sulfur cathode is desperately needed. This review summarizes recent research progress in sulfur cathodes, interlayers, and non-nucleophilic electrolytes, highlighting the main challenges and corresponding strategies for electrode material designs. Notably, we emphasize a fundamental understanding of the structure-composition relationship. Furthermore, state-of-the-art characterization techniques are described that help reveal the pertinent electrochemical mechanisms whereby Mg-S cells function. Finally, possible research directions are discussed. Full article
Show Figures

Figure 1

13 pages, 2812 KiB  
Article
Electrocatalytic and Conductive Vanadium Oxide on Carbonized Bacterial Cellulose Aerogel for the Sulfur Cathode in Li-S Batteries
by Xueyan Lin, Wenyue Li, Xuan Pan, Shu Wang and Zhaoyang Fan
Batteries 2023, 9(1), 14; https://doi.org/10.3390/batteries9010014 - 26 Dec 2022
Cited by 5 | Viewed by 3528
Abstract
Many transition-metal-oxide-based catalysts have been investigated to chemically bind soluble lithium polysulfides and accelerate their redox kinetics in lithium-sulfur (Li-S) battery chemistry. However, the intrinsic poor electrical conductivities of these oxides restrict their catalytic performance, consequently limiting the sulfur utilization and the rate [...] Read more.
Many transition-metal-oxide-based catalysts have been investigated to chemically bind soluble lithium polysulfides and accelerate their redox kinetics in lithium-sulfur (Li-S) battery chemistry. However, the intrinsic poor electrical conductivities of these oxides restrict their catalytic performance, consequently limiting the sulfur utilization and the rate performance of Li-S batteries. Herein, we report a freestanding electrocatalytic sulfur host consisting of hydrogen-treated VO2 nanoparticles (H-VO2) anchored on nitrogen-doped carbonized bacterial cellulose aerogels (N-CBC). The hydrogen treatment enables the formation and stabilization of the rutile VO2(R) phase with metallic conductivity at room temperature, significantly enhancing its catalytic capability compared to the as-synthesized insulative VO2(M) phase. Several measurements characterize the electrocatalytic performance of this unique H-VO2@N-CBC structure. In particular, the two kinetic barriers between S8, polysulfides, and Li2S are largely reduced by 28.2 and 43.3 kJ/mol, respectively. Accordingly, the Li-S battery performance, in terms of sulfur utilization and charge/discharge rate, is greatly improved. This work suggests an effective strategy to develop conductive catalysts based on a typical transition metal oxide (VO2) for Li-S batteries. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the First Impact Factor of Batteries)
Show Figures

Figure 1

16 pages, 4430 KiB  
Article
Structural and Surfacial Modification of Carbon Nanofoam as an Interlayer for Electrochemically Stable Lithium-Sulfur Cells
by Yee-Jun Quay and Sheng-Heng Chung
Nanomaterials 2021, 11(12), 3342; https://doi.org/10.3390/nano11123342 - 9 Dec 2021
Cited by 12 | Viewed by 3258
Abstract
Electrochemical lithium-sulfur batteries engage the attention of researchers due to their high-capacity sulfur cathodes, which meet the increasing energy-density needs of next-generation energy-storage systems. We present here the design, modification, and investigation of a carbon nanofoam as the interlayer in a lithium-sulfur cell [...] Read more.
Electrochemical lithium-sulfur batteries engage the attention of researchers due to their high-capacity sulfur cathodes, which meet the increasing energy-density needs of next-generation energy-storage systems. We present here the design, modification, and investigation of a carbon nanofoam as the interlayer in a lithium-sulfur cell to enable its high-loading sulfur cathode to attain high electrochemical utilization, efficiency, and stability. The carbon-nanofoam interlayer features a porous and tortuous carbon network that accelerates the charge transfer while decelerating the polysulfide diffusion. The improved cell demonstrates a high electrochemical utilization of over 80% and an enhanced stability of 200 cycles. With such a high-performance cell configuration, we investigate how the battery chemistry is affected by an additional polysulfide-trapping MoS2 layer and an additional electron-transferring graphene layer on the interlayer. Our results confirm that the cell-configuration modification brings major benefits to the development of a high-loading sulfur cathode for excellent electrochemical performances. We further demonstrate a high-loading cathode with the carbon-nanofoam interlayer, which attains a high sulfur loading of 8 mg cm−2, an excellent areal capacity of 8.7 mAh cm−2, and a superior energy density of 18.7 mWh cm−2 at a low electrolyte-to-sulfur ratio of 10 µL mg−1. Full article
Show Figures

Graphical abstract

22 pages, 3851 KiB  
Article
Characterization of the Inducible and Slow-Releasing Hydrogen Sulfide and Persulfide Donor P*: Insights into Hydrogen Sulfide Signaling
by Modesta Trummer, Erwan Galardon, Anita Fischer, Stefan Toegel, Bernd Mayer, Guenter Steiner and Burkhard Kloesch
Antioxidants 2021, 10(7), 1049; https://doi.org/10.3390/antiox10071049 - 29 Jun 2021
Cited by 8 | Viewed by 4217
Abstract
Hydrogen sulfide (H2S) is an important mediator of inflammatory processes. However, controversial findings also exist, and its underlying molecular mechanisms are largely unknown. Recently, the byproducts of H2S, per-/polysulfides, emerged as biological mediators themselves, highlighting the complex chemistry of [...] Read more.
Hydrogen sulfide (H2S) is an important mediator of inflammatory processes. However, controversial findings also exist, and its underlying molecular mechanisms are largely unknown. Recently, the byproducts of H2S, per-/polysulfides, emerged as biological mediators themselves, highlighting the complex chemistry of H2S. In this study, we characterized the biological effects of P*, a slow-releasing H2S and persulfide donor. To differentiate between H2S and polysulfide-derived effects, we decomposed P* into polysulfides. P* was further compared to the commonly used fast-releasing H2S donor sodium hydrogen sulfide (NaHS). The effects on oxidative stress and interleukin-6 (IL-6) expression were assessed in ATDC5 cells using superoxide measurement, qPCR, ELISA, and Western blotting. The findings on IL-6 expression were corroborated in primary chondrocytes from osteoarthritis patients. In ATDC5 cells, P* not only induced the expression of the antioxidant enzyme heme oxygenase-1 via per-/polysulfides, but also induced activation of Akt and p38 MAPK. NaHS and P* significantly impaired menadione-induced superoxide production. P* reduced IL-6 levels in both ATDC5 cells and primary chondrocytes dependent on H2S release. Taken together, P* provides a valuable research tool for the investigation of H2S and per-/polysulfide signaling. These data demonstrate the importance of not only H2S, but also per-/polysulfides as bioactive signaling molecules with potent anti-inflammatory and, in particular, antioxidant properties. Full article
(This article belongs to the Special Issue Hydrogen Sulfide in Biology)
Show Figures

Figure 1

17 pages, 7472 KiB  
Article
Preparation and Modification of Biomass-Based Functional Rubbers for Removing Mercury(II) from Aqueous Solution
by Yurong Chen, Akram Yasin, Yagang Zhang, Xingjie Zan, Yanxia Liu and Letao Zhang
Materials 2020, 13(3), 632; https://doi.org/10.3390/ma13030632 - 31 Jan 2020
Cited by 27 | Viewed by 3262
Abstract
Biomass-based functional rubber adsorbents were designed and prepared via inverse vulcanization and post-modification. The plant rubber was synthesized with sulfur and renewable cottonseed oil as well as various micromolecular modifiers with nitrogen-containing functional groups. Results showed that types of nitrogen-containing functional groups and [...] Read more.
Biomass-based functional rubber adsorbents were designed and prepared via inverse vulcanization and post-modification. The plant rubber was synthesized with sulfur and renewable cottonseed oil as well as various micromolecular modifiers with nitrogen-containing functional groups. Results showed that types of nitrogen-containing functional groups and dosages of modifiers had a significant impact on the adsorption capacities of the resulting polymers for Hg2+. Notably, when the mass ratio of 2-aminoethyl methacrylate (AEMA) to sulfur was 0.05, the resulting polymer polysulfide-co-cottonseed oil modified by AEMA (SCOA2) showed the highest adsorption capacity (343.3 mg g−1) among all the prepared samples. Furthermore, the Hg2+ removal efficiency of SCOA2 remained over 80% of its original value after five adsorption-desorption cycles. It demonstrated a promising case for utilizing cheap industrial by-products (sulfur) and renewable materials (cottonseed oil). The prepared functional rubber provides alternative approach for mercury removal in waste utilization and sustainable chemistry. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

15 pages, 1595 KiB  
Review
Inorganic Polysulfides and Related Reactive Sulfur–Selenium Species from the Perspective of Chemistry
by Ammar Kharma, Marian Grman, Anton Misak, Enrique Domínguez-Álvarez, Muhammad Jawad Nasim, Karol Ondrias, Miroslav Chovanec and Claus Jacob
Molecules 2019, 24(7), 1359; https://doi.org/10.3390/molecules24071359 - 6 Apr 2019
Cited by 40 | Viewed by 6654
Abstract
Polysulfides (H2Sx) represent a class of reactive sulfur species (RSS) which includes molecules such as H2S2, H2S3, H2S4, and H2S5, and whose presence and [...] Read more.
Polysulfides (H2Sx) represent a class of reactive sulfur species (RSS) which includes molecules such as H2S2, H2S3, H2S4, and H2S5, and whose presence and impact in biological systems, when compared to other sulfur compounds, has only recently attracted the wider attention of researchers. Studies in this field have revealed a facet-rich chemistry and biological activity associated with such chemically simple, still unusual inorganic molecules. Despite their chemical simplicity, these inorganic species, as reductants and oxidants, metal binders, surfactant-like “cork screws” for membranes, components of perthiol signalling and reservoirs for inorganic hydrogen sulfide (H2S), are at the centre of complicated formation and transformation pathways which affect numerous cellular processes. Starting from their chemistry, the hidden presence and various roles of polysulfides in biology may become more apparent, despite their lack of clear analytical fingerprints and often murky biochemical footprints. Indeed, the biological chemistry of H2Sx follows many unexplored paths and today, the relationship between H2S and its oxidized H2Sx species needs to be clarified as a matter of “unmistaken identity”. Simultaneously, emerging species, such as HSSeSH and SenS8−n, also need to be considered in earnest. Full article
(This article belongs to the Special Issue Signaling Molecules: Hydrogen Sulfide and Polysulfide)
Show Figures

Figure 1

17 pages, 1124 KiB  
Article
An Assessment of Computational Methods for Calculating Accurate Structures and Energies of Bio-Relevant Polysulfur/Selenium-Containing Compounds
by Sahar Nikoo, Paul J. Meister, John J. Hayward and James W. Gauld
Molecules 2018, 23(12), 3323; https://doi.org/10.3390/molecules23123323 - 14 Dec 2018
Cited by 13 | Viewed by 4719
Abstract
The heavier chalcogens sulfur and selenium are important in organic and inorganic chemistry, and the role of such chalcogens in biological systems has recently gained more attention. Sulfur and, to a lesser extent selenium, are involved in diverse reactions from redox signaling to [...] Read more.
The heavier chalcogens sulfur and selenium are important in organic and inorganic chemistry, and the role of such chalcogens in biological systems has recently gained more attention. Sulfur and, to a lesser extent selenium, are involved in diverse reactions from redox signaling to antioxidant activity and are considered essential nutrients. We investigated the ability of the DFT functionals (B3LYP, B3PW91, ωB97XD, M06-2X, and M08-HX) relative to electron correlation methods MP2 and QCISD to produce reliable and accurate structures as well as thermochemical data for sulfur/selenium-containing systems. Bond lengths, proton affinities (PA), gas phase basicities (GPB), chalcogen–chalcogen bond dissociation enthalpies (BDE), and the hydrogen affinities (HA) of thiyl/selenyl radicals were evaluated for a range of small polysulfur/selenium compounds and cysteine per/polysulfide. The S–S bond length was found to be the most sensitive to basis set choice, while the geometry of selenium-containing compounds was less sensitive to basis set. In mixed chalcogens species of sulfur and selenium, the location of the sulfur atom affects the S–Se bond length as it can hold more negative charge. PA, GPB, BDE, and HA of selenium systems were all lower, indicating more acidity and more stability of radicals. Extending the sulfur chain in cysteine results in a decrease of BDE and HA, but these plateau at a certain point (199 kJ mol−1 and 295 kJ mol−1), and PA and GPB are also decreased relative to the thiol, indicating that the polysulfur species exist as thiolates in a biological system. In general, it was found that ωB97XD/6-311G(2d,p) gave the most reasonable structures and thermochemistry relative to benchmark calculations. However, nuances in performance are observed and discussed. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

16 pages, 1593 KiB  
Article
Inorganic Reactive Sulfur-Nitrogen Species: Intricate Release Mechanisms or Cacophony in Yellow, Blue and Red?
by Marian Grman, Muhammad Jawad Nasim, Roman Leontiev, Anton Misak, Veronika Jakusova, Karol Ondrias and Claus Jacob
Antioxidants 2017, 6(1), 14; https://doi.org/10.3390/antiox6010014 - 15 Feb 2017
Cited by 13 | Viewed by 7166
Abstract
Since the heydays of Reactive Sulfur Species (RSS) research during the first decade of the Millennium, numerous sulfur species involved in cellular regulation and signalling have been discovered. Yet despite the general predominance of organic species in organisms, recent years have also seen [...] Read more.
Since the heydays of Reactive Sulfur Species (RSS) research during the first decade of the Millennium, numerous sulfur species involved in cellular regulation and signalling have been discovered. Yet despite the general predominance of organic species in organisms, recent years have also seen the emergence of inorganic reactive sulfur species, ranging from inorganic polysulfides (HSx/Sx2−) to thionitrous acid (HSNO) and nitrosopersulfide (SSNO). These inorganic species engage in a complex interplay of reactions in vitro and possibly also in vivo. Employing a combination of spectrophotometry and sulfide assays, we have investigated the role of polysulfanes from garlic during the release of nitric oxide (NO) from S-nitrosoglutathione (GSNO) in the absence and presence of thiol reducing agents. Our studies reveal a distinct enhancement of GSNO decomposition by compounds such as diallyltrisulfane, which is most pronounced in the presence of cysteine and glutathione and presumably proceeds via the initial release of an inorganic mono- or polysulfides, i.e., hydrogen sulfide (H2S) or HSx, from the organic polysulfane. Albeit being of a preliminary nature, our spectrophotometric data also reveals a complicated underlying mechanism which appears to involve transient species such as SSNO. Eventually, more in depth studies are required to further explore the underlying chemistry and wider biological and nutritional implications of this interplay between edible garlic compounds, reductive activation, inorganic polysulfides and their interplay with NO storage and release. Full article
Show Figures

Figure 1

Back to TopTop