Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = polymethylpentene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 693 KB  
Article
Material-Induced Platelet Adhesion/Activation and Hemolysis of Membrane Lung Components from Extracorporeal Membrane Oxygenation
by Christopher Thaus, Matthias Lubnow, Lars Krenkel and Karla Lehle
Biomedicines 2025, 13(10), 2323; https://doi.org/10.3390/biomedicines13102323 - 23 Sep 2025
Viewed by 1214
Abstract
Background: Contact between blood and the large artificial surfaces within membrane lungs (MLs) is one reason for device-induced thrombus formation during extracorporeal membrane oxygenation (ECMO). Methods: Hemocompatibility testing of gas-exchange fibers (GFs) and heat-exchange fibers (HEs) from commercially available/non-used MLs (ML-type, coating: PLS, [...] Read more.
Background: Contact between blood and the large artificial surfaces within membrane lungs (MLs) is one reason for device-induced thrombus formation during extracorporeal membrane oxygenation (ECMO). Methods: Hemocompatibility testing of gas-exchange fibers (GFs) and heat-exchange fibers (HEs) from commercially available/non-used MLs (ML-type, coating: PLS, Bioline®; Hilite7000LT, X.ELLENCE®; Nautilus, Balance®; EOS, PH.I.S.I.O®) included static hemolysis and platelet adhesion/activation assays. Platelet activation of non-adherent platelets was identified after antibody (CD62P, PAC-1, CD61) and fibrinogen staining (flow cytometry). The surface coverage (%) of adherent platelets was quantified after F-actin filament-staining. Results: All materials were non-hemolytic and did not induce platelet activation. However, platelet adhesion (median (IQR)) depended on the type of surface coating of GFs made entirely of polymethylpentene. Both uncoated GFs (12 (7–19)%) and X.ELLENCE-coated GFs (Hilite-ML, 13 (8–19)%) showed a significantly higher surface coverage compared to Balance-coated GFs (Nautilus-ML, 3 (1–6)%), PH.I.S.I.O-coated GFs (EOS-ML, 2 (2–5)%) and Bioline-coated GFs (PLS-ML, 4 (1–8)%) (p < 0.001). HEs made of polyethyleneterephthalate (Hilite-ML, Nautilus-ML) that were coated with X.ELLENCE were covered with more platelets (5 (3–7)%) compared to Balance-coated HEs (3 (1–6)%), respectively (p = 0.029). Conclusions: In vitro testing disclosed fourfold higher platelet adhesion on X.ELLENCE-coated GFs (and HEs) from the Hilite-ML compared to other ECMO-materials. Additional hemocompatibility tests are necessary to assess the increased platelet adhesion on the materials from the Hilite-ML. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

12 pages, 7533 KB  
Article
Determining Accurate Pore Structures of Polypropylene Membrane for ECMO Using FE-SEM Under Optimized Conditions
by Makoto Fukuda, Yoshiaki Nishite, Eri Murata, Koki Namekawa, Tomohiro Mori, Tsutomu Tanaka and Kiyotaka Sakai
Membranes 2025, 15(6), 174; https://doi.org/10.3390/membranes15060174 - 9 Jun 2025
Viewed by 1454
Abstract
Long-term ECMOs are expected to be put into practical use in order to prepare for the next emerging severe infectious diseases after the novel coronavirus pandemic in 2019–2023. While polypropylene (PP) and polymethylpentene (PMP) are currently the mainstream materials for the hollow fiber [...] Read more.
Long-term ECMOs are expected to be put into practical use in order to prepare for the next emerging severe infectious diseases after the novel coronavirus pandemic in 2019–2023. While polypropylene (PP) and polymethylpentene (PMP) are currently the mainstream materials for the hollow fiber membranes of ECMO, the PP membrane coated with a silicone layer on the outer surface has also been commercialized. In this study, we sought a method to accurately observe the detailed pore morphologies of the PP membrane by suppressing irreversible changes in the morphology in SEM observation, which is a general-purpose observation with higher resolution. As a result, the convex surface morphologies of the PP membrane, which was a non-conductive porous structure, were confirmed in detail by utilizing the lower secondary electron image (LEI) mode (FE-SEM, JSM-7610F, JEOL Ltd., Tokyo, Japan) at low acceleration voltage, low magnification, and long working distance, to minimize morphological alterations caused by osmium (Os) sputtering. On the other hand, although the sputter-coating on non-conductive samples is mandatory for imaging morphologies with SEM, the non-sputtering method is also worthwhile for porous and fragile structures such as this sample to minimize morphological alterations. Furthermore, we propose a method to confirm the morphology of the deep part of the sample by utilizing the secondary electron image (SEI) mode at an appropriate acceleration voltage and high magnification with higher resolution. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Membranes—Preparation and Applications)
Show Figures

Figure 1

20 pages, 8571 KB  
Article
Prototyping in Polymethylpentene to Enable Oxygen-Permeable On-a-Chip Cell Culture and Organ-on-a-Chip Devices Suitable for Microscopy
by Linda Sønstevold, Paulina Koza, Maciej Czerkies, Erik Andreassen, Paul McMahon and Elizaveta Vereshchagina
Micromachines 2024, 15(7), 898; https://doi.org/10.3390/mi15070898 - 10 Jul 2024
Cited by 2 | Viewed by 2296
Abstract
With the rapid development and commercial interest in the organ-on-a-chip (OoC) field, there is a need for materials addressing key experimental demands and enabling both prototyping and large-scale production. Here, we utilized the gas-permeable, thermoplastic material polymethylpentene (PMP). Three methods were tested to [...] Read more.
With the rapid development and commercial interest in the organ-on-a-chip (OoC) field, there is a need for materials addressing key experimental demands and enabling both prototyping and large-scale production. Here, we utilized the gas-permeable, thermoplastic material polymethylpentene (PMP). Three methods were tested to prototype transparent PMP films suitable for transmission light microscopy: hot-press molding, extrusion, and polishing of a commercial, hazy extruded film. The transparent films (thickness 20, 125, 133, 356, and 653 µm) were assembled as the cell-adhering layer in sealed culture chamber devices, to assess resulting oxygen concentration after 4 days of A549 cell culture (cancerous lung epithelial cells). Oxygen concentrations stabilized between 15.6% and 11.6%, where the thicker the film, the lower the oxygen concentration. Cell adherence, proliferation, and viability were comparable to glass for all PMP films (coated with poly-L-lysine), and transparency was adequate for transmission light microscopy of adherent cells. Hot-press molding was concluded as the preferred film prototyping method, due to excellent and reproducible film transparency, the possibility to easily vary film thickness, and the equipment being commonly available. The molecular orientation in the PMP films was characterized by IR dichroism. As expected, the extruded films showed clear orientation, but a novel result was that hot-press molding may also induce some orientation. It has been reported that orientation affects the permeability, but with the films in this study, we conclude that the orientation is not a critical factor. With the obtained results, we find it likely that OoC models with relevant in vivo oxygen concentrations may be facilitated by PMP. Combined with established large-scale production methods for thermoplastics, we foresee a useful role for PMP within the OoC field. Full article
Show Figures

Figure 1

11 pages, 32463 KB  
Article
A Study of the Phosphorylcholine Polymer Coating of a Polymethylpentene Hollow Fiber Membrane
by Feihua Ye, Zhisheng Chen, Chunsheng Li, Junhua Chen and Guobin Yi
Polymers 2023, 15(13), 2881; https://doi.org/10.3390/polym15132881 - 29 Jun 2023
Cited by 3 | Viewed by 3838
Abstract
A phosphorylcholine polymer (poly(MPC–co–BMA–co–TSMA), PMBT) was prepared by free radical polymerization and coated on the surface of the polymethylpentene hollow fiber membrane (PMP–HFM). ATR–FTIR and SEM analyses showed that the PMBT polymer containing phosphorylcholine groups was uniformly coated on the surface of the [...] Read more.
A phosphorylcholine polymer (poly(MPC–co–BMA–co–TSMA), PMBT) was prepared by free radical polymerization and coated on the surface of the polymethylpentene hollow fiber membrane (PMP–HFM). ATR–FTIR and SEM analyses showed that the PMBT polymer containing phosphorylcholine groups was uniformly coated on the surface of the PMP–HFM. Thermogravimetric analysis showed that the PMBT had the best stability when the molar percentage of MPC monomer in the polymer was 35%. The swelling test and static contact angle test indicated that the coating had excellent hydrophilic properties. The fluorescence test results showed that the coating could resist dissolution with 90% (v/v%) ethanol solution and 1% (w/v%) SDS solution. The PMBT coating was shown to be able to decrease platelet adherence to the surface of the hollow fiber membrane, and lower the risk of blood clotting; it had good blood compatibility in tests of whole blood contact and platelet adhesion. These results show that the PMBT polymer may be coated on the surface of the PMP–HFM, and is helpful for improving the blood compatibility of membrane oxygenation. Full article
(This article belongs to the Special Issue Advance in Polymer Composites: Fire Protection and Thermal Management)
Show Figures

Figure 1

17 pages, 6044 KB  
Article
Application of Polymethylpentene, an Oxygen Permeable Thermoplastic, for Long-Term on-a-Chip Cell Culture and Organ-on-a-Chip Devices
by Linda Sønstevold, Maciej Czerkies, Enrique Escobedo-Cousin, Slawomir Blonski and Elizaveta Vereshchagina
Micromachines 2023, 14(3), 532; https://doi.org/10.3390/mi14030532 - 24 Feb 2023
Cited by 14 | Viewed by 4892
Abstract
The applicability of a gas-permeable, thermoplastic material polymethylpentene (PMP) was investigated, experimentally and analytically, for organ-on-a-chip (OoC) and long-term on-a-chip cell cultivation applications. Using a sealed culture chamber device fitted with oxygen sensors, we tested and compared PMP to commonly used glass and [...] Read more.
The applicability of a gas-permeable, thermoplastic material polymethylpentene (PMP) was investigated, experimentally and analytically, for organ-on-a-chip (OoC) and long-term on-a-chip cell cultivation applications. Using a sealed culture chamber device fitted with oxygen sensors, we tested and compared PMP to commonly used glass and polydimethylsiloxane (PDMS). We show that PMP and PDMS have comparable performance for oxygen supply during 4 days culture of epithelial (A549) cells with oxygen concentration stabilizing at 16%, compared with glass control where it decreases to 3%. For the first time, transmission light images of cells growing on PMP were obtained, demonstrating that the optical properties of PMP are suitable for non-fluorescent, live cell imaging. Following the combined transmission light imaging and calcein-AM staining, cell adherence, proliferation, morphology, and viability of A549 cells were shown to be similar on PMP and glass coated with poly-L-lysine. In contrast to PDMS, we demonstrate that a film of PMP as thin as 0.125 mm is compatible with high-resolution confocal microscopy due to its excellent optical properties and mechanical stiffness. PMP was also found to be fully compatible with device sterilization, cell fixation, cell permeabilization and fluorescent staining. We envision this material to extend the range of possible microfluidic applications beyond the current state-of-the-art, due to its beneficial physical properties and suitability for prototyping by different methods. The integrated device and measurement methodology demonstrated in this work are transferrable to other cell-based studies and life-sciences applications. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Figure 1

9 pages, 1513 KB  
Article
Impact of Plastic-Wrap Properties and Cleaning Intervals on the Disinfection of Elevator Buttons
by Shin-Huei Kuo, Tzu-Yin Liu, Tun-Chieh Chen, Chih-Jen Yang and Yen-Hsu Chen
Int. J. Environ. Res. Public Health 2023, 20(2), 1649; https://doi.org/10.3390/ijerph20021649 - 16 Jan 2023
Cited by 1 | Viewed by 2712
Abstract
Fomite transmission is a possible route by which different pathogens spread within facilities. In hospital settings, elevator buttons are widely observed to be covered with various types of plastic wraps; however, limited information is available concerning the impact of different plastic materials on [...] Read more.
Fomite transmission is a possible route by which different pathogens spread within facilities. In hospital settings, elevator buttons are widely observed to be covered with various types of plastic wraps; however, limited information is available concerning the impact of different plastic materials on cleaning. Our study aimed to identify which plastic material is suitable for the coverage of elevator buttons and the optimal intervals for their cleaning. We tested six plastic covers, including polyethylene (PE), polymethylpentene (PMP), polyvinyl chloride (PVD), and polyvinylidene chloride (PVDC) plastic wraps; a thermoplastic polyurethane (TPU) keyboard cover; and a polyethylene terephthalate-ethylene vinyl acetate (PET-EVA) laminating film, which are plastic films. The bioburden on the elevator buttons at different time intervals was measured using an adenosine triphosphate (ATP) bioluminescence assay. Our results show that wraps made of PVDC had superior durability compared with those of PMP, PVC, and PVDC, in addition to the lowest detectable ATP levels among the six tested materials. Regarding different button locations, the highest ATP values were found in door-close buttons followed by door-open, and first-floor buttons after one- and three-hour intervals (p = 0.024 and p < 0.001, respectively). After routine disinfection, the ATP levels of buttons rapidly increased after touching and became more prominent after three hours (p < 0.05). Our results indicate that PVDC plastic wraps have adequate durability and the lowest residual bioburden when applied as covers for elevator buttons. Door-close and -open buttons were the most frequently touched sites, requiring more accurate and precise disinfection; therefore, cleaning intervals of no longer than three hours may be warranted. Full article
Show Figures

Figure 1

15 pages, 5130 KB  
Article
Deetect: A Deep Learning-Based Image Analysis Tool for Quantification of Adherent Cell Populations on Oxygenator Membranes after Extracorporeal Membrane Oxygenation Therapy
by Felix Hoeren, Zeliha Görmez, Manfred Richter and Kerstin Troidl
Biomolecules 2022, 12(12), 1810; https://doi.org/10.3390/biom12121810 - 3 Dec 2022
Cited by 4 | Viewed by 2513
Abstract
The strong interaction of blood with the foreign surface of membrane oxygenators during ECMO therapy leads to adhesion of immune cells on the oxygenator membranes, which can be visualized in the form of image sequences using confocal laser scanning microscopy. The segmentation and [...] Read more.
The strong interaction of blood with the foreign surface of membrane oxygenators during ECMO therapy leads to adhesion of immune cells on the oxygenator membranes, which can be visualized in the form of image sequences using confocal laser scanning microscopy. The segmentation and quantification of these image sequences is a demanding task, but it is essential to understanding the significance of adhering cells during extracorporeal circulation. The aim of this work was to develop and test a deep learning-supported image processing tool (Deetect), suitable for the analysis of confocal image sequences of cell deposits on oxygenator membranes at certain predilection sites. Deetect was tested using confocal image sequences of stained (DAPI) blood cells that adhered to specific predilection sites (junctional warps and hollow fibers) of a phosphorylcholine-coated polymethylpentene membrane oxygenator after patient support (>24 h). Deetect comprises various functions to overcome difficulties that occur during quantification (segmentation, elimination of artifacts). To evaluate Deetects performance, images were counted and segmented manually as a reference and compared with the analysis by a traditional segmentation approach in Fiji and the newly developed tool. Deetect outperformed conventional segmentation in clustered areas. In sections where cell boundaries were difficult to distinguish visually, previously defined post-processing steps of Deetect were applied, resulting in a more objective approach for the resolution of these areas. Full article
Show Figures

Figure 1

24 pages, 7322 KB  
Review
Impact of Polymers on Magnesium-Based Hydrogen Storage Systems
by Sadhasivam Thangarasu and Tae Hwan Oh
Polymers 2022, 14(13), 2608; https://doi.org/10.3390/polym14132608 - 27 Jun 2022
Cited by 12 | Viewed by 4457
Abstract
In the present scenario, much importance has been provided to hydrogen energy systems (HES) in the energy sector because of their clean and green behavior during utilization. The developments of novel techniques and materials have focused on overcoming the practical difficulties in the [...] Read more.
In the present scenario, much importance has been provided to hydrogen energy systems (HES) in the energy sector because of their clean and green behavior during utilization. The developments of novel techniques and materials have focused on overcoming the practical difficulties in the HES (production, storage and utilization). Comparatively, considerable attention needs to be provided in the hydrogen storage systems (HSS) because of physical-based storage (compressed gas, cold/cryo compressed and liquid) issues such as low gravimetric/volumetric density, storage conditions/parameters and safety. In material-based HSS, a high amount of hydrogen can be effectively stored in materials via physical or chemical bonds. In different hydride materials, Mg-based hydrides (Mg–H) showed considerable benefits such as low density, hydrogen uptake and reversibility. However, the inferior sorption kinetics and severe oxidation/contamination at exposure to air limit its benefits. There are numerous kinds of efforts, like the inclusion of catalysts that have been made for Mg–H to alter the thermodynamic-related issues. Still, those efforts do not overcome the oxidation/contamination-related issues. The developments of Mg–H encapsulated by gas-selective polymers can effectively and positively influence hydrogen sorption kinetics and prevent the Mg–H from contaminating (air and moisture). In this review, the impact of different polymers (carboxymethyl cellulose, polystyrene, polyimide, polypyrrole, polyvinylpyrrolidone, polyvinylidene fluoride, polymethylpentene, and poly(methyl methacrylate)) with Mg–H systems has been systematically reviewed. In polymer-encapsulated Mg–H, the polymers act as a barrier for the reaction between Mg–H and O2/H2O, selectively allowing the H2 gas and preventing the aggregation of hydride nanoparticles. Thus, the H2 uptake amount and sorption kinetics improved considerably in Mg–H. Full article
Show Figures

Figure 1

13 pages, 6579 KB  
Article
Insights into Gradient and Anisotropic Pore Structures of Capiox® Gas Exchange Membranes for ECMO: Theoretically Verifying SARS-CoV-2 Permeability
by Makoto Fukuda, Ryo Tanaka, Kazunori Sadano, Asako Tokumine, Tomohiro Mori, Hitoshi Saomoto and Kiyotaka Sakai
Membranes 2022, 12(3), 314; https://doi.org/10.3390/membranes12030314 - 10 Mar 2022
Cited by 4 | Viewed by 4066
Abstract
When using the extracorporeal capillary membrane oxygenator (sample A) for ECMO treatments of COVID-19 severely ill patients, which is dominantly used in Japan and worldwide, there is a concern about the risk of SARS-CoV-2 scattering from the gas outlet port of the membrane [...] Read more.
When using the extracorporeal capillary membrane oxygenator (sample A) for ECMO treatments of COVID-19 severely ill patients, which is dominantly used in Japan and worldwide, there is a concern about the risk of SARS-CoV-2 scattering from the gas outlet port of the membrane oxygenator. Terumo has launched two types of membranes (sample A and sample B), both of which are produced by the microphase separation processes using polymethylpentene (PMP) and polypropylene (PP), respectively. However, the pore structures of these membranes and the SARS-CoV-2 permeability through the membrane wall have not been clarified. In this study, we analyzed the pore structures of these gas exchange membranes using our previous approach and verified the SARS-CoV-2 permeation through the membrane wall. Both have the unique gradient and anisotropic pore structure which gradually become denser from the inside to the outside of the membrane wall, and the inner and outer surfaces of the membrane have completely different pore structures. The pore structure of sample A is also completely different from the other membrane made by the melt-extruded stretch process. From this, the pore structure of the ECMO membrane is controlled by designing various membrane-forming processes using the appropriate materials. In sample A, water vapor permeates through the coating layer on the outer surface, but no pores that allow SARS-CoV-2 to penetrate are observed. Therefore, it is unlikely that SARS-CoV-2 permeates through the membrane wall and scatter from sample A, raising the possibility of secondary ECMO infection. These results provide new insights into the evolution of a next-generation ECMO membrane. Full article
(This article belongs to the Special Issue Membranes in Biomedical Engineering: Assisting Clinical Engineers)
Show Figures

Figure 1

15 pages, 2792 KB  
Article
Gamma-Ray Attenuation and Exposure Buildup Factor of Novel Polymers in Shielding Using Geant4 Simulation
by Mahmoud T. Alabsy, Jamila S. Alzahrani, M. I. Sayyed, Mahmoud I. Abbas, Daria I. Tishkevich, Ahmed M. El-Khatib and Mohamed Elsafi
Materials 2021, 14(17), 5051; https://doi.org/10.3390/ma14175051 - 3 Sep 2021
Cited by 84 | Viewed by 5761
Abstract
Polymers are often used in medical applications, therefore, some novel polymers and their interactions with photons have been studied. The gamma-ray shielding parameters for Polymethylpentene (PMP), Polybutylene terephthalate (PBT), Polyoxymethylene (POM), Polyvinylidenefluoride (PVDF), and Polychlorotrifluoroethylene (PCTFE) polymers were determined using the Geant4 simulation [...] Read more.
Polymers are often used in medical applications, therefore, some novel polymers and their interactions with photons have been studied. The gamma-ray shielding parameters for Polymethylpentene (PMP), Polybutylene terephthalate (PBT), Polyoxymethylene (POM), Polyvinylidenefluoride (PVDF), and Polychlorotrifluoroethylene (PCTFE) polymers were determined using the Geant4 simulation and discussed in the current work. The mass attenuation coefficients (μ/ρ) were simulated at low and high energies between 0.059 and 1.408 MeV using different radionuclides. The accuracy of the Geant4 simulated results were checked with the XCOM software. The two different methods had good agreement with each other. Exposure buildup factor (EBF) was calculated and discussed in terms of polymers under study and photon energy. Effective atomic number (Zeff) and electron density (Neff) were calculated and analyzed at different energies. Additionally, the half-value layer (HVL) of the polymers was evaluated, and the results of this parameter showed that PCTFE had the highest probability of interaction with gamma photons compared to those of the other tested polymers. Full article
(This article belongs to the Special Issue Radiation Shielding Materials)
Show Figures

Figure 1

16 pages, 3546 KB  
Article
Electron Microscopic Confirmation of Anisotropic Pore Characteristics for ECMO Membranes Theoretically Validating the Risk of SARS-CoV-2 Permeation
by Makoto Fukuda, Tomoya Furuya, Kazunori Sadano, Asako Tokumine, Tomohiro Mori, Hitoshi Saomoto and Kiyotaka Sakai
Membranes 2021, 11(7), 529; https://doi.org/10.3390/membranes11070529 - 14 Jul 2021
Cited by 10 | Viewed by 5937
Abstract
The objective of this study is to clarify the pore structure of ECMO membranes by using our approach and theoretically validate the risk of SARS-CoV-2 permeation. There has not been any direct evidence for SARS-CoV-2 leakage through the membrane in ECMO support for [...] Read more.
The objective of this study is to clarify the pore structure of ECMO membranes by using our approach and theoretically validate the risk of SARS-CoV-2 permeation. There has not been any direct evidence for SARS-CoV-2 leakage through the membrane in ECMO support for critically ill COVID-19 patients. The precise pore structure of recent membranes was elucidated by direct microscopic observation for the first time. The three types of membranes, polypropylene, polypropylene coated with thin silicone layer, and polymethylpentene (PMP), have unique pore structures, and the pore structures on the inner and outer surfaces of the membranes are completely different anisotropic structures. From these data, the partition coefficients and intramembrane diffusion coefficients of SARS-CoV-2 were quantified using the membrane transport model. Therefore, SARS-CoV-2 may permeate the membrane wall with the plasma filtration flow or wet lung. The risk of SARS-CoV-2 permeation is completely different due to each anisotropic pore structure. We theoretically demonstrate that SARS-CoV-2 is highly likely to permeate the membrane transporting from the patient’s blood to the gas side, and may diffuse from the gas side outlet port of ECMO leading to the extra-circulatory spread of the SARS-CoV-2 (ECMO infection). Development of a new generation of nanoscale membrane confirmation is proposed for next-generation extracorporeal membrane oxygenator and system with long-term durability is envisaged. Full article
(This article belongs to the Special Issue Advances in Extracorporeal Membrane Oxygenation)
Show Figures

Figure 1

12 pages, 2329 KB  
Article
Comparison of Circular and Parallel-Plated Membrane Lungs for Extracorporeal Carbon Dioxide Elimination
by Leonie S. Schwärzel, Anna M. Jungmann, Nicole Schmoll, Stefan Caspari, Frederik Seiler, Ralf M. Muellenbach, Moritz Bewarder, Quoc Thai Dinh, Robert Bals, Philipp M. Lepper and Albert J. Omlor
Membranes 2021, 11(6), 398; https://doi.org/10.3390/membranes11060398 - 27 May 2021
Cited by 3 | Viewed by 3369
Abstract
Extracorporeal carbon dioxide removal (ECCO2R) is an important technique to treat critical lung diseases such as exacerbated chronic obstructive pulmonary disease (COPD) and mild or moderate acute respiratory distress syndrome (ARDS). This study applies our previously presented ECCO2R mock [...] Read more.
Extracorporeal carbon dioxide removal (ECCO2R) is an important technique to treat critical lung diseases such as exacerbated chronic obstructive pulmonary disease (COPD) and mild or moderate acute respiratory distress syndrome (ARDS). This study applies our previously presented ECCO2R mock circuit to compare the CO2 removal capacity of circular versus parallel-plated membrane lungs at different sweep gas flow rates (0.5, 2, 4, 6 L/min) and blood flow rates (0.3 L/min, 0.9 L/min). For both designs, two low-flow polypropylene membrane lungs (Medos Hilte 1000, Quadrox-i Neonatal) and two mid-flow polymethylpentene membrane lungs (Novalung Minilung, Quadrox-iD Pediatric) were compared. While the parallel-plated Quadrox-iD Pediatric achieved the overall highest CO2 removal rates under medium and high sweep gas flow rates, the two circular membrane lungs performed relatively better at the lowest gas flow rate of 0.5 L/min. The low-flow Hilite 1000, although overall better than the Quadrox i-Neonatal, had the most significant advantage at a gas flow of 0.5 L/min. Moreover, the circular Minilung, despite being significantly less efficient than the Quadrox-iD Pediatric at medium and high sweep gas flow rates, did not show a significantly worse CO2 removal rate at a gas flow of 0.5 L/min but rather a slight advantage. We suggest that circular membrane lungs have an advantage at low sweep gas flow rates due to reduced shunting as a result of their fiber orientation. Efficiency for such low gas flow scenarios might be relevant for possible future portable ECCO2R devices. Full article
(This article belongs to the Special Issue Advances in Extracorporeal Membrane Oxygenation)
Show Figures

Figure 1

12 pages, 2832 KB  
Article
Formation of Microfiltration Membranes from PMP/PIB Blends: Effect of PIB Molecular Weight on Membrane Properties
by Sergey Ilyin, Viktoria Ignatenko, Tatyana Anokhina, Danila Bakhtin, Anna Kostyuk, Evgenia Dmitrieva, Sergey Antonov and Alexey Volkov
Membranes 2020, 10(1), 9; https://doi.org/10.3390/membranes10010009 - 3 Jan 2020
Cited by 7 | Viewed by 5519
Abstract
A series of microfiltration membranes were fabricated by the extraction of polyisobutylene (PIB) from its immiscible blends with polymethylpentene (PMP). Three PIB with different molecular weight of 7.5 × 104 (Oppanol B15), 34 × 104 (Oppanol B50) and 110 × 10 [...] Read more.
A series of microfiltration membranes were fabricated by the extraction of polyisobutylene (PIB) from its immiscible blends with polymethylpentene (PMP). Three PIB with different molecular weight of 7.5 × 104 (Oppanol B15), 34 × 104 (Oppanol B50) and 110 × 104 (Oppanol B100) g/mol, respectively, were used to evaluate the effect of molecular weight on the porous structure and transport properties of resulting PMP-based membranes. To mimic the conditions of 3D printing, the flat-sheet membranes were fabricated by means of melting of mixtures of various PMP and PIB concentrations through the hot rolls at 240 C followed by a quick cooling. The rheology study of individual components and blends at 240 C revealed that PIB B50 possessed the most close flow curve to the pure PMP, and their blends demonstrated the lowest viscosity comparing to the compositions made of PIB with other molecular weights (B15 or B100). SEM images of the cross-section PMP membranes after PIB extraction (PMP/PIB = 55/45) showed that the use of PIB B50 allowed obtaining the sponge-like porous structure, whereas the slit-shaped pores were found in the case of PIB B15 and PIB B100. Additionally, PMP/B50 blends demonstrated the optimum combinations of mechanical properties (str = 9.1 MPa, E = 0.20 GPa), adhesion to steel (adh = 0.8 kPa) and retention performance (R240 nm = 99%, R38 nm = 39%). The resulting membranes were non- or low-permeable for water if the concentration of PIB B50 in the initial blends was 40 wt.% or lower. The optimal filtration performance was observed in the case of PMP/B50 blends with a ratio of 55/45 (Pwater = 1.9 kg/m2hbar, R240 nm = 99%, R38 nm = 39%) and 50/50 (Pwater = 1100 kg/m2hbar, R240 nm = 91%, R38 nm = 36%). Full article
Show Figures

Graphical abstract

9 pages, 3991 KB  
Article
Multipurpose Polymer Bragg Grating-Based Optomechanical Sensor Pad
by Steffen Hessler, Patrick Bott, Stefan Kefer, Bernhard Schmauss and Ralf Hellmann
Sensors 2019, 19(19), 4101; https://doi.org/10.3390/s19194101 - 23 Sep 2019
Cited by 7 | Viewed by 3409
Abstract
Flexible epoxy waveguide Bragg gratings are fabricated on a low-modulus TPX™ polymethylpentene polyolefin substrate for an easy to manufacture and low-cost optomechanical sensor pad providing exceedingly multipurpose application potentials. Rectangular EpoCore negative resist strip waveguides are formed employing standard UV mask lithography. Highly [...] Read more.
Flexible epoxy waveguide Bragg gratings are fabricated on a low-modulus TPX™ polymethylpentene polyolefin substrate for an easy to manufacture and low-cost optomechanical sensor pad providing exceedingly multipurpose application potentials. Rectangular EpoCore negative resist strip waveguides are formed employing standard UV mask lithography. Highly persistent Bragg gratings are inscribed directly into the channel waveguides by permanently modifying the local refractive indices through a well-defined KrF excimer laser irradiated +1/-1 order phase mask. The reproducible and vastly versatile sensing capabilities of this easy-to-apply optomechanical sensor pad are demonstrated in the form of an optical pickup for acoustic instruments, a broadband optical accelerometer, and a biomedical vital sign sensor monitoring both respiration and pulse at the same time. Full article
(This article belongs to the Special Issue Optomechanical Sensors)
Show Figures

Figure 1

7 pages, 7015 KB  
Article
Thin-Film Coated Plastic Wrap for Food Packaging
by Hsin-Yu Wu, Ting-Xuan Liu, Chia-Hsun Hsu, Yun-Shao Cho, Zhi-Jia Xu, Shu-Chuan Liao, Bo-Han Zeng, Yeu-Long Jiang and Shui-Yang Lien
Materials 2017, 10(7), 821; https://doi.org/10.3390/ma10070821 - 18 Jul 2017
Cited by 10 | Viewed by 7322
Abstract
In this study, the antimicrobial property and food package capability of polymethylpentene (PMP) substrate with silicon oxdie (SiOx) and organic silicon (SiCxHy) stacked layers deposited by an inductively coupled plasma chemical vapor deposition system were investigated. The [...] Read more.
In this study, the antimicrobial property and food package capability of polymethylpentene (PMP) substrate with silicon oxdie (SiOx) and organic silicon (SiCxHy) stacked layers deposited by an inductively coupled plasma chemical vapor deposition system were investigated. The experimental results show that the stacked pair number of SiOx/SiCxHy on PMP is limited to three pairs, beyond which the films will crack and cause package failure. The three-pair SiOx/SiCxHy on PMP shows a low water vapor transmission rate of 0.57 g/m2/day and a high water contact angle of 102°. Three-pair thin-film coated PMP demonstrates no microbe adhesion and exhibits antibacterial properties within 24 h. Food shelf life testing performed at 28 °C and 80% humidity reports that the three-pair thin-film coated PMP can enhance the food shelf-life to 120 h. The results indicate that the silicon-based thin film may be a promising material for antibacterial food packaging applications to extend the shelf-life of food products. Full article
(This article belongs to the Special Issue Selected Papers from IEEE ICASI 2017)
Show Figures

Figure 1

Back to TopTop