Multipurpose Polymer Bragg Grating-Based Optomechanical Sensor Pad
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Bragg Grating Reflection Spectrum
3.2. Sensor Application as an Optical Pickup for Acoustic Instruments
3.3. Sensor Application as an Optical Accelerometer
3.4. Sensor Application as an Optical Vital Sign Monitor
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grattan, K.T.V.; Sun, T. Fiber optic sensor technology: An overview. Sens. Actuators A Phys. 2000, 82, 40–61. [Google Scholar] [CrossRef]
- Peters, K. Polymer optical fiber sensors—A review. Smart Mater. Struct. 2011, 20, 13002. [Google Scholar] [CrossRef]
- Budinski, V.; Donlagic, D. Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review. Sensors 2017, 17, 443. [Google Scholar] [CrossRef] [PubMed]
- Pevec, S.; Donlagić, D. Multiparameter fiber-optic sensors: A review. Opt. Eng. 2019, 58. [Google Scholar] [CrossRef]
- Cusano, A.; Cutolo, A.; Albert, J. Fiber Bragg Grating Sensors. Recent Advancements, Industrial Applications and Market Exploitation; Bentham Science Publishers Ltd.: Sharja, UAE, 2015. [Google Scholar]
- Ye, X.W.; Su, Y.H.; Han, J.P. Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review. Sci. World J. 2014, 652329. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Okabe, Y.; Yu, F. Ultrasonic Structural Health Monitoring Using Fiber Bragg Grating. Sensors 2018, 18. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, M.; Rajan, G.; Semenova, Y.; Farrell, G. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials. Sensors 2016, 16, 99. [Google Scholar] [CrossRef] [PubMed]
- Kinet, D.; Mégret, P.; Goossen, K.W.; Qiu, L.; Heider, D.; Caucheteur, C. Fiber Bragg grating sensors toward structural health monitoring in composite materials: Challenges and solutions. Sensors 2014, 14, 7394–7419. [Google Scholar] [CrossRef] [PubMed]
- Matias, I.R.; Ikezawa, S.; Corres, J. Fiber Optic Sensors; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Dziuda, Ł.; Skibniewski, F.W.; Krej, M.; Baran, P.M. Fiber Bragg grating-based sensor for monitoring respiration and heart activity during magnetic resonance imaging examinations. J. Biomed. Opt. 2013, 18, 57006. [Google Scholar] [CrossRef] [PubMed]
- Chethana, K.; Guru Prasad, A.S.; Omkar, S.N.; Asokan, S. Fiber bragg grating sensor based device for simultaneous measurement of respiratory and cardiac activities. J. Biophotonics 2017, 10, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, R. Fiber Bragg Gratings, 2nd ed.; Academic Press: Burlington, NJ, USA, 2010. [Google Scholar]
- Othonos, A.; Kalli, K. Fiber Bragg Gratings. Fundamentals and Applications in Telecommunications and Sensing; Artech House: Norwood, MA, USA, 1999. [Google Scholar]
- Wochnowski, C. UV-laser-based fabrication of a planar, polymeric Bragg-structure. Opt. Laser Technol. 2009, 41, 734–740. [Google Scholar] [CrossRef]
- Rosenberger, M.; Hessler, S.; Belle, S.; Schmauss, B.; Hellmann, R. Compressive and tensile strain sensing using a polymer planar Bragg grating. Opt. Express 2014, 22, 5483–5490. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, M.; Eisenbeil, W.; Schmauss, B.; Hellmann, R. Simultaneous 2D strain sensing using polymer planar Bragg gratings. Sensors 2015, 15, 4264–4272. [Google Scholar] [CrossRef] [PubMed]
- Sauer, T.; Kefer, S.; Ruppert, W.; Hellmann, R.; Kaloudis, M. Integration of Bragg grating sensors in components made of carbon fiber reinforced polymers. AMA Sensor & Test 2019. AMA Assoc. Sens. Meas. 2019, 806–810. [Google Scholar] [CrossRef]
- Rosenberger, M.; Roth, G.-L.; Adelmann, B.; Schmauss, B.; Hellmann, R. Temperature Referenced Planar Bragg Grating Strain Sensor in fs-Laser Cut COC Specimen. IEEE Photonics Technol. Lett. 2017, 29, 885–888. [Google Scholar] [CrossRef]
- Rosenberger, M.; Pauer, H.; Girschikofsky, M.; Woern, H.; Schmauss, B.; Hellmann, R. Flexible Polymer Shape Sensor Based on Planar Waveguide Bragg Gratings. IEEE Photonics Technol. Lett. 2016, 28, 1898–1901. [Google Scholar] [CrossRef]
- Girschikofsky, M.; Rosenberger, M.; Förthner, M.; Rommel, M.; Frey, L.; Hellmann, R. Flexible thin film bending sensor based on Bragg gratings in hybrid polymers. In Optical Sensing and Detection V, Proceedings of the SPIE 10680, Optical Sensing and Detection V, Strasbourg, France, 22–26 April 2018; Berghmans, F., Mignani, A.G., Eds.; SPIE: Bellingham, WA, USA, 2018; p. 26. [Google Scholar]
- Girschikofsky, M.; Rosenberger, M.; Förthner, M.; Rommel, M.; Frey, L.; Hellmann, R. Waveguide Bragg Gratings in Ormocer®s for Temperature Sensing. Sensors 2017, 17. [Google Scholar] [CrossRef] [PubMed]
- Missinne, J.; Teigell Benéitez, N.; Mattelin, M.-A.; Lamberti, A.; Luyckx, G.; van Paepegem, W.; van Steenberge, G. Bragg-Grating-Based Photonic Strain and Temperature Sensor Foils Realized Using Imprinting and Operating at Very Near Infrared Wavelengths. Sensors 2018, 18. [Google Scholar] [CrossRef] [PubMed]
- Hessler, S.; Schmauss, B.; Hellmann, R. Temperature corrected lab-on-a-chip-platform with integrated epoxy polymer Bragg gratings. In Optical Sensing and Detection V, Proceedings of the SPIE 10680, Optical Sensing and Detection V, Strasbourg, France, 22–26 April 2018; Berghmans, F., Mignani, A.G., Eds.; SPIE: Bellingham, WA, USA, 2018; p. 27. [Google Scholar]
- Hessler, S.; Rüth, M.; Sauvant, C.; Lemke, H.-D.; Schmauss, B.; Hellmann, R. Hemocompatibility of EpoCore/EpoClad photoresists on COC substrate for optofluidic integrated Bragg sensors. Sens. Actuators B Chem. 2017, 239, 916–922. [Google Scholar] [CrossRef]
- Guan, T.; Keulemans, G.; Ceyssens, F.; Puers, R. MOEMS uniaxial accelerometer based on EpoClad/EpoCore photoresists with built-in fiber clamp. Sens. Actuators A Phys. 2013, 193, 95–102. [Google Scholar] [CrossRef]
- Missinne, J.; Teigell Benéitez, N.; Chiesura, G.; Luyckx, G.; Degrieck, J.; van Steenberge, G. Flexible thin polymer waveguide Bragg grating sensor foils for strain sensing. In Organic Photonic Materials and Devices XIX, Proceedings of the SPIE 10101, Organic Photonic Materials and Devices XIXS, San Francisco, CA, USA, 28 January–2 February 2017; Tabor, C.E., Kajzar, F., Kaino, T., Koike, Y., Eds.; SPIE: Bellingham, WA, USA, 2017. [Google Scholar]
- Mitsui Chemicals America, Inc. TPX® Brochure. Available online: https://www.mitsuichemicals.com/files/tpx_brochure.pdf (accessed on 13 August 2019).
- Micro Resist Technology GmbH. EpoCore/EpoClad Processing Guidelines; Micro Resist Technology GmbH: Berlin, Germany, 2017. [Google Scholar]
- Villareal, M.R. Circulatory System en.svg. Wikimedia Commons. Available online: https://commons.wikimedia.org/wiki/File:Circulatory_System_en.svg (accessed on 13 August 2019).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hessler, S.; Bott, P.; Kefer, S.; Schmauss, B.; Hellmann, R. Multipurpose Polymer Bragg Grating-Based Optomechanical Sensor Pad. Sensors 2019, 19, 4101. https://doi.org/10.3390/s19194101
Hessler S, Bott P, Kefer S, Schmauss B, Hellmann R. Multipurpose Polymer Bragg Grating-Based Optomechanical Sensor Pad. Sensors. 2019; 19(19):4101. https://doi.org/10.3390/s19194101
Chicago/Turabian StyleHessler, Steffen, Patrick Bott, Stefan Kefer, Bernhard Schmauss, and Ralf Hellmann. 2019. "Multipurpose Polymer Bragg Grating-Based Optomechanical Sensor Pad" Sensors 19, no. 19: 4101. https://doi.org/10.3390/s19194101
APA StyleHessler, S., Bott, P., Kefer, S., Schmauss, B., & Hellmann, R. (2019). Multipurpose Polymer Bragg Grating-Based Optomechanical Sensor Pad. Sensors, 19(19), 4101. https://doi.org/10.3390/s19194101