Insights into Gradient and Anisotropic Pore Structures of Capiox® Gas Exchange Membranes for ECMO: Theoretically Verifying SARS-CoV-2 Permeability
Abstract
:1. Introduction
2. Material and Methods
2.1. Hollow Fiber Membranes for Extracorporeal Membrane Oxygenator
2.2. Observation of Anisotropic Pores and Cross Sections of the Hollow Fiber Membranes Using Field Emission Scanning Electron Microscopy (FE-SEM)
2.3. Validation of SARS-CoV-2 Permeability Using the Steric Exclusion Model and Hindered Diffusion Model
3. Results
3.1. FE-SEM Observations of the Tortuous Pore Structures of the ECMO Membranes
3.2. Determination of Pore Diameter, Surface Porosity, and SARS-CoV-2 Permeability
4. Discussion
4.1. Risk of SARS-CoV-2 Scattering due to Vapor Permeation in Capiox® LX2
4.2. Usefulness and Limitation of Theoretically Validating SARS-CoV-2 Permeability from the Perspective of Membrane Engineering
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
a | Molecular radius, Solute radius (m) |
DAB | Diffusive coefficient in a homogeneous fluid, usually used for water at 37 ℃ (m2/s) |
Diffusive coefficient in membrane (m2/s) | |
K | Partition coefficient (–) |
Membrane thickness (m) | |
Permeability in membrane (m/s) | |
r | Pore radius (m) |
Greek letters | |
ε | Surface porosity (–) |
τ | Membrane tortuosity (–) |
Hindered diffusion parameter (–) | |
Subscripts/superscripts | |
m | Membrane |
References
- Japan ECMOnet. Available online: https://www.ecmonet.jp (accessed on 1 January 2022).
- Liu, K. An Assessment of Aerosolization via Membranous Oxygenator and Coagulopathy in COVID-19, ELSO Webinar. 30 March 2020. Available online: https://ecmoedblog.files.wordpress.com/2020/03/elso-webinar-slides-keibun-liu (accessed on 6 February 2022).
- Ogura, T.; Oshimo, S.; Liu, K.; Iwashita, Y.; Hashimoto, S.; Takeda, S. Establishment of a disaster management-like system for COVID-19 patients requiring veno-venous extracorporeal membrane oxygenation in Japan. Membranes 2021, 11, 625. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Uemura, T.; Matsuda, W.; Sato, M.; Ishizuka, K.; Fukaya, T.; Kinoshita, N.; Nakamoto, T.; Ohmagari, N.; Katano, H.; et al. SARS-CoV-2 Leakage from the Gas Outlet Port during Extracorporeal Membrane Oxygenation for COVID-19. ASAIO J. 2021, 67, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.R.; Baker, M.; Buffin, M.; Campbell, P.; Hansbro, S.; Kennington, S.; Lilley, A.; Whitehorne, M. Normal and abnormal trans-oxygenator pressure gradients during cardiopulmonary bypass. Perfusion 2003, 18, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Lund, L.W.; Hattler, B.G.; Federspiel, W.J. Is condensation the cause of plasma leakage in microporous hollow fiber membrane oxygenators. J. Membr. Sci. 1998, 147, 87–93. [Google Scholar] [CrossRef]
- Eash, H.J.; Jones, H.M.; Hattler, B.G.; Federspiel, W.J. Evaluation of plasma resistant hollow fiber membranes for artificial lungs. ASAIO J. 2004, 50, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Meyns, B.; Vercaemst, L.; Vandezande, E.; Bollen, H.; Vlasselaers, D. Plasma leakage of oxygenators in ECMO depends on the type of oxygenator and on patient variables. Int. J. Artif. Organs 2005, 28, 30–34. [Google Scholar] [CrossRef]
- Ministry of Health, Labor and Welfare. Reiwa 2nd Year of Score Table for Medical Fee, Disposable Oxygenator (Membrane Oxygenator), Extracorporeal Membrane Oxygenator for Assisting Respiration; Ministry of Health, Labor and Welfare: Tokyo, Japan, 2020. (In Japanese)
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Terumo Corporation. Available online: https://www.terumo.co.jp/pressrelease/detail/20190117/494/ (accessed on 1 January 2022).
- Hagiwara, K.; Innami, K.; Yokoyama, K.; Kitoh, H.; Muramoto, T.; Tatebe, K.; Seita, Y.; Fukasawa, H. An approach to the microporous hollow fiber for the ECMO oxygenator—Micopore characterization of the gas exchange performance, plasma leakage, and hydrophilization of the inner surface of fibers. Jpn. J. Artif. Organs 1992, 21, 720–726. (In Japanese) [Google Scholar]
- Anzai, T.; Okumura, A.; Kawamura, M.; Yokoyama, K.; Oshiyama, H.; Kido, T.; Nojiri, C. Evaluation of the Biocompatibility of an In Vitro Test Using a Poly2methoxyethylacrylate Coated Oxygenator. Jpn. J. Artif. Organs 2000, 29, 73–79. (In Japanese) [Google Scholar]
- Duy Nguyen, B.T.; Nguyen Thi, H.Y.; Nguyen Thi, B.P.; Kang, D.-K.; Kim, J.F. The Roles of Membrane Technology in Artificial Organs: Current Challenges and Perspectives. Membranes 2021, 11, 239. [Google Scholar] [CrossRef]
- Nakanishi, H.; Nishitani, Y.; Kuwana, K.; Tahara, K.; Aoki, Y.; Osaki, S.; Hu, C. Development of new oxygenator with cyclosiloxane coated polypropylene hollow fiber. Jpn. J. Artif. Organs 1996, 25, 329–332. (In Japanese) [Google Scholar]
- Watanabe, H.; Hayashi, J.; Ohzeki, H.; Moro, H.; Sugawara, M.; Eguchi, S. Biocompatibility of a silicone-coated polypropylene hollow fiber Oxygenator in an in vitro model. Ann. Thorac. Surg. 1999, 67, 1315–1319. [Google Scholar] [CrossRef]
- Kuwana, K. Membrane for Oxygenation and Development of Membrane Oxygenator. Membrane 2000, 25, 107–117. (In Japanese) [Google Scholar] [CrossRef]
- Sakai, K. SS hollow fiber membrane and membrane oxygenator MENOX α®. Membrane 2000, 25, 124–129. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Fukuda, M.; Furuya, T.; Sadano, K.; Tokumine, A.; Mori, T.; Saomoto, H.; Sakai, K. Electron microscopic confirmation of anisotropic pore characteristics for ECMO membranes theoretically validating the risk of SARS-CoV-2 permeation. Membranes 2021, 11, 529. [Google Scholar] [CrossRef]
- Fukuda, M.; Yoshimoto, H.; Saomoto, H.; Sakai, K. Validity of three-dimensional tortuous pore structure and fouling of hemoconcentration capillary membrane using the tortuous pore diffusion model and scanning probe microscopy. Membranes 2020, 10, 315. [Google Scholar] [CrossRef]
- Fournier, R.L. Chapter 6 Mass transfer in heterogeneous materials. In Basic Transport Phenomena in Biomedical Engineering, 4th ed.; Fournier, R.L., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 289–347. [Google Scholar]
- Sakai, K.; Takesawa, S.; Mimura, R.; Ohashi, H. Determination of pore radius of hollow fiber dialysis membranes using tritium-labeled water. J. Chem. Eng. Jpn. 1988, 21, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Sakai, K. Determination of pore size and pore size distribution: 2. Dialysis membranes. J. Membr. Sci. 1994, 96, 91–130. [Google Scholar] [CrossRef]
- Hayama, M.; Kohori, F.; Sakai, K. AFM observation of small surface pores of hollow fiber dialysis membrane using highly sharpened probe. J. Membr. Sci. 2002, 197, 243–249. [Google Scholar] [CrossRef]
- Yamamoto, K.-I.; Hayama, M.; Matsuda, M.; Yakushiji, T.; Fukuda, M.; Miyasaka, T.; Sakai, K. Evaluation of asymmetrical structure dialysis membrane by tortuous capillary pore diffusion model. J. Membr. Sci. 2007, 287, 88–93. [Google Scholar] [CrossRef]
- Yamazaki, K.; Matsuda, M.; Yamamoto, K.-I.; Yakushiji, T.; Sakai, K. Internal and surface structure characterization of cellulose triacetate hollow fiber dialysis membranes. J. Membr. Sci. 2011, 368, 34–40. [Google Scholar] [CrossRef]
- Fukuda, M.; Saomoto, H.; Mori, T.; Yoshimoto, H.; Kusumi, R.; Sakai, K. Impact of three-dimensional tortuous pore structure on polyethersulfone membrane morphology and mass transfer properties from a manufacturing perspective. J. Artif. Organs 2020, 23, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Kawasaki, M.; Okano, Y.; Higashimaru, T. Polymerization of metal catalysts: Monomer structure, reactivity, and polymer properties. Polym. J. 1982, 14, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Morisato, A.; Pinnau, I. Synthesis and gas permeation properties of poly(4-methyl-2-pentyne). J. Membr. Sci. 1996, 121, 243–250. [Google Scholar] [CrossRef]
- Fukuda, M.; Tokumine, A.; Noda, K.; Sakai, K. Newly developed pediatric membrane oxygenator that suppresses excessive pressure drop in cardiopulmonary bypass and extracorporeal membrane oxygenation (ECMO). Membranes 2020, 10, 362. [Google Scholar] [CrossRef]
- Akiyama, D.; Katagiri, N.; Mizuno, T.; Tsukiya, T.; Takewa, Y.; Tatsumi, E. Preclinical biocompatibility study of ultra-compact durable ECMO system in chronic animal experiments for 2 weeks. J. Artif. Organs 2020, 23, 335–341. [Google Scholar] [CrossRef]
- Beely, B.M.; Campbell, J.E.; Meyer, A.; Langer, T.; Negaard, K.; Chung, K.K.; Cap, A.P.; Cancio, L.C.; Batchinsky, A.I. Electron microscopy as a tool for assessment of anticoagulation strategies during extracorporeal life support: The proof is on the membrane. ASAIO J. 2016, 62, 525–532. [Google Scholar] [CrossRef]
- Nazem-Bokaee, H.; Chen, D.; O’Donnell, S.M.; Zydney, A.L. Visualizing effects of protein fouling on capture profiles in the Planova BioEX and 20N virus filters. J. Membr. Sci. 2020, 610, 118271. [Google Scholar] [CrossRef]
Sample | Capiox® CX-LX2 LW Sample A | Capiox® CX-FX15E Sample B | BIOCUBE® C 6000P [19] |
---|---|---|---|
Manufacturer (Manufacturer of membrane) | Terumo Co., Ltd., Tokyo, Japan | Terumo Co., Ltd., Tokyo, Japan | NIPRO Co., Ltd., Tokyo, Japan (DIC Co., Ltd., Tokyo, Japan) |
Material of hollow fiber membrane | Poly(4-methyl-2-pentene) (PMP) | Polypropylene (PP) | Poly(4-methyl-1-pentene) (PMP) |
Antithrombogenic material coating for blood flow path | Poly-2-methoxyethylacrylate (PMEA) | Poly-2-methoxyethylacrylate (PMEA) | Heparin |
Inner diameter of lumen [µm] (n = 30) | 207 ± 8 | 181 ± 10 | 176 ± 6 |
Membrane thickness [µm] (n = 30) | 87 ± 3 | 50 ± 6 | 30 ± 2 |
Pore structure | skinned asymmetric pore structure | asymmetric pore structure | asymmetric pore structure |
Sterilization method | EOG | EOG | EOG |
Insurance coverage classification (in Japan) | extracorporeal membrane oxygenator for open heart surgery; ECMO (1) ECMO for assisting circulation/ECMO for assisting respiration (2) | extracorporeal membrane oxygenator for open heart surgery; ECMO (1) | extracorporeal membrane oxygenator for open heart surgery; ECMO (1) ECMO for assisting circulation/ECMO for assisting respiration (2) |
Sample | Capiox® CX-LX2 LW Sample A | Capiox® CX-FX15E Sample B | BIOCUBE® C 6000P |
---|---|---|---|
Equivalent pore diameter of inner surface [nm] n = 60, AVG ± STD. | 249 ± 147 | 227 ± 103 | 78 ± 27 [19] |
Equivalent pore diameter of outer surface [nm] n = 60, AVG ± STD. | NA | 193 ± 79 | 87 ± 25 [19] |
Porosity of inner surface [%] (1) n = 3, AVG ± STD. | 12.7 ± 0.9 | 14.3 ± 1.2 | 18.2 ± 2.4 |
Porosity of outer surface [%] n = 3, AVG ± STD. | NA | 13.8 ± 2.6 | 10.9 ± 1.0 |
Tortuousity [-] (2) | 1.0 | 1.0 | 1.0 |
Partition coefficient (K) of SARS-CoV-2 [-] | NA | 0.49 | 0.12 |
Intramembrane diffusion coefficient (Dm) of SARS-CoV-2 (3) [m2/s] | NA | 2.0 × 10−12 | 8.9 × 10−14 |
Permeability (Pm) of SARS-CoV-2 (4) [m/s] | NA | 3.1 × 10−9 | 3.3 × 10−10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukuda, M.; Tanaka, R.; Sadano, K.; Tokumine, A.; Mori, T.; Saomoto, H.; Sakai, K. Insights into Gradient and Anisotropic Pore Structures of Capiox® Gas Exchange Membranes for ECMO: Theoretically Verifying SARS-CoV-2 Permeability. Membranes 2022, 12, 314. https://doi.org/10.3390/membranes12030314
Fukuda M, Tanaka R, Sadano K, Tokumine A, Mori T, Saomoto H, Sakai K. Insights into Gradient and Anisotropic Pore Structures of Capiox® Gas Exchange Membranes for ECMO: Theoretically Verifying SARS-CoV-2 Permeability. Membranes. 2022; 12(3):314. https://doi.org/10.3390/membranes12030314
Chicago/Turabian StyleFukuda, Makoto, Ryo Tanaka, Kazunori Sadano, Asako Tokumine, Tomohiro Mori, Hitoshi Saomoto, and Kiyotaka Sakai. 2022. "Insights into Gradient and Anisotropic Pore Structures of Capiox® Gas Exchange Membranes for ECMO: Theoretically Verifying SARS-CoV-2 Permeability" Membranes 12, no. 3: 314. https://doi.org/10.3390/membranes12030314
APA StyleFukuda, M., Tanaka, R., Sadano, K., Tokumine, A., Mori, T., Saomoto, H., & Sakai, K. (2022). Insights into Gradient and Anisotropic Pore Structures of Capiox® Gas Exchange Membranes for ECMO: Theoretically Verifying SARS-CoV-2 Permeability. Membranes, 12(3), 314. https://doi.org/10.3390/membranes12030314