Electron Microscopic Confirmation of Anisotropic Pore Characteristics for ECMO Membranes Theoretically Validating the Risk of SARS-CoV-2 Permeation
Abstract
:1. Introduction
2. Material and Methods
2.1. Hollow Fiber Membrane for Extracorporeal Membrane Oxygenator
2.2. Observation of Three-Dimensional Tortuous Pore Using Scanning Probe Microscope (SPM) System
2.3. Observation of Three-Dimensional Tortuous Pores Using Field Emission Scanning Electron Microscope (FE-SEM)
2.4. Validation of SARS-CoV-2 Permeability Using the Steric Exclusion Model and Hindered Diffusion Model
3. Results
3.1. SPM Observations of Tortuous Pore Structures of ECMO Membranes
3.2. FE-SEM Observations of Tortuous Pore Structures of ECMO Membranes
3.3. Measurement of Pore Diameter and Pore Diameter Distribution and Evaluation of SARS-CoV-2 Permeability
4. Discussion
4.1. ECMO Infection and Usefulness of Theoretically Validating SARS-CoV-2 Permeation through Membrane
4.2. Optimal Design of Asymmetrical Pore Structure of ECMO Membrane
4.3. Limitations of Theoretically Validating SARS-CoV-2 Permeation Based on the Membrane Transport Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
a | Molecular radius, Solute radius (m) |
C | Concentration (g/m3) |
Concentration in a pore (mg/m3) | |
solute concentration in the pore at the inlet of the pore related with the bulk solute concentration (mg/m3) | |
DAB | Diffusion coefficient in a homogeneous fluid, usually used for water at 37 °C (m2/s) |
Diffusion coefficient in membrane (m2/s) | |
Dpasma | Diffusion coefficient in plasma (m2/s) |
Diffusion coefficient in a pore (m2 / s) | |
K | Partition coefficient (−) |
Membrane thickness (m) | |
Mass transfer flux in a pore (g/m2 s) | |
NA | Avogadoro’s number (6.02 × 1023 mol−1) |
R | Universal gas constant |
T | Absolute temperature (K) |
r | Pore radius (m) |
Greek letters | |
µ | viscosity (cP) (Pa s) (g/(cm s)) |
ρ | density (g/cm3) |
τ | membrane tortuosity (−) |
Hindered diffusion parameter (−) | |
Subscripts/superscripts | |
A | Solute |
Local value at | |
Local value at | |
plasma | Plasma |
pore | Pore |
bulk | Refers to the value in a bulk solution |
x | Local value at position x (m) |
References
- Japan ECMO Network, Japanese Association for Acute Medicine, the Japanese Society of Intensive Care Medicine, Japanese Society of Respiratory Care Medicine, The Japanese Association for Infectious Diseases, The Japanese Respiratory Society, Japanese Society of Percutaneous Cardio-Pulmonary Support/Extracorporeal Membrane Oxygenation. Available online: https://www.ecmonet.jp (accessed on 1 July 2021).
- Keibun, L. An Assessment of Aerosolization via Membranous Oxygenator and Coagulopathy in COVID-19. ELSO Webinar, 2020.3.30. Available online: https://ecmoedblog.files.wordpress.com/2020/03/elso-webinar-slides-keibun-liu.pdf (accessed on 1 April 2021).
- Hagiwara, K.; Innami, K.; Yokoyama, K.; Kitoh, H.; Muramoto, T.; Tatebe, K.; Seita, Y.; Fukasawa, H. An approach to the microporous hollow fiber for the ECMO oxygenator—Micopore characterization of the gas exchange performance, plasma leakage, and hydrophilization of the inner surface of fibers. Jpn. J. Artif. Organs 1992, 21, 720–726. (In Japanese) [Google Scholar]
- Lund, L.W.; Hattler, B.G.; Federspiel, W.J. Is condensation the cause of plasma leakage in microporous hollow fiber membrane oxygenators. J. Membr. Sci. 1998, 147, 87–93. [Google Scholar] [CrossRef]
- Meyns, B.; Vercaemst, L.; Vandezande, E.; Bollen, H.; Vlasselaers, D. Plasma leakage of oxygenators in ECMO depends on the type of oxygenator and on patient variables. Int. J. Artif. Organs 2005, 28, 30–34. [Google Scholar] [CrossRef]
- Fisher, A.R.; Baker, M.; Buffin, M.; Campbell, P.; Hansbro, S.; Kennington, S.; Lilley, A.; Whitehorne, M. Normal and abnormal trans-oxygenator pressure gradients during cardiopulmonary bypass. Perfusion 2003, 18, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Myers, G.J.; Weighell, P.R.; McCloskey, B.J.; Holt, A.M.; McTeer, S.; Maxwell, S.L. A multicenter investigation into the occurrence of high-pressure excursions. J. Extra. Corpor. Technol. 2003, 35, 127–132. [Google Scholar] [PubMed]
- Ündar, A.; Owens, W.R.; McGarry, M.C.; Surprise, D.L.; Kilpack, V.D.; Mueller, M.W.; McKenzie, E.D.; Fraser, J.C.D. Comparison of hollow-fiber membrane oxygenators in terms of pressure drop of the membrane during normothermic and hypothermic cardiopulmonary bypass in neonates. Perfusion 2005, 20, 135–138. [Google Scholar] [CrossRef]
- Levi, M.; Thachik, J.; Iba, T.; Levy, J.H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020, 7, e438–e440. [Google Scholar] [CrossRef]
- Sakai, K.; Takesawa, S.; Mimura, R.; Ohashi, H. Determination of pore radius of hollow fiber dialysis membranes using tritium-labeled water. J. Chem. Eng. Jpn. 1988, 21, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Sakai, K. Determination of pore size and pore size distribution: 2. Dialysis membranes. J. Membr. Sci. 1994, 96, 91–130. [Google Scholar] [CrossRef]
- Hayama, M.; Kohori, F.; Sakai, K. AFM observation of small surface pores of hollow fiber dialysis membrane using highly sharpened probe. J. Membr. Sci. 2002, 197, 243–249. [Google Scholar] [CrossRef]
- Yamamoto, K.-I.; Hayama, M.; Matsuda, M.; Yakushiji, T.; Fukuda, M.; Miyasaka, T.; Sakai, K. Evaluation of asymmetrical structure dialysis membrane by tortuous capillary pore diffusion model. J. Membr. Sci. 2007, 287, 88–93. [Google Scholar] [CrossRef]
- Yamazaki, K.; Matsuda, M.; Yamamoto, K.-I.; Yakushiji, T.; Sakai, K. Internal and surface structure characterization of cellulose triacetate hollow fiber dialysis membranes. J. Membr. Sci. 2011, 368, 34–40. [Google Scholar] [CrossRef]
- Fukuda, M.; Saomoto, H.; Mori, T.; Yoshimoto, H.; Kusumi, R.; Sakai, K. Impact of three-dimensional tortuous pore structure on polyethersulfone membrane morphology and mass transfer properties from a manufacturing perspective. J. Artif. Organs 2020, 23, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, M.; Yoshimoto, H.; Saomoto, H.; Sakai, K. Validity of three-dimensional tortuous pore structure and fouling of hemoconcentration capillary membrane using the tortuous pore diffusion model and scanning probe microscopy. Membranes 2020, 10, 315. [Google Scholar] [CrossRef]
- Ministry of Health, Labor and Welfare. Reiwa 2nd Year of Score Table for Medical Fee, Disposable Oxygenator (Membrane Oxygenator), Extracorporeal Membrane Oxygenator for Assisting Respiration; Ministry of Health, Labor and Welfare: Tokyo, Japan, 2020. (In Japanese)
- ISO5636-5(2013). Paper and Board—Determination of Air Permeance (Medium Range)—Part 5: Gurley Method; ISO Technical Committee: Geneva, Switzerlnd, 2013. [Google Scholar]
- Fournier, R.L. Chapter 6 Mass transfer in heterogeneous materials. In Basic Transport Phenomena in Biomedical Engineering, 4th ed.; Fournier, R.L., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 289–347. [Google Scholar]
- Beck, R.E.; Schultz, J.S. Hindered diffusion in microporous membranes with known pore geometry. Science 1970, 170, 1302–1305. [Google Scholar] [CrossRef]
- Deen, W.M. Hindered transport of large molecules in liquid-filled pores. AIChE J. 1987, 33, 1409–1425. [Google Scholar] [CrossRef]
- Matsuda, N.; Sakai, K. Blood flow and oxygen transfer rate of an outside blood flow membrane oxygenator. J. Membr. Sci. 2000, 170, 153–158. [Google Scholar] [CrossRef]
- Matsuda, N.; Sakai, K.; Yamamoto, K.-I.; Iwasaki, H. Effects of hollow fiber packing fraction on blood flow pattern and gas transfer rate of an intravascular oxygenator (IVOX). J. Membr. Sci. 2000, 179, 231–241. [Google Scholar] [CrossRef]
- Catapano, G.; Hornsceidt, R.; Wodetzki, A.; Baurmeister, U. Turbulent flow technique for the estimation of oxygen diffusive permeability of membranes for the oxygenation of blood and other cell suspensions. J. Membr. Sci. 2004, 230, 131–139. [Google Scholar] [CrossRef]
- Zhang, J.; Nolan, T.D.C.; Zhang, T.; Griffith, B.P.; Wu, Z.J. Characterization of membrane blood oxygenation devices using computational fluid dynamics. J. Membr. Sci. 2007, 288, 268–279. [Google Scholar] [CrossRef]
- Tabesh, H.; Amoabediny, G.; Poorkhalil, A.; Khaschab, A.; Kashefi, A.; Mottaghy, K. A theoretical model for evaluation of the design of a hollow fiber membrane oxygenator. J. Artif. Organs 2012, 15, 347–356. [Google Scholar] [CrossRef]
- Fukuda, M.; Tokumine, A.; Noda, K.; Sakai, K. Newly developed pediatric membrane oxygenator that suppresses excessive pressure drop in cardiopulmonary bypass and extracorporeal membrane oxygenation (ECMO). Membranes 2020, 10, 362. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, T.; Uemura, T.; Matsuda, W.; Sato, M.; Ishizuka, K.; Fukaya, T.; Kinoshita, N.; Nakamoto, T.; Ohmagari, N.; Katano, H.; et al. SARS-CoV-2 Leakage from the Gas Outlet Port during Extracorporeal Membrane Oxygenation for COVID-19. ASAIO J. 2021, 67, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Gill, M.C.; Shaughnessy, K.O.; Dittmer, J. A pediatric ECMO case of plasma leakage through a polymethylpentene oxygenator. Perfusion 2015, 30, 600–603. [Google Scholar] [CrossRef] [PubMed]
- Arens, J.; Grottke, O.; Haverich, A.; Maier, L.S.; Schmitz-Rode, T.; Steinseifer, U.; Wendel, H.P.; Rossaint, R. Toward a Long-Term Artificial lung. ASAIO J. 2020, 847–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ecker, P.; Pekovits, M.; Yorov, T.; Haddadi, B.; Lukitsch, B.; Elenkov, M.; Janeczek, C.; Jordan, C.; Gfoehler, M.; Harasek, M. Microstructured hollow fiber membranes; Potential fiber shapes for extracorporeal membrane oxygenatiors. Membranes 2021, 11, 374. [Google Scholar] [CrossRef] [PubMed]
- Ayano, M.; Sawamura, Y.; Hongo-Hirasaki, T.; Nishizaka, T. Direct visualization of virus removal process in hollow fiber membrane using an optical microscope. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef]
Sample | oxia® ACF Sample A | MERA NHP® Exelung TPC HPO-23WH-C Sample B | BIOCUBE® 6000 Sample C |
---|---|---|---|
Manufacturer (Manufacturer of membrane) | JMS Co., Ltd., Hiroshima, Japan (3M Co., Ltd., USA) | SENKO MEDICAL INSTRUMENT Mfg. CO., Ltd., Tokyo, Japan | Nipro Co., Ltd., Tokyo, Japan (DIC Co., Ltd., Tokyo, Japan) |
Material of hollow fiber membrane | Polypropylene (PP) | Polypropylene (PP), silicone | Polymethylpentene (PMP) |
Antithrombogenic material coating for blood flow channel | Poly (2-methacryloyloxyethyl phosphoryl choline) (PMPC) | Heparin compound | Heparin |
Inner diameter of lumen [µm] (n = 30) | 238 ± 5 | 246 ± 3 | 176 ± 6 |
Membrane thickness [µm] (n = 30) | 35 ± 1 | 27 ± 1 | 30 ± 2 |
Air permeability (1) [s] | 35.1 ± 1.4 | - | - |
Pore structure | asymmetric pore structure | asymmetric pore structure, the outer surface of the membrane is coated with thin silicone layer (thickness 0.2 µm) | asymmetric pore structure |
Sterilization method | EOG | EOG | EOG |
Insurance coverage classification (in Japan) | extracorporeal membrane oxygenator; ECMO (2) | extracorporeal membrane oxygenator; ECMO (2) Cardiac ECMO Respiratory ECMO (3) | extracorporeal membrane oxygenator; ECMO (2) Cardiac ECMO Respiratory ECMO (3) |
Sample | Oxia® ACF Sample A | MERA NHP® Exelung TPC HPO-23WH-C Sample B | BIOCUBE® 6000 Sample C |
---|---|---|---|
Tortuous pore diameter of inner surface (nm) n = 50, AVG. ± STD. upper: major axis lower: minor axis | 152 ± 50 | 166 ± 51 | 78 ± 27 |
59 ± 25 | 53 ± 15 | 42 ± 13 | |
Tortuous pore diameter of outer surface (nm) n = 50, AVG. ± STD. upper: major axis lower: minor axis | 122 ± 51 | 86 ± 27 | 77 ± 25 |
44 ± 14 | 40 ± 18 (n = 5) | 52 ± 15 | |
Partition coefficient (K) of SARS-CoV-2 [-] SARS-CoV-2 diameter upper: 50 nm lower: 80 nm | 0.35 | 0.18 | 0.12 |
0.12 | 0.005 | 0.002 | |
Intramembrane diffusive coefficient (Dm) of SARS-CoV-2 (1) (2) (m2/s) SARS-CoV-2 diameter upper: 50 nm lower: 80 nm | 7.2 × 10−13 | 1.6× 10−13 | 8.9 × 10−14 |
5.5 × 10−14 | 1.5× 10−15 | 8.4 × 10−17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukuda, M.; Furuya, T.; Sadano, K.; Tokumine, A.; Mori, T.; Saomoto, H.; Sakai, K. Electron Microscopic Confirmation of Anisotropic Pore Characteristics for ECMO Membranes Theoretically Validating the Risk of SARS-CoV-2 Permeation. Membranes 2021, 11, 529. https://doi.org/10.3390/membranes11070529
Fukuda M, Furuya T, Sadano K, Tokumine A, Mori T, Saomoto H, Sakai K. Electron Microscopic Confirmation of Anisotropic Pore Characteristics for ECMO Membranes Theoretically Validating the Risk of SARS-CoV-2 Permeation. Membranes. 2021; 11(7):529. https://doi.org/10.3390/membranes11070529
Chicago/Turabian StyleFukuda, Makoto, Tomoya Furuya, Kazunori Sadano, Asako Tokumine, Tomohiro Mori, Hitoshi Saomoto, and Kiyotaka Sakai. 2021. "Electron Microscopic Confirmation of Anisotropic Pore Characteristics for ECMO Membranes Theoretically Validating the Risk of SARS-CoV-2 Permeation" Membranes 11, no. 7: 529. https://doi.org/10.3390/membranes11070529