Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (899)

Search Parameters:
Keywords = polymerase interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4484 KiB  
Article
Mechanistic Study of NT5E in Reg3β-Induced Macrophage Polarization and Cooperation with Plasma Proteins in Myocarditis Injury and Repair
by Shichao Zhang, Peirou Zhou, Fanfan Zhu, Yingying Wang, Xuesong Wang, Jingwen Chen, Yumeng Li and Xiaoyi Shao
Biology 2025, 14(8), 1017; https://doi.org/10.3390/biology14081017 - 7 Aug 2025
Abstract
Background: We aimed to explore the mechanism by which extracellular-5′-nucleotidase (NT5E) regulates macrophage polarization via regenerating islet-derived protein 3 beta (Reg3β) and other plasma proteins that mediate immune-cell effects on myocarditis. Methods: The involvement of NT5E in Reg3β-induced macrophage polarization was first analyzed [...] Read more.
Background: We aimed to explore the mechanism by which extracellular-5′-nucleotidase (NT5E) regulates macrophage polarization via regenerating islet-derived protein 3 beta (Reg3β) and other plasma proteins that mediate immune-cell effects on myocarditis. Methods: The involvement of NT5E in Reg3β-induced macrophage polarization was first analyzed using RNA sequencing, Western blotting, and quantitative polymerase chain reaction. Mendelian randomization was employed to identify NT5E and various plasma proteins as potential therapeutic targets for myocarditis. Mediation analysis, enrichment analysis, protein–protein interaction network analysis, drug prediction, molecular docking, and single-cell RNA sequencing were integrated to further evaluate the biological functions and pharmacological potential of the identified targets. Finally, phenome-wide association studies were conducted to assess the safety of targeting these proteins. Results: NT5E expression was elevated in Reg3β-stimulated M2 macrophages. The expression of Arg-1, a marker of M2 macrophages, decreased upon NT5E knockdown, suggesting that NT5E is involved in the Reg3β-mediated polarization of macrophages to the M2 phenotype. Mendelian randomization analysis identified NT5E and 80 other plasma proteins as being causally associated with myocarditis. Mediation analysis revealed 12 immune-cell types were mediators of the effects of plasma protein on myocarditis progression. Drug prediction identified candidates such as ICN 1229 and chrysin, which showed strong binding affinities in molecular docking analyses. These findings may contribute to the development of effective treatments for myocarditis. Conclusions: NT5E plays a dual role in Reg3β-induced macrophage polarization and in interacting with plasma proteins that influence the onset and progression of myocarditis through immune-cell pathways. Full article
Show Figures

Figure 1

19 pages, 1016 KiB  
Article
Genetic Associations of ITGB3, FGG, GP1BA, PECAM1, and PEAR1 Polymorphisms and the Platelet Activation Pathway with Recurrent Pregnancy Loss in the Korean Population
by Eun Ju Ko, Eun Hee Ahn, Hyeon Woo Park, Jae Hyun Lee, Da Hwan Kim, Young Ran Kim, Ji Hyang Kim and Nam Keun Kim
Int. J. Mol. Sci. 2025, 26(15), 7505; https://doi.org/10.3390/ijms26157505 - 3 Aug 2025
Viewed by 239
Abstract
Recurrent pregnancy loss (RPL) is defined as the occurrence of two or more pregnancy losses before 20 weeks of gestation. RPL is a common medical condition among reproductive-age women, with approximately 23 million cases reported annually worldwide. Up to 5% of pregnant women [...] Read more.
Recurrent pregnancy loss (RPL) is defined as the occurrence of two or more pregnancy losses before 20 weeks of gestation. RPL is a common medical condition among reproductive-age women, with approximately 23 million cases reported annually worldwide. Up to 5% of pregnant women may experience two or more consecutive pregnancy losses. Previous studies have investigated risk factors for RPL, including maternal age, uterine pathology, genetic anomalies, infectious agents, endocrine disorders, thrombophilia, and immune dysfunction. However, RPL is a disease caused by a complex interaction of genetic factors, environmental factors (e.g., diet, lifestyle, and stress), epigenetic factors, and the immune system. In addition, due to the lack of research on genetics research related to RPL, the etiology remains unclear in up to 50% of cases. Platelets play a critical role in pregnancy maintenance. This study examined the associations of platelet receptor and ligand gene variants, including integrin subunit beta 3 (ITGB3) rs2317676 A > G, rs3809865 A > T; fibrinogen gamma chain (FGG) rs1049636 T > C, rs2066865 T > C; glycoprotein 1b subunit alpha (GP1BA) rs2243093 T > C, rs6065 C > T; platelet endothelial cell adhesion molecule 1 (PECAM1) rs2812 C > T; and platelet endothelial aggregation receptor 1 (PEAR1) rs822442 C > A, rs12137505 G > A, with RPL prevalence. In total, 389 RPL patients and 375 healthy controls (all Korean women) were enrolled. Genotyping of each single nucleotide polymorphism was performed using polymerase chain reaction–restriction fragment length polymorphism and the TaqMan genotyping assay. All samples were collected with approval from the Institutional Review Board at Bundang CHA Medical Center. The ITGB3 rs3809865 A > T genotype was strongly associated with RPL prevalence (pregnancy loss [PL] ≥ 2: adjusted odds ratio [AOR] = 2.505, 95% confidence interval [CI] = 1.262–4.969, p = 0.009; PL ≥ 3: AOR = 3.255, 95% CI = 1.551–6.830, p = 0.002; PL ≥ 4: AOR = 3.613, 95% CI = 1.403–9.307, p = 0.008). The FGG rs1049636 T > C polymorphism was associated with a decreased risk in women who had three or more pregnancy losses (PL ≥ 3: AOR = 0.673, 95% CI = 0.460–0.987, p = 0.043; PL ≥ 4: AOR = 0.556, 95% CI = 0.310–0.997, p = 0.049). These findings indicate significant associations of the ITGB3 rs3809865 A > T and FGG rs1049636 T > C polymorphisms with RPL, suggesting that platelet function influences RPL in Korean women. Full article
(This article belongs to the Special Issue Molecular Research in Gynecological Diseases—2nd Edition)
Show Figures

Figure 1

23 pages, 2284 KiB  
Article
The Replication Function of Rabies Virus P Protein Is Regulated by a Novel Phosphorylation Site in the N-Terminal N Protein-Binding Region
by Ericka Tudhope, Camilla M. Donnelly, Ashish Sethi, Cassandra David, Nicholas Williamson, Murray Stewart, Jade K. Forwood, Paul R. Gooley and Gregory W. Moseley
Viruses 2025, 17(8), 1075; https://doi.org/10.3390/v17081075 - 1 Aug 2025
Viewed by 332
Abstract
The rabies virus (RABV) phosphoprotein (P protein) has multiple functions, including acting as the essential non-catalytic cofactor of the viral polymerase (L protein) for genome replication and transcription; the principal viral antagonist of the interferon (IFN)-mediated innate immune response; and the chaperone for [...] Read more.
The rabies virus (RABV) phosphoprotein (P protein) has multiple functions, including acting as the essential non-catalytic cofactor of the viral polymerase (L protein) for genome replication and transcription; the principal viral antagonist of the interferon (IFN)-mediated innate immune response; and the chaperone for the viral nucleoprotein (N protein). Although P protein is known to undergo phosphorylation by cellular kinases, the location and functions of the phosphorylation sites remains poorly defined. Here, we report the identification by mass-spectrometry (MS) of residues of P protein that are modified by phosphorylation in mammalian cells, including several novel sites. Analysis of P protein with phospho-mimetic and phospho-inhibitory mutations of three novel residues/clusters that were commonly identified by MS (Ser48, Ser183/187, Ser217/219/220) indicate that phosphorylation at each of these sites does not have a major influence on nuclear trafficking or antagonistic functions toward IFN signalling pathways. However, phosphorylation of Ser48 in the N-terminus of P protein impaired function in transcription/replication and in the formation of replication structures that contain complexes of P and N proteins, suggestive of altered interactions of these proteins. The crystal structure of P protein containing the S48E phospho-mimetic mutation indicates that Ser48 phosphorylation facilitates the binding of residues 41–52 of P protein into the RNA-binding groove of non-RNA-bound N protein (N0), primarily through the formation of a salt bridge with Arg434 of N protein. These data indicate that Ser48 modification regulates the cycling of P-N0 chaperone complexes that deliver N protein to RNA to enable transcription/replication, such that enhanced interaction due to S48E phospho-mimetic mutation reduces N protein delivery to the RNA, inhibiting subsequent transcription/replication processes. These data are, to our knowledge, the first to implicate phosphorylation of RABV P protein in conserved replication functions of the P gene. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

20 pages, 986 KiB  
Review
Molecular Evolution and Phylogeography of the Crimean–Congo Hemorrhagic Fever Virus
by Paula Iglesias-Rivas, Luis Daniel González-Vázquez and Miguel Arenas
Viruses 2025, 17(8), 1054; https://doi.org/10.3390/v17081054 - 28 Jul 2025
Viewed by 320
Abstract
The Crimean–Congo hemorrhagic fever virus (CCHFV) is a single-stranded, segmented RNA virus belonging to the Nairoviridae family, and it is rapidly expanding across Africa, Asia, and southern Europe, probably favored by climate change and livestock trade. Its fatality rate in humans reaches up [...] Read more.
The Crimean–Congo hemorrhagic fever virus (CCHFV) is a single-stranded, segmented RNA virus belonging to the Nairoviridae family, and it is rapidly expanding across Africa, Asia, and southern Europe, probably favored by climate change and livestock trade. Its fatality rate in humans reaches up to 40%, and there is currently no specific treatment or vaccine available. Therefore, the development of therapies against CCHFV is essential, and their design requires understanding of the molecular evolution and genetic distribution of the virus. Motivated by these concerns, we present a comprehensive review of the molecular evolution, genetic characterization, and phylogeography of CCHFV, and we discuss their potential implications for therapeutic design. Specifically, we describe the virus’s capacity to increase its genetic diversity through numerous mutations, recombination events, and genomic reassortments, which affect fundamental viral functions such as RNA binding, host–virus interactions, viral entry, and polymerase activity. We also assess the presence of temporal heterogeneous rates of evolution and molecular adaptation among CCHFV coding regions, where purifying selection is generally predominant but diversifying selection is observed in molecular regions associated with host adaptation and transmission. We emphasize the importance of understanding the complex molecular evolution of CCHFV for the rational design of therapies and highlight the need for efforts in surveillance, evolutionary prediction, and therapeutic development. Full article
(This article belongs to the Special Issue Bunyaviruses 2025)
Show Figures

Figure 1

19 pages, 2974 KiB  
Article
PI3K/Akt1 Pathway Suppression by Quercetin–Doxorubicin Combination in Osteosarcoma Cell Line (MG-63 Cells)
by Mehmet Uğur Karabat and Mehmet Cudi Tuncer
Medicina 2025, 61(8), 1347; https://doi.org/10.3390/medicina61081347 - 25 Jul 2025
Viewed by 214
Abstract
Background and Objectives: This study aimed to investigate the anticancer effects and potential synergistic interactions of quercetin (Q) and doxorubicin (Dox) on the MG-63 osteosarcoma (OS) cell line. Specifically, the effects of these agents on cell viability, apoptosis, reactive oxygen species (ROS) [...] Read more.
Background and Objectives: This study aimed to investigate the anticancer effects and potential synergistic interactions of quercetin (Q) and doxorubicin (Dox) on the MG-63 osteosarcoma (OS) cell line. Specifically, the effects of these agents on cell viability, apoptosis, reactive oxygen species (ROS) generation, antioxidant defense, and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt1) signaling pathway were evaluated. Material and Methods: MG-63 cells were cultured and treated with varying concentrations of Q and Dox, both individually and in combination (fixed 5:1 molar ratio), for 48 h. Cell viability was assessed using an MTT assay, and IC50 values were calculated. Synergistic effects were analyzed using the Chou–Talalay combination index (CI). Apoptosis was evaluated via Annexin V-FITC/PI staining and caspase-3/7 activity. ROS levels were quantified using DCFH-DA probe, and antioxidant enzymes (SOD, GPx) were measured spectrophotometrically. Gene expression (Runx2, PI3K, Akt1, caspase-3) was analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Results: Q and Dox reduced cell viability in a dose-dependent manner, with IC50 values of 70.3 µM and 1.14 µM, respectively. The combination treatment exhibited synergistic cytotoxicity (CI < 1), especially in the Q50 + Dox5 group (CI = 0.23). Apoptosis was significantly enhanced in the combination group, evidenced by increased Annexin V positivity and caspase-3 activation. ROS levels were markedly elevated, while antioxidant enzyme activities declined. RT-qPCR revealed upregulation of caspase-3 and downregulation of Runx2, PI3K, and Akt1 mRNA levels. Conclusions: The combination of Q and Dox exerts synergistic anticancer effects in MG-63 OS cells by inducing apoptosis, elevating oxidative stress, suppressing antioxidant defense, and inhibiting the PI3K/Akt1 signaling pathway and Runx2 expression. These findings support the potential utility of Q as an adjuvant to enhance Dox efficacy in OS treatment. Full article
Show Figures

Figure 1

29 pages, 4988 KiB  
Article
Amphiphilic Oligonucleotide Derivatives as a Tool to Study DNA Repair Proteins
by Svetlana N. Khodyreva, Alexandra A. Yamskikh, Ekaterina S. Ilina, Mikhail M. Kutuzov, Ekaterina A. Belousova, Maxim S. Kupryushkin, Timofey D. Zharkov, Olga A. Koval, Sofia P. Zvereva and Olga I. Lavrik
Int. J. Mol. Sci. 2025, 26(15), 7078; https://doi.org/10.3390/ijms26157078 - 23 Jul 2025
Viewed by 161
Abstract
Modified oligonucleotides (oligos) are widely used as convenient tools in many scientific fields, including biomedical applications and therapies. In particular, oligos with lipophilic groups attached to the backbone ensure penetration of the cell membrane without the need for transfection. This study examines the [...] Read more.
Modified oligonucleotides (oligos) are widely used as convenient tools in many scientific fields, including biomedical applications and therapies. In particular, oligos with lipophilic groups attached to the backbone ensure penetration of the cell membrane without the need for transfection. This study examines the interaction between amphiphilic DNA duplexes, in which one of the chains contains a lipophilic substituent, and several DNA repair proteins, particularly DNA-damage-dependent PARPs, using various biochemical approaches. DNA with a lipophilic substituent (LS-DNA) demonstrates more efficient binding with DNA damage activated poly(AD-ribose) polymerases 1-3 (PARP1, PARP2, PARP3) and DNA polymerase β. Chemically reactive LS-DNA derivatives containing a photoactivatable nucleotide (photo-LS-DNAs) or a 5′ deoxyribose phosphate (dRP) group in the vicinity of double-strand breaks (DSBs) are used for the affinity labelling of PARPs and other proteins in several whole-cell extracts of human cells. In particular, photo-LS-DNAs are used to track the level of Ku antigen in the extracts of neuron-like differentiated SH-SY5Y, undifferentiated SH-SY5Y, and olfactory epithelial cells. In vitro, PARP1–PARP3 are shown to be able to slowly excise the 5′ dRP group at DSBs. LS-DNAs can activate PARP1 and PARP2 for autoPARylation, albeit less effectively than regular DNA duplexes. Full article
Show Figures

Figure 1

14 pages, 2669 KiB  
Article
Glutamic Acid at Position 343 in PB2 Contributes to the Virulence of H1N1 Swine Influenza Virus in Mice
by Yanwen Wang, Qiu Zhong, Fei Meng, Zhang Cheng, Yijie Zhang, Zuchen Song, Yali Zhang, Zijian Feng, Yujia Zhai, Yan Chen, Chuanling Qiao and Huanliang Yang
Viruses 2025, 17(7), 1018; https://doi.org/10.3390/v17071018 - 20 Jul 2025
Viewed by 419
Abstract
The H1N1 swine influenza viruses CQ91 and CQ445, isolated from pigs in China, exhibited distinct virulence in mice despite sharing similar genomic constellations. CQ91 demonstrated higher pathogenicity (MLD50: 5.4 log10 EID50) and replication efficiency in mice compared to [...] Read more.
The H1N1 swine influenza viruses CQ91 and CQ445, isolated from pigs in China, exhibited distinct virulence in mice despite sharing similar genomic constellations. CQ91 demonstrated higher pathogenicity (MLD50: 5.4 log10 EID50) and replication efficiency in mice compared to CQ445 (MLD50: 6.6 log10 EID50). Through reverse genetics, we found that the attenuation of CQ445 was due to a single substitution of glutamic acid (E) with lysine (K) at position 343 in the PB2 protein. Introducing the CQ445-PB2 (343K) into CQ91 significantly reduced viral replication and pathogenicity in mice, while replacing CQ445-PB2 with CQ91-PB2 (343E) restored virulence. In vitro studies showed that the K343E mutation impaired viral replication in MDCK and A549 cells and reduced polymerase activity in minigenome assays. Mechanistically, the amino acid at position 343 in the PB2 affects the transcription stage of the viral replication process. Structural modeling indicated that the charge reversal caused by E343K altered local electrostatic interactions without major conformational changes. Phylogenetic analysis revealed that PB2-343E is highly conserved (>99.9%) in human and swine H1/H3 influenza viruses, suggesting that PB2-343E confers an adaptive advantage. This study identifies PB2-343E as a critical determinant of influenza virus pathogenicity in mammals, highlighting its role in host adaptation. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

26 pages, 1852 KiB  
Review
GIGYF2: A Multifunctional Regulator at the Crossroads of Gene Expression, mRNA Surveillance, and Human Disease
by Chen-Shuo Zhao, Shu-Han Liu, Zheng-Yang Li, Jia-Yue Chen and Xiang-Yang Xiong
Cells 2025, 14(13), 1032; https://doi.org/10.3390/cells14131032 - 5 Jul 2025
Viewed by 677
Abstract
GIGYF2 (Grb10-interacting GYF protein 2) functions as a versatile adaptor protein that regulates gene expression at various levels. At the transcriptional level, GIGYF2 facilitates VCP/p97-mediated extraction of ubiquitylated Rpb1 from stalled RNA polymerase II complexes during DNA damage response. In mRNA surveillance, GIGYF2 [...] Read more.
GIGYF2 (Grb10-interacting GYF protein 2) functions as a versatile adaptor protein that regulates gene expression at various levels. At the transcriptional level, GIGYF2 facilitates VCP/p97-mediated extraction of ubiquitylated Rpb1 from stalled RNA polymerase II complexes during DNA damage response. In mRNA surveillance, GIGYF2 participates in ribosome collision-induced quality control, nonsense-mediated decay, no-go decay, and non-stop decay pathways. Furthermore, GIGYF2 interacts with key factors including 4EHP, TTP, CCR4-NOT, DDX6, ZNF598, and TNRC6A to mediate translational repression and mRNA degradation. Additionally, dysregulation of GIGYF2 has been implicated in various pathological conditions, including metabolic diseases, vascular aging, viral infections, and neurodegenerative disorders. This review summarizes the structural and functional characteristics of GIGYF2, highlighting its importance in transcriptional regulation, mRNA surveillance, translational inhibition, and mRNA degradation, while also elucidating its potential as a therapeutic target for disease treatment. Full article
Show Figures

Figure 1

15 pages, 1407 KiB  
Article
Phloroglucinol Oligomers from Callistemon rigidus as Novel Anti-Hantavirus Replication Agents
by Jin-Xuan Yang, E-E Luo, Yue-Chun Wu, Kai Zhao, Wei Hou, Mu-Yuan Yu, Xu-Jie Qin and Xing-Lou Yang
Viruses 2025, 17(7), 916; https://doi.org/10.3390/v17070916 - 27 Jun 2025
Viewed by 295
Abstract
Zoonotic viral diseases have continued to threaten global public health in recent decades, with rodent-borne viruses being significant contributors. Infection by rodent-carried hantaviruses (HV) can result in hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) in humans, with varying degrees [...] Read more.
Zoonotic viral diseases have continued to threaten global public health in recent decades, with rodent-borne viruses being significant contributors. Infection by rodent-carried hantaviruses (HV) can result in hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) in humans, with varying degrees of morbidity and mortality. However, no Food and Drug Administration (FDA) vaccines or therapeutics have been approved for the treatment of these diseases. In an effort to identify antiviral bioactive molecules, we isolated four oligomeric phloroglucinols from Callistemon rigidus leaves, including two new phloroglucinol trimers, callistemontrimer A and B, along with two previously characterized phloroglucinol dimers, rhodomyrtosone B and rhodomyrtone. We evaluated the anti-Hantaan virus (HTNV) activity of these compounds. Notably, callistemontrimer A demonstrated higher anti-HTNV activity compared to ribavirin. Mechanistic studies revealed that callistemontrimer A exerted its antiviral effects by inhibiting viral replication, likely through interaction with RNA-dependent RNA polymerase (RdRp) of HTNV, as supported by molecular docking analysis. These results highlight oligomeric phloroglucinols as promising lead candidates for the development of anti-HV therapeutics. Full article
(This article belongs to the Special Issue Hantavirus 2024)
Show Figures

Figure 1

24 pages, 464 KiB  
Review
Protein–Protein Interactions in Base Excision Repair
by Govardhan Rathnaiah and Joann B. Sweasy
Biomolecules 2025, 15(6), 890; https://doi.org/10.3390/biom15060890 - 18 Jun 2025
Viewed by 727
Abstract
The Base Excision Repair (BER) pathway involves a highly coordinated series of protein–protein interactions that facilitate the recognition, excision, and repair of damaged bases. Key enzymes such as DNA glycosylases, apurinic/apyrimidinic endonuclease 1 (APE1), polynucleotide kinase-phosphatase (PNKP), DNA polymerase b (Pol β), ligase [...] Read more.
The Base Excision Repair (BER) pathway involves a highly coordinated series of protein–protein interactions that facilitate the recognition, excision, and repair of damaged bases. Key enzymes such as DNA glycosylases, apurinic/apyrimidinic endonuclease 1 (APE1), polynucleotide kinase-phosphatase (PNKP), DNA polymerase b (Pol β), ligase IIIα (LigIIIα), poly (ADP-ribose) polymerases PARP1 and PARP2, and X-ray repair cross-complementing protein 1 (XRCC1) catalyze BER in a tightly regulated molecular network. These interactions ensure the seamless handoff of DNA intermediates between the core enzymes of the BER pathway. Understanding the details of protein–protein interactions in BER provides valuable insights into the molecular underpinnings of DNA repair processes. In this review, we focus on protein–protein interactions between the components of the single-nucleotide BER (SN-BER) pathway and other proteins that interact with BER components and regulate the coordination of the pathway. We also briefly discuss the interactions of other proteins that interact with the components of SN-BER based on functional evidence. Full article
(This article belongs to the Special Issue Molecular Mechanisms in DNA and RNA Damage and Repair)
Show Figures

Figure 1

18 pages, 2762 KiB  
Article
Identification of Proteins Associated with Stably Integrated Maize b1 Tandem Repeat Transgene Chromatin
by Jason S. Lynn, Kathryn M. Koirtyohann, Yacob B. Gebreab, Jaliyah Edwards and Karen M. McGinnis
Plants 2025, 14(12), 1863; https://doi.org/10.3390/plants14121863 - 17 Jun 2025
Viewed by 561
Abstract
The control of gene expression by cis-regulatory DNA sequences is a conserved genomic feature. The maize booster1 gene (b1) is a naturally occurring locus that serves as a mechanistic model for the control of gene expression from a distal cis [...] Read more.
The control of gene expression by cis-regulatory DNA sequences is a conserved genomic feature. The maize booster1 gene (b1) is a naturally occurring locus that serves as a mechanistic model for the control of gene expression from a distal cis element and a form of allelic interactions called paramutation. Two epi-alleles of b1 produce distinct pigmentation phenotypes correlated with transcriptional enhancement and the silencing of b1. These transcriptional dynamics depend on a hepta-tandem repeat sequence located 100 kb upstream of the b1 locus. In the heterozygous condition, the B′ epi-allele paramutates B-I, heritably converting the B-I epi-allele to the epigenetic state and expression level of B′, producing lightly pigmented plants. To identify b1TR-associated proteins, we used a targeted chromatin immunoprecipitation approach with a stably integrated transgenic b1TR locus. Applying a conservative filtering strategy, we detected several expected factors, including RNA Polymerase II, as well as the novel putative DNA-binding proteins ZAG4 and DDT4. ZAG4 and DDT4 activated GAL expression using b1TR as bait in yeast one-hybrid, supporting their potential interaction with this sequence. The identification of proteins uniquely associated with the UAS::b1TR chromatin provides insight into potential b1 regulatory factors and offers a foundation for future studies to investigate their roles in gene regulation. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

18 pages, 8355 KiB  
Article
Transcriptome Analysis Reveals Mechanisms of Stripe Rust Response in Wheat Cultivar Anmai1350
by Feng Gao, Jingyi Zhu, Xin Xue, Hongqi Chen, Xiaojin Nong, Chunling Yang, Weimin Shen and Pengfei Gan
Int. J. Mol. Sci. 2025, 26(12), 5538; https://doi.org/10.3390/ijms26125538 - 10 Jun 2025
Viewed by 471
Abstract
Wheat (Triticum aestivum L.) is the world’s most indispensable staple crop and a vital source of food for human diet. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), constitutes a severe threat to wheat production and in [...] Read more.
Wheat (Triticum aestivum L.) is the world’s most indispensable staple crop and a vital source of food for human diet. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), constitutes a severe threat to wheat production and in severe cases, the crop fails completely. Anmai1350 (AM1350) is moderately resistant to leaf rust and powdery mildew, and highly susceptible to sheath blight and fusarium head blight. We found that the length and area of mycelium in AM1350 cells varied at different time points of Pst infection. To investigate the molecular mechanism of AM1350 resistance to Pst, we performed transcriptome sequencing (RNA-seq). In this study, we analyzed the transcriptomic changes of the seedling leaves of AM1350 at different stages of Pst infection at 0 h post-infection (hpi), 6 hpi, 24 hpi, 48 hpi, 72 hpi, and 120 hpi through RNA-seq. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) was used to validate RNA-seq data. It was determined that there were differences in the differentially expressed genes (DEGs) of AM1350, and the upregulation and downregulation of the DEGs changed with the time of infection. At different time points, there were varying degrees of enrichment in the response pathways of AM1350, such as the ”MAPK signaling pathway–plant”, the “plant–pathogen interaction” pathway and other pathways. After Pst infected AM1350, the reactive oxygen species (ROS) content gradually increases. The ROS is toxic to Pst, promotes the synthesis of phytoalexins, and inhibits the spread of Pst. As a result, AM1350 shows resistance to Pst race CYR34. The main objective of this study is to provide a better understanding for resistance mechanisms of wheat in response to Pst infections and to avoid production loss. Full article
(This article belongs to the Special Issue Plant–Microbe Interactions: 2nd Edition)
Show Figures

Figure 1

22 pages, 2570 KiB  
Article
Tacrolimus Modulates TGF-β Signaling–Related Genes and MicroRNAs in Human Retinal Pigment Epithelial Cells Activated by Lipopolysaccharide
by Aleksandra Kiełbasińska, Katarzyna Krysik, Dominika Janiszewska-Bil, Martyna Machaj, Zuzanna Lelek, Joanna Sułkowska, Olga Nawotny-Czupryna and Beniamin Oskar Grabarek
Int. J. Mol. Sci. 2025, 26(11), 5402; https://doi.org/10.3390/ijms26115402 - 4 Jun 2025
Viewed by 609
Abstract
The retinal pigment epithelium (RPE) plays a crucial role in maintaining retinal homeostasis, and dysregulation of the transforming growth factor-beta (TGF-β) signaling pathways contributes to retinal fibrosis and inflammatory diseases, including proliferative vitreoretinopathy (PVR). Tacrolimus (FK506), an immunosuppressant, has shown potential antifibrotic properties, [...] Read more.
The retinal pigment epithelium (RPE) plays a crucial role in maintaining retinal homeostasis, and dysregulation of the transforming growth factor-beta (TGF-β) signaling pathways contributes to retinal fibrosis and inflammatory diseases, including proliferative vitreoretinopathy (PVR). Tacrolimus (FK506), an immunosuppressant, has shown potential antifibrotic properties, but its effects on TGF-β-related genes and microRNAs (miRNAs) in RPE cells remain unclear. Human RPE (H-RPE) cells were treated with lipopolysaccharide (LPS) to induce inflammation and subsequently exposed to tacrolimus. Gene and miRNA expression profiling related to TGF-β signaling pathways were conducted using microarrays, followed by Quantitative Reverse-Transcription Polymerase Chain Reaction (RT-qPCR) validation. Protein levels were assessed via enzyme-linked immunosorbent assay (ELISA), and interactions were analyzed using STRING database network analysis. Tacrolimus modulated key components of the TGF-β pathway, upregulating TGF-β2, TGF-β3, SMAD2, and SMAD4 while downregulating TGF-βR1 and SMAD7. JAK/STAT and MAPK pathways were also affected, indicating broad regulatory effects. miRNA profiling identified hsa-miR-200a-3p, hsa-miR-589-3p, hsa-miR-21, and hsa-miR-27a-5p as key regulators. STRING analysis confirmed strong functional interactions within the TGF-β network. In conclusion, tacrolimus modulates both canonical (upregulation of SMAD2/4 and downregulation of SMAD7) and non-canonical (JAK/STAT and MAPK) TGF-β signaling pathways in LPS-stimulated RPE cells. These changes collectively suggest a dual anti-inflammatory and anti-fibrotic effect. The increased TGF-β2 and decreased SMAD7 levels, alongside altered miRNA expression (e.g., downregulation of miR-200a-3p), indicate that tacrolimus may inhibit key profibrotic mechanisms underlying PVR. These findings support the potential therapeutic repurposing of tacrolimus in PVR and warrant further in vivo validation. Full article
(This article belongs to the Special Issue Eye Diseases: From Pathophysiology to Novel Therapeutic Approaches)
Show Figures

Figure 1

10 pages, 731 KiB  
Article
The C/C Genotype of the C-1019G (rs6295) Polymorphism of the 5-HT1A Receptor Gene Is Associated with Lower Susceptibility to Depressive Symptoms in a Rural Population in Mexico
by Margarita Hernandez-Mixteco, Olga Lidia Valenzuela, Cecilia Luz Balderas-Vazquez, Paola Castillo-Juárez, Sandra Rivera-Gutiérrez, Rocío Liliana García-Reyes, Gilberto Cornejo-Estudillo, Ricardo Jiovanni Soria-Herrera, Moises León-Juárez, Addy Cecilia Helguera-Repetto, Daniel Valencia-Trujillo, Victoria Campos-Peña, Eliud Alfredo Garcia-Montalvo and Jorge Francisco Cerna-Cortés
Neurol. Int. 2025, 17(6), 87; https://doi.org/10.3390/neurolint17060087 - 31 May 2025
Viewed by 1572
Abstract
Background: Depression is one of the most prevalent mental health disorders worldwide, affecting a significant proportion of the global population. Its etiology is complex and influenced by the interaction of environmental factors and genetic variations. In Mexico, it has been reported that 41.3% [...] Read more.
Background: Depression is one of the most prevalent mental health disorders worldwide, affecting a significant proportion of the global population. Its etiology is complex and influenced by the interaction of environmental factors and genetic variations. In Mexico, it has been reported that 41.3% of the population exhibits depressive symptoms. Previous studies have suggested that susceptibility to depression may be associated with the C-1019G (rs6295) polymorphism in the serotonin 1A (5-HT1A) receptor gene. Objective: In this study, we aimed to evaluate the association between the C-1019G polymorphism and depressive symptoms in a rural Mexican population. Methods: Using polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP), we examined the effect of C-1019G on depression symptoms, as evaluated by the Beck Depression Inventory. Data were obtained from 83 volunteers; individuals with depressive symptoms and those with a healthy mood were compared. Results: The results showed that the homozygous C/C genotype was found significantly more frequently in the control group than in individuals with depressive symptoms, particularly among men, and is thus associated with a decreased risk of depressive symptomatology. Conclusions: The C/C genotype could protect against susceptibility to developing depressive symptoms in a rural population in Mexico. Full article
Show Figures

Figure 1

24 pages, 1795 KiB  
Review
SARS-CoV-2 Replication Revisited: Molecular Insights and Current and Emerging Antiviral Strategies
by Bryan John J. Subong and Imelda L. Forteza
COVID 2025, 5(6), 85; https://doi.org/10.3390/covid5060085 - 30 May 2025
Viewed by 1039
Abstract
The replication machinery of SARS-CoV-2 is a primary target for therapeutic intervention, and has led to significant progress in antiviral medication discovery. This review consolidates contemporary molecular insights into viral replication and rigorously assesses treatment methods at different phases of viruses’ clinical development. [...] Read more.
The replication machinery of SARS-CoV-2 is a primary target for therapeutic intervention, and has led to significant progress in antiviral medication discovery. This review consolidates contemporary molecular insights into viral replication and rigorously assesses treatment methods at different phases of viruses’ clinical development. Direct-acting antivirals, such as nucleoside analogs (e.g., remdesivir, molnupiravir) and protease inhibitors (e.g., nirmatrelvir), have shown clinical effectiveness in diminishing morbidity and hospitalization rates. Simultaneously, host-targeted medicines like baricitinib, camostat, and brequinar leverage critical host–virus interactions, providing additional pathways to reduce viral replication while possibly minimizing the development of resistance. Notwithstanding these advancements, constraints in distribution methods, antiviral longevity, and the risk of mutational evasion demand novel strategies. Promising investigational approaches encompass CRISPR-mediated RNA degradation systems, inhalable siRNA-nanoparticle conjugates, and molecular glue degraders that target host and viral proteins. Furthermore, next-generation treatments aimed at underutilized enzyme domains (e.g., NiRAN, ExoN) and host chaperone systems (e.g., TRiC complex) signify a transformative approach in antiviral targeting. The integration of high-throughput phenotypic screening, AI-driven medication repurposing, and systems virology is transforming the antiviral discovery field. An ongoing interdisciplinary endeavor is necessary to convert these findings into versatile, resistance-resistant antiviral strategies that are applicable beyond the present pandemic and in future coronavirus epidemics. Full article
(This article belongs to the Special Issue New Antivirals against Coronaviruses)
Show Figures

Graphical abstract

Back to TopTop