Identification of Proteins Associated with Stably Integrated Maize b1 Tandem Repeat Transgene Chromatin
Abstract
:1. Introduction
2. Methods
2.1. Maize Plasmid Construction
2.2. Transformation of Maize Stocks
2.3. Pigmentation Analysis of the UAS::b1TR and UAS::Empty Transgenes for Silencing of B-I
2.4. Sample Growth Conditions and Sample Collection
2.5. FLAG-GAL4 Chromatin Immunoprecipitation and Mass-Spectrometry from Maize Sheath
2.6. ChIP-qPCR Enrichment Analysis of FLAG-GAL4 at UAS::b1TR
2.7. Cloning for Yeast One-Hybrid Experiment
2.8. Yeast Transformation
2.9. Quantitative X-Gal Assay for Measuring β-Galactosidase Activity
2.10. Bioinformatic Analysis of Identified Proteins
3. Results
3.1. UAS::b1TR Triggers Silencing of B-I While UAS::Empty Does Not
3.2. Identification of Proteins Purified by FLAG-GAL4 ChIP-MS from Transgenic Plants
3.3. Several RNA-Binding Proteins Are Uniquely Associated with UAS::b1TR Chromatin
3.4. Two Sequence-Specific DNA-Binding Proteins Were Uniquely Associated with UAS::b1TR Chromatin and Can Activate GAL Expression in Yeast One-Hybrid
3.5. Predicted Interaction Networks of DDT4 and ZAG4 Suggest Chromatin-Associated Functions
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lis, J.T. A 50 Year History of Technologies That Drove Discovery in Eukaryotic Transcription Regulation. Nat. Struct. Mol. Biol. 2019, 26, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.M.; Reed, R.R. Molecular Cloning of the Olfactory Neuronal Transcription Factor Olf-1 by Genetic Selection in Yeast. Nature 1993, 364, 121–126. [Google Scholar] [CrossRef]
- Jutras, B.L.; Verma, A.; Stevenson, B. Identification of Novel DNA-Binding Proteins Using DNA-Affinity Chromatography/Pull Down. Curr. Protoc. Microbiol. 2012, 24, 1F.1.1–1F.1.13. [Google Scholar] [CrossRef] [PubMed]
- Déjardin, J.; Kingston, R.E. Purification of Proteins Associated with Specific Genomic Loci. Cell 2009, 136, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Byrum, S.D.; Raman, A.; Taverna, S.D.; Tackett, A.J. ChAP-MS: A Method for Identification of Proteins and Histone Posttranslational Modifications at a Single Genomic Locus. Cell Rep. 2012, 2, 198–205. [Google Scholar] [CrossRef]
- Pourfarzad, F.; Aghajanirefah, A.; de Boer, E.; Ten Have, S.; Bryn van Dijk, T.; Kheradmandkia, S.; Stadhouders, R.; Thongjuea, S.; Soler, E.; Gillemans, N.; et al. Locus-Specific Proteomics by TChP: Targeted Chromatin Purification. Cell Rep. 2013, 4, 589–600. [Google Scholar] [CrossRef]
- Gao, X.D.; Tu, L.-C.; Mir, A.; Rodriguez, T.; Ding, Y.; Leszyk, J.; Dekker, J.; Shaffer, S.A.; Zhu, L.J.; Wolfe, S.A.; et al. C-BERST: Defining Subnuclear Proteomic Landscapes at Genomic Elements with dCas9–APEX2. Nat. Methods 2018, 15, 433–436. [Google Scholar] [CrossRef]
- Fujita, T.; Fujii, H. Efficient Isolation of Specific Genomic Regions and Identification of Associated Proteins by Engineered DNA-Binding Molecule-Mediated Chromatin Immunoprecipitation (enChIP) Using CRISPR. Biochem. Biophys. Res. Commun. 2013, 439, 132–136. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Chen, Y.; Li, M.; Zhou, F.; Li, K.; Cao, H.; Ni, M.; Liu, Y.; Gu, Z.; et al. In Situ Capture of Chromatin Interactions by Biotinylated dCas9. Cell 2017, 170, 1028–1043.e19. [Google Scholar] [CrossRef]
- Fujita, T.; Yuno, M.; Fujii, H. enChIP Systems Using Different CRISPR Orthologues and Epitope Tags. BMC Res. Notes 2018, 11, 154. [Google Scholar] [CrossRef]
- Myers, S.A.; Wright, J.; Peckner, R.; Kalish, B.T.; Zhang, F.; Carr, S.A. Discovery of Proteins Associated with a Predefined Genomic Locus via dCas9–APEX-Mediated Proximity Labeling. Nat. Methods 2018, 15, 437–439. [Google Scholar] [CrossRef] [PubMed]
- Tsui, C.; Inouye, C.; Levy, M.; Lu, A.; Florens, L.; Washburn, M.P.; Tjian, R. dCas9-Targeted Locus-SPECIFIC protein Isolation Method Identifies Histone Gene Regulators. Proc. Natl. Acad. Sci. USA 2018, 115, E2734–E2741. [Google Scholar] [CrossRef]
- Stam, M.; Belele, C.; Dorweiler, J.E.; Chandler, V.L. Differential Chromatin Structure Within a Tandem Array 100 kb Upstream of the Maize b1 Locus Is Associated with Paramutation. Genes Dev. 2002, 16, 1906–1918. [Google Scholar] [CrossRef]
- Stam, M.; Belele, C.; Ramakrishna, W.; Dorweiler, J.E.; Bennetzen, J.L.; Chandler, V.L. The Regulatory Regions Required for B′ Paramutation and Expression Are Located Far Upstream of the Maize b1 Transcribed Sequences. Genetics 2002, 162, 917–930. [Google Scholar] [CrossRef]
- Louwers, M.; Bader, R.; Haring, M.; van Driel, R.; de Laat, W.; Stam, M. Tissue- and Expression Level–Specific Chromatin Looping at Maize b1 Epialleles. Plant Cell 2009, 21, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Haring, M.; Bader, R.; Louwers, M.; Schwabe, A.; van Driel, R.; Stam, M. The Role of DNA Methylation, Nucleosome Occupancy and Histone Modifications in Paramutation. Plant J. 2010, 63, 366–378. [Google Scholar] [CrossRef]
- Chandler, V.L. Paramutation’s Properties and Puzzles. Science 2010, 330, 628–629. [Google Scholar] [CrossRef] [PubMed]
- Coe, E.H. A Regular And Continuing Conversion-Type Phenomenon At The B Locus In Maize. Proc. Natl. Acad. Sci. USA 1959, 45, 828–832. [Google Scholar] [CrossRef]
- Patterson, G.I.; Thorpe, C.J.; Chandler, V.L. Paramutation, an Allelic Interaction, Is Associated with a Stable and Heritable Reduction of Transcription of the Maize B Regulatory Gene. Genetics 1993, 135, 881–894. [Google Scholar] [CrossRef]
- Hollick, J.B.; Chandler, V.L. Genetic Factors Required to Maintain Repression of a Paramutagenic Maize pl1 Allele. Genetics 2001, 157, 369–378. [Google Scholar] [CrossRef]
- Alleman, M.; Sidorenko, L.; McGinnis, K.; Seshadri, V.; Dorweiler, J.E.; White, J.; Sikkink, K.; Chandler, V.L. An RNA-Dependent RNA Polymerase Is Required for Paramutation in Maize. Nature 2006, 442, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Sloan, A.E.; Sidorenko, L.; McGinnis, K.M. Diverse Gene-Silencing Mechanisms with Distinct Requirements for RNA Polymerase Subunits in Zea mays. Genetics 2014, 198, 1031–1042. [Google Scholar] [CrossRef] [PubMed]
- Hollick, J.B.; Kermicle, J.L.; Parkinson, S.E. Rmr6 Maintains Meiotic Inheritance of Paramutant States in Zea mays. Genetics 2005, 171, 725–740. [Google Scholar] [CrossRef] [PubMed]
- Barbour, J.-E.R.; Liao, I.T.; Stonaker, J.L.; Lim, J.P.; Lee, C.C.; Parkinson, S.E.; Kermicle, J.; Simon, S.A.; Meyers, B.C.; Williams-Carrier, R.; et al. Required to Maintain Repression2 is a Novel Protein that Facilitates Locus-Specific Paramutation in Maize. Plant Cell 2012, 24, 1761–1775. [Google Scholar] [CrossRef]
- Stonaker, J.L.; Lim, J.P.; ErhardErhard, K.F., Jr.; Hollick, J.B. Diversity of Pol IV Function Is Defined by Mutations at the Maize rmr7 Locus. PLoS Genet. 2009, 5, e1000706. [Google Scholar] [CrossRef]
- Deans, N.C.; Giacopelli, B.J.; Hollick, J.B. Locus-Specific Paramutation in Zea mays Is Maintained by a PICKLE-like Chromodomain Helicase DNA-Binding 3 Protein Controlling Development and Male Gametophyte Function. PLoS Genet. 2020, 16, e1009243. [Google Scholar] [CrossRef]
- Chandler, V.; Alleman, M. Paramutation: Epigenetic Instructions Passed Across Generations. Genetics 2008, 178, 1839–1844. [Google Scholar] [CrossRef]
- Hollick, J.B. Paramutation and Related Phenomena in Diverse Species. Nat. Rev. Genet. 2017, 18, 5–23. [Google Scholar] [CrossRef]
- Belele, C.L.; Sidorenko, L.; Stam, M.; Bader, R.; Arteaga-Vazquez, M.A.; Chandler, V.L. Specific Tandem Repeats Are Sufficient for Paramutation-Induced Trans-Generational Silencing. PLoS Genet. 2013, 9, e1003773. [Google Scholar] [CrossRef]
- Brand, A.H.; Perrimon, N. Targeted Gene Expression as a Means of Altering Cell Fates and Generating Dominant Phenotypes. Development 1993, 118, 401–415. [Google Scholar] [CrossRef]
- Armstrong, C.L.; Green, C.E. Establishment and Maintenance of Friable, Embryogenic Maize Callus and the Involvement of L-proline. Planta 1985, 164, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Haring, M.; Offermann, S.; Danker, T.; Horst, I.; Peterhansel, C.; Stam, M. Chromatin Immunoprecipitation: Optimization, Quantitative Analysis and Data Normalization. Plant Methods 2007, 3, 11. [Google Scholar] [CrossRef] [PubMed]
- Gumber, H.K.; McKenna, J.F.; Estrada, A.L.; Tolmie, A.F.; Graumann, K.; Bass, H.W. Identification and Characterization of Genes Encoding the Nuclear Envelope LINC Complex in the Monocot Species Zea mays. J. Cell Sci. 2019, 132, jcs221390. [Google Scholar] [CrossRef]
- Searle, B.C. Scaffold: A Bioinformatic Tool for Validating MS/MS-Based Proteomic Studies. Proteomics 2010, 10, 1265–1269. [Google Scholar] [CrossRef]
- Brzeska, K.; Brzeski, J.; Smith, J.; Chandler, V.L. Transgenic expression of CBBP, a CXC domain protein, establishes paramutation in maize. Proc. Natl. Acad. Sci. USA 2010, 107, 5516–5521. [Google Scholar] [CrossRef] [PubMed]
- Agatep, R.; Kirkpatrick, R.D.; Parchaliuk, D.L.; Woods, R.A.; Gietz, R.D. Transformation of Saccharomyces cerevisiae by the Lithium Acetate/Single-Stranded Carrier DNA/Polyethylene Glycol Protocol. Tech. Tips Online 1998, 3, 133–137. [Google Scholar] [CrossRef]
- Trimborn, L.; Hoecker, U.; Ponnu, J. A Simple Quantitative Assay for Measuring β-Galactosidase Activity Using X-Gal in Yeast-Based Interaction Analyses. Curr. Protoc. 2022, 2, e421. [Google Scholar] [CrossRef]
- Mi, H.; Muruganujan, A.; Ebert, D.; Huang, X.; Thomas, P.D. PANTHER Version 14: More Genomes, a New PANTHER GO-Slim and Improvements in Enrichment Analysis Tools. Nucleic Acids Res. 2019, 47, D419–D426. [Google Scholar] [CrossRef]
- Huang, J.; Zheng, J.; Yuan, H.; McGinnis, K. Distinct Tissue-Specific Transcriptional Regulation Revealed by Gene Regulatory Networks in Maize. BMC Plant Biol. 2018, 18, 111. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef]
- Chandler, V.L.; Radicella, J.P.; Robbins, T.P.; Chen, J.; Turks, D. Two Regulatory Genes of the Maize Anthocyanin Pathway Are Homologous: Isolation of B Utilizing R Genomic Sequences. Plant Cell 1989, 1, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Mena, M.; Mandel, M.A.; Lerner, D.R.; Yanofsky, M.F.; Schmidt, R.J. A Characterization of the MADS-Box Gene Family in Maize. Plant J. 1995, 8, 845–854. [Google Scholar] [CrossRef]
- Peng, Y.; Xiong, D.; Zhao, L.; Ouyang, W.; Wang, S.; Sun, J.; Zhang, Q.; Guan, P.; Xie, L.; Li, W.; et al. Chromatin Interaction Maps Reveal Genetic Regulation for Quantitative Traits in Maize. Nat. Commun. 2019, 10, 2632. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Kim, Y.J.; Müller, R.; Yumul, R.E.; Liu, C.; Pan, Y.; Cao, X.; Goodrich, J.; Chen, X. AGAMOUS Terminates Floral Stem Cell Maintenance in Arabidopsis by Directly Repressing WUSCHEL through Recruitment of Polycomb Group Proteins. Plant Cell 2011, 23, 3654–3670. [Google Scholar] [CrossRef]
- Berr, A.; Xu, L.; Gao, J.; Cognat, V.; Steinmetz, A.; Dong, A.; Shen, W.-H. SET DOMAIN GROUP25 Encodes a Histone Methyltransferase and Is Involved in FLOWERING LOCUS C Activation and Repression of Flowering. Plant Physiol. 2009, 151, 1476–1485. [Google Scholar] [CrossRef]
- Gendrel, A.-V.; Lippman, Z.; Yordan, C.; Colot, V.; Martienssen, R.A. Dependence of Heterochromatic Histone H3 Methylation Patterns on the Arabidopsis Gene DDM1. Science 2002, 297, 1871–1873. [Google Scholar] [CrossRef] [PubMed]
- Zemach, A.; Kim, M.Y.; Hsieh, P.-H.; Coleman-Derr, D.; Eshed-Williams, L.; Thao, K.; Harmer, S.L.; Zilberman, D. The Arabidopsis Nucleosome Remodeler DDM1 Allows DNA Methyltransferases to Access H1-Containing Heterochromatin. Cell 2013, 153, 193–205. [Google Scholar] [CrossRef]
- Lee, S.C.; Adams, D.W.; Ipsaro, J.J.; Cahn, J.; Lynn, J.; Kim, H.-S.; Berube, B.; Major, V.; Calarco, J.P.; LeBlanc, C.; et al. Chromatin Remodeling of Histone H3 Variants by DDM1 Underlies Epigenetic Inheritance of DNA Methylation. Cell 2023, 186, 4100–4116.e15. [Google Scholar] [CrossRef]
- Shimada, A.; Cahn, J.; Ernst, E.; Lynn, J.; Grimanelli, D.; Henderson, I.; Kakutani, T.; Martienssen, R.A. Retrotransposon Addiction Promotes Centromere Function via Epigenetically Activated Small RNAs. Nat. Plants 2024, 10, 1304–1316. [Google Scholar] [CrossRef]
- Long, J.C.; Xia, A.A.; Liu, J.H.; Jing, J.L.; Wang, Y.Z.; Qi, C.Y.; He, Y. Decrease in DNA methylation 1 (DDM1) Is Required for the Formation of mCHH Islands in Maize. J. Integr. Plant Biol. 2019, 61, 749–764. [Google Scholar] [CrossRef]
- Zubarev, R.A. The Challenge of the Proteome Dynamic Range and Its Implications for In-Depth Proteomics. Proteomics 2013, 13, 723–726. [Google Scholar] [CrossRef] [PubMed]
- Arteaga-Vazquez, M.; Sidorenko, L.; Rabanal, F.A.; Shrivistava, R.; Nobuta, K.; Green, P.J.; Meyers, B.C.; Chandler, V.L. RNA-Mediated Trans-Communication Can Establish Paramutation at the b1 Locus in Maize. Proc. Natl. Acad. Sci. USA 2010, 107, 12986–12991. [Google Scholar] [CrossRef]
- Dorweiler, J.E.; Carey, C.C.; Kubo, K.M.; Hollick, J.B.; Kermicle, J.L.; Chandler, V.L. Mediator of Paramutation1 Is Required for Establishment and Maintenance of Paramutation at Multiple Maize Loci. Plant Cell 2000, 12, 2101–2118. [Google Scholar] [CrossRef] [PubMed]
- Hövel, I.; Bader, R.; Louwers, M.; Haring, M.; Peek, K.; Gent, J.I.; Stam, M. RNA-Directed DNA Methylation Mutants Reduce Histone Methylation at the Paramutated Maize Booster1 Enhancer. Plant Physiol. 2024, 195, 1161–1179. [Google Scholar] [CrossRef]
- Kim, S.; Shendure, J. Mechanisms of Interplay Between Transcription Factors and the 3D Genome. Mol. Cell 2019, 76, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Wysocka, J.; Swigut, T.; Xiao, H.; Milne, T.A.; Kwon, S.Y.; Landry, J.; Kauer, M.; Tackett, A.J.; Chait, B.T.; Badenhorst, P.; et al. A PHD Finger of NURF Couples Histone H3 Lysine 4 Trimethylation with Chromatin Remodelling. Nature 2006, 442, 86. [Google Scholar] [CrossRef]
- Alkhatib, S.G.; Landry, J.W. The Nucleosome Remodeling Factor. FEBS Lett. 2011, 585, 3197–3207. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-W.; Liu, X.; Luo, M.; Chen, C.; Lin, X.; Tian, G.; Lu, Q.; Cui, Y.; Wu, K. HISTONE DEACETYLASE6 Interacts with FLOWERING LOCUS D and Regulates Flowering in Arabidopsis. Plant Physiol. 2011, 156, 173–184. [Google Scholar] [CrossRef]
- Luo, M.; Tai, R.; Yu, C.-W.; Yang, S.; Chen, C.-Y.; Lin, W.-D.; Schmidt, W.; Wu, K. Regulation of Flowering Time by the Histone Deacetylase HDA5 in Arabidopsis. Plant J. 2015, 82, 925–936. [Google Scholar] [CrossRef]
- Huang, H.; Mizukami, Y.; Hu, Y.; Ma, H. Isolation and Characterization of the Binding Sequences for the Product of the Arabidopsis Floral Homeotic Gene AGAMOUS. Nucleic Acids Res. 1993, 21, 4769–4776. [Google Scholar] [CrossRef]
- Shiraishi, H.; Okada, K.; Shimura, Y. Nucleotide Sequences Recognized by the AGAMOUS MADS Domain of Arabidopsis Thaliana in Vitro. Plant J. 1993, 4, 385–398. [Google Scholar] [CrossRef] [PubMed]
- Marí-Ordóñez, A.; Marchais, A.; Etcheverry, M.; Martin, A.; Colot, V.; Voinnet, O. Reconstructing de Novo Silencing of an Active Plant Retrotransposon. Nat. Genet. 2013, 45, 1029–1039. [Google Scholar] [CrossRef]
- Trasser, M.; Bohl-Viallefond, G.; Barragán-Borrero, V.; Diezma-Navas, L.; Loncsek, L.; Nordborg, M.; Marí-Ordóñez, A. PTGS Is Dispensable for the Initiation of Epigenetic Silencing of an ACTIVE transposon in Arabidopsis. bioRxiv 2024. [Google Scholar] [CrossRef]
- Montavon, T.; Kwon, Y.; Zimmermann, A.; Hammann, P.; Vincent, T.; Cognat, V.; Bergdoll, M.; Michel, F.; Dunoyer, P. Characterization of DCL4 Missense Alleles Provides Insights into Its Ability to Process Distinct Classes of dsRNA Substrates. Plant J. 2018, 95, 204–218. [Google Scholar] [CrossRef] [PubMed]
- Maris, C.; Dominguez, C.; Allain, F.H.-T. The RNA Recognition Motif, a Plastic RNA-Binding Platform to Regulate Post-Transcriptional Gene Expression. FEBS J. 2005, 272, 2118–2131. [Google Scholar] [CrossRef] [PubMed]
- Bäurle, I.; Smith, L.; Baulcombe, D.C.; Dean, C. Widespread Role for the Flowering-Time Regulators FCA and FPA in RNA-Mediated Chromatin Silencing. Science 2007, 318, 109–112. [Google Scholar] [CrossRef]
- Lemos, T.A.; Passos, D.O.; Nery, F.C.; Kobarg, J. Characterization of a New Family of Proteins That Interact with the C-Terminal region of the Chromatin-Remodeling Factor CHD-31. FEBS Lett. 2003, 533, 14–20. [Google Scholar] [CrossRef]
- Kobarg, C.B.; Kobarg, J.; Crosara-Alberto, D.P.; Theizen, T.H.; Franchini, K.G. MEF2C DNA-Binding Activity Is Inhibited Through Its Interaction with the Regulatory Protein Ki-1/57. FEBS Lett. 2005, 579, 2615–2622. [Google Scholar] [CrossRef]
- Bressan, G.C.; Quaresma, A.J.C.; Moraes, E.C.; Manfiolli, A.O.; Passos, D.O.; Gomes, M.D.; Kobarg, J. Functional Association of Human Ki-1/57 with Pre-mRNA SPLICING events. FEBS J. 2009, 276, 3770–3783. [Google Scholar] [CrossRef]
- Gracheva, E.; Dus, M.; Elgin, S.C.R. Drosophila RISC Component VIG and Its Homolog Vig2 Impact Heterochromatin Formation. PLoS ONE 2009, 4, e6182. [Google Scholar] [CrossRef]
- Schneiderman, J.I.; Goldstein, S.; Ahmad, K. Perturbation Analysis of Heterochromatin-Mediated Gene Silencing and Somatic Inheritance. PLoS Genet. 2010, 6, e1001095. [Google Scholar] [CrossRef] [PubMed]
Genotype | No. Plant | Exp. Light | Obs. Light | Exp. Dark | Obs. Dark | χ2 | p Value |
---|---|---|---|---|---|---|---|
UAS::b1TR/- | 179 | 179 | 161 | 0 | 18 | 1.81 | 0.1785 |
UAS::empty/- | 167 | 167 | 108 | 0 | 59 | 20.84 | 4.98 × 10−6 |
Protein Name | Gene ID | Accession | Predicted Function (GO) |
---|---|---|---|
Hyaluronan/mRNA binding family * | Hln | B4FR90 | RNA-binding |
Plasminogen activator inhibitor 1 RNA-binding protein * | Pai1 | A0A1D6FLF3 | RNA-binding |
Polyadenylate-binding protein * | Pab4 | A0A1D6I0G0 | RNA-binding |
Nuclear fusion defective 2 * | Nfd2 | B6SGY5 | production of siRNA in RNA-interference |
DEAD-box ATP-dependent RNA helicase 53 * | Atrh53 | A0A1D6MWD6 | helicase activity |
Eukaryotic initiation factor 4A-2 * | Eif4a-2 | B4FBK3 | helicase activity |
Heterogeneous nuclear ribonucleoprotein A3-like protein 2 + | Hnrpa3 | A0A096QLU9 | mRNA processing |
Nuclear transport factor 2 + | Ntf2 | A0A1D6H8Q2 | RNA binding |
THO complex subunit 4 ++ | Tho4 | B6T346 | RNA-binding |
Ribonuclease (Tudor-SN1) ++ | Tsn1 | K7UVD7 | gene silencing by RNA |
Protein Name | Gene ID | Accession | Predicted Function (GO) |
---|---|---|---|
DDT-transcription factor 4 * | Ddt4 | A0A096S3Y8 | metal ion binding |
Agamous-like MADS-box protein AGL5 * | Agl5/Zag4 | A0A1D6MHD4 | DNA-binding transcription factor activity |
DNA repair protein RAD23 + | Rad23 | B6TB61 | nucleotide-excision repair |
Putative AP2/EREBP transcription factor superfamily protein ++ | Ereb186 | A0A1D6FGH1 | DNA-binding transcription factor activity |
RNA_pol_Rpb1_2 domain-containing protein + | Nrpb1 | A0A1x7YI76 | DNA-directed 5′-3′ RNA polymerase activity |
Putative mediator of RNA polymerase II transcription subunit 37c ++ | Hsp6 | A0A1D6N7I4 | ATPase activity |
Actin-related protein 4 ++ | Arp4 | B4FNB4 | regulation of transcription by RNA polymerase II |
Regulator of chromosome condensation 2 ++ | Rcc2 | B4FTT2 | chromatin binding |
Nucleosome assembly protein 1 ++ | Nfa102 | A0A1D6FWR5 | nucleosome assembly |
Histone deacetylase complex subunit SAP18 ++ | Sap18 | B4FIB4 |
Gene Name | Gene ID | Predicted Function | E-Value | Score |
Chr5 | GRMZM2G010342 | chromatin assembly or disassembly | 0 | 60.52 |
Mybr85 | GRMZM2G089406 | RNA splicing | 3.00 × 10−99 | 31.28 |
Fab1b | GRMZM2G111208 | 0 | 55.19 | |
Btaf1 | GRMZM2G168096 | nucleic acid binding | 0 | 60.88 |
Sin3-like 4 | GRMZM2G334457 | regulation of transcription | 0 | 51.44 |
Ptm3 | GRMZM2G403562 | regulation of transcription | 3.00 × 10−138 | 33.65 |
Med14 | GRMZM2G446872 | positive regulation of transcription | 0 | 53.2 |
Sdg127 | GRMZM2G473138 | histone lysine methylation | 2.00 × 10−98 | 69.78 |
Protein Name | Gene ID | Co-Expression | Exp. Defined Interaction | Text Mining | Combined Score |
Histone methyltransferase (H3-K4 specific) | GRMZM2G352431 | 0 | 0.719 | 0.718 | 0.917 |
Uncharacterized protein | Zm00001d036601 | 0.832 | 0 | 0.209 | 0.861 |
Histone-lysine N-methyltransferase ASHH1 | GRMZM2G147619 | 0.832 | 0 | 0.185 | 0.857 |
Sister chromatid cohesion protein | Zm00001d018657 | 0.832 | 0 | 0.185 | 0.857 |
Sister chromatid cohesion protein | Zm00001d007943 | 0.832 | 0 | 0.185 | 0.857 |
Chromatin complex subunit A101 | GRMZM2G177165 | 0.059 | 0.657 | 0.458 | 0.809 |
Chromatin complex subunit A106 | GRMZM2G071025 | 0.129 | 0.161 | 0.36 | 0.491 |
Putative helicase CHR10 | GRMZM2G049168 | 0.129 | 0.161 | 0.36 | 0.491 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lynn, J.S.; Koirtyohann, K.M.; Gebreab, Y.B.; Edwards, J.; McGinnis, K.M. Identification of Proteins Associated with Stably Integrated Maize b1 Tandem Repeat Transgene Chromatin. Plants 2025, 14, 1863. https://doi.org/10.3390/plants14121863
Lynn JS, Koirtyohann KM, Gebreab YB, Edwards J, McGinnis KM. Identification of Proteins Associated with Stably Integrated Maize b1 Tandem Repeat Transgene Chromatin. Plants. 2025; 14(12):1863. https://doi.org/10.3390/plants14121863
Chicago/Turabian StyleLynn, Jason S., Kathryn M. Koirtyohann, Yacob B. Gebreab, Jaliyah Edwards, and Karen M. McGinnis. 2025. "Identification of Proteins Associated with Stably Integrated Maize b1 Tandem Repeat Transgene Chromatin" Plants 14, no. 12: 1863. https://doi.org/10.3390/plants14121863
APA StyleLynn, J. S., Koirtyohann, K. M., Gebreab, Y. B., Edwards, J., & McGinnis, K. M. (2025). Identification of Proteins Associated with Stably Integrated Maize b1 Tandem Repeat Transgene Chromatin. Plants, 14(12), 1863. https://doi.org/10.3390/plants14121863