Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (327)

Search Parameters:
Keywords = polymer-drug conjugates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 6295 KiB  
Article
ROS/Enzyme Dual-Responsive Drug Delivery System for Targeted Colorectal Cancer Therapy: Synergistic Chemotherapy, Anti-Inflammatory, and Gut Microbiota Modulation
by Xin Zhang, Ruonan Lian, Bingbing Fan, Lei Meng, Pengxia Zhang, Yu Zhang and Weitong Sun
Pharmaceutics 2025, 17(7), 940; https://doi.org/10.3390/pharmaceutics17070940 - 21 Jul 2025
Viewed by 434
Abstract
Objectives: Colorectal cancer (CRC) is a leading cause of cancer-related mortality, driven by chronic inflammation, gut microbiota dysbiosis, and complex tumor microenvironment interactions. Current therapies are limited by systemic toxicity and poor tumor accumulation. This study aimed to develop a ROS/enzyme dual-responsive oral [...] Read more.
Objectives: Colorectal cancer (CRC) is a leading cause of cancer-related mortality, driven by chronic inflammation, gut microbiota dysbiosis, and complex tumor microenvironment interactions. Current therapies are limited by systemic toxicity and poor tumor accumulation. This study aimed to develop a ROS/enzyme dual-responsive oral drug delivery system, KGM-CUR/PSM microspheres, to achieve precise drug release in CRC and enhance tumor-specific drug accumulation, which leverages high ROS levels in CRC and the β-mannanase overexpression in colorectal tissues. Methods: In this study, we synthesized a ROS-responsive prodrug polymer (PSM) by conjugating polyethylene glycol monomethyl ether (mPEG) and mesalazine (MSL) via a thioether bond. CUR was then encapsulated into PSM using thin-film hydration to form tumor microenvironment-responsive micelles (CUR/PSM). Subsequently, konjac glucomannan (KGM) was employed to fabricate KGM-CUR/PSM microspheres, enabling targeted delivery for colorectal cancer therapy. The ROS/enzyme dual-response properties were confirmed through in vitro drug release studies. Cytotoxicity, cellular uptake, and cell migration were assessed in SW480 cells. In vivo efficacy was evaluated in AOM/DSS-induced CRC mice, monitoring tumor growth, inflammatory markers (TNF-α, IL-1β, IL-6, MPO), and gut microbiota composition. Results: In vitro drug release studies demonstrated that KGM-CUR/PSM microspheres exhibited ROS/enzyme-responsive release profiles. CUR/PSM micelles demonstrated significant anti-CRC efficacy in cytotoxicity assays, cellular uptake studies, and cell migration assays. In AOM/DSS-induced CRC mice, KGM-CUR/PSM microspheres significantly improved survival and inhibited CRC tumor growth, and effectively reduced the expression of inflammatory cytokines (TNF-α, IL-1β, IL-6) and myeloperoxidase (MPO). Histopathological and microbiological analyses revealed near-normal colon architecture and microbial diversity in the KGM-CUR/PSM group, confirming the system’s ability to disrupt the “inflammation-microbiota-tumor” axis. Conclusions: The KGM-CUR/PSM microspheres demonstrated a synergistic enhancement of anti-tumor efficacy by inducing apoptosis, alleviating inflammation, and modulating the intestinal microbiota, which offers a promising stimuli-responsive drug delivery system for future clinical treatment of CRC. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

24 pages, 1532 KiB  
Review
Polymeric Nanoparticle-Mediated Photodynamic Therapy: A Synergistic Approach for Glioblastoma Treatment
by Bandar Aldhubiab and Rashed M. Almuqbil
Pharmaceuticals 2025, 18(7), 1057; https://doi.org/10.3390/ph18071057 - 18 Jul 2025
Viewed by 448
Abstract
Glioblastoma is the most common and aggressive malignant primary brain tumour. Patients with glioblastoma have a median survival of only around 14.6 months after diagnosis, despite the availability of various conventional multimodal treatments including chemotherapy, radiation therapy, and surgery. Therefore, photodynamic therapy (PDT) [...] Read more.
Glioblastoma is the most common and aggressive malignant primary brain tumour. Patients with glioblastoma have a median survival of only around 14.6 months after diagnosis, despite the availability of various conventional multimodal treatments including chemotherapy, radiation therapy, and surgery. Therefore, photodynamic therapy (PDT) has emerged as an advanced, selective and more controlled therapeutic approach, which has minimal systemic toxicity and fewer side effects. PDT is a less invasive therapy that targets all cells or tissues that possess the photosensitizer (PS) itself, without affecting the surrounding healthy tissues. Polymeric NPs (PNPs) as carriers can improve the targeting ability and stability of PSs and co-deliver various anticancer agents to achieve combined cancer therapy. Because of their versatile tuneable features, these PNPs have the capacity to open tight junctions of the blood–brain barrier (BBB), easily transport drugs across the BBB, protect against enzymatic degradation, prolong the systemic circulation, and sustainably release the drug. Conjugated polymer NPs, poly(lactic-co-glycolic acid)-based NPs, lipid–polymer hybrid NPs, and polyethylene-glycolated PNPs have demonstrated great potential in PDT owing to their unique biocompatibility and optical properties. Although the combination of PDT and PNPs has great potential and can provide several benefits over conventional cancer therapies, there are several limitations that are hindering its translation into clinical use. This review aims to summarize the recent advances in the combined use of PNPs and PDT in the case of glioblastoma treatment. By evaluating various types of PDT and PNPs, this review emphasizes how these innovative approaches can play an important role in overcoming glioblastoma-associated critical challenges, including BBB and tumour heterogeneity. Furthermore, this review also discusses the challenges and future directions for PNPs and PDT, which provides insight into the potential solutions to various problems that are hindering their clinical translation in glioblastoma treatment. Full article
(This article belongs to the Special Issue Tumor Therapy and Drug Delivery)
Show Figures

Graphical abstract

22 pages, 1305 KiB  
Review
Hydrogel Conjugation: Engineering of Hydrogels for Drug Delivery
by Linh Dinh, Sung-Joo Hwang and Bingfang Yan
Pharmaceutics 2025, 17(7), 897; https://doi.org/10.3390/pharmaceutics17070897 - 10 Jul 2025
Viewed by 673
Abstract
Background: Hydrogels are 3D networks of hydrophilic polymers with various biomedical applications, including tissue regeneration, wound healing, and localized drug delivery. Hydrogel conjugation links therapeutic agents to a hydrogel network, creating a delivery system with adjustable and flexible hydrogel properties and drug [...] Read more.
Background: Hydrogels are 3D networks of hydrophilic polymers with various biomedical applications, including tissue regeneration, wound healing, and localized drug delivery. Hydrogel conjugation links therapeutic agents to a hydrogel network, creating a delivery system with adjustable and flexible hydrogel properties and drug activity, allowing for controlled release and enhanced drug stability. Conjugating therapeutic agents to hydrogels provides innovative delivery formats, including injectable and sprayable dosage forms, which facilitate localized and long-lasting delivery. This approach enables non-viral therapeutic methods, such as insertional mutagenesis, and minimally invasive drug administration. Scope and Objectives: While numerous reviews have analyzed advancements in hydrogel synthesis, characterization, properties, and hydrogels as a drug delivery vehicle, this review focuses on hydrogel conjugation, which enables the precise functionalization of hydrogels with small molecules and macromolecules. Subsequently, a description and discussion of several bio-conjugated hydrogel systems, as well as binding motifs (e.g., “click” chemistry, functional group coupling, enzymatic ligation, etc.) and their potential for clinical translation, are provided. In addition, the integration of therapeutic agents with nucleic acid-based hydrogels can be leveraged for sequence-specific binding, representing a leap forward in biomaterials. Key findings: Special attention was given to the latest conjugation approaches and binding motifs that are useful for designing hydrogel-based drug delivery systems. The review systematically categorizes hydrogel conjugates for drug delivery, focusing on conjugating hydrogels with major classes of therapeutic agents, including small-molecule drugs, nucleic acids, proteins, etc., each with distinct conjugation challenges. The design principles were discussed along with their properties and drug release profiles. Finally, future opportunities and current limitations of conjugated hydrogel systems are addressed. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

24 pages, 1920 KiB  
Review
Advances in Doxorubicin Chemotherapy: Emerging Polymeric Nanocarriers for Drug Loading and Delivery
by Abhi Bhadran, Himanshu Polara, Godwin K. Babanyinah, Sruthy Baburaj and Mihaela C. Stefan
Cancers 2025, 17(14), 2303; https://doi.org/10.3390/cancers17142303 - 10 Jul 2025
Viewed by 712
Abstract
Background/Objectives: Effective and targeted delivery of doxorubicin (DOX) remains a significant challenge due to its dose-limiting cardiotoxicity and systemic side effects. Liposomal formulations like Doxil® have improved tumor targeting and reduced toxicity, but issues such as limited stability, poor release control, and [...] Read more.
Background/Objectives: Effective and targeted delivery of doxorubicin (DOX) remains a significant challenge due to its dose-limiting cardiotoxicity and systemic side effects. Liposomal formulations like Doxil® have improved tumor targeting and reduced toxicity, but issues such as limited stability, poor release control, and insufficient site-specific delivery persist. As a result, there is a growing interest in advanced drug delivery systems, particularly polymeric nanocarriers, which offer biocompatibility, tunable properties, and ease of fabrication. Methods: This review is organized into two key sections. The first section provides a comprehensive overview of DOX, including its mechanism of action, clinical challenges, and the limitations of current chemotherapy approaches. The second section highlights recent advances in polymeric nanocarriers for DOX delivery, focusing on polymeric micelles as well as other promising systems like hydrogels, dendrimers, polymersomes, and polymer–drug conjugates. Results: Initial discussions explore current strategies enhancing DOX’s clinical translation, including methods to address cardiotoxicity and multidrug resistance. The latter part presents recent studies that report improved drug loading efficiency in polymeric nanocarriers through techniques such as core/shell modifications, enhanced hydrophobic interactions, and polymer–drug conjugation. Conclusions: Despite notable progress in polymeric nanocarrier-based DOX delivery, challenges like limited circulation time, immunogenicity, and manufacturing scalability continue to hinder clinical application. Continued innovation in this field is crucial for the development of safe, effective, and clinically translatable polymeric nanocarriers for cancer therapy. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Figure 1

67 pages, 5184 KiB  
Review
Recent Advances on the Analysis and Biological Functions of Cinnamaldehyde and Its Derivatives
by Roghayeh Karimirad, Baskaran Stephen Inbaraj and Bing-Huei Chen
Antioxidants 2025, 14(7), 765; https://doi.org/10.3390/antiox14070765 - 22 Jun 2025
Viewed by 1034
Abstract
Natural antioxidants isolated from fruits, vegetables, herbs and spices have drawn great attention owing to their numerous health-promoting effects. Cinnamaldehyde (CA), an abundant antioxidant in cinnamon spice, has been explored more intensely over the last decade as it has been demonstrated to be [...] Read more.
Natural antioxidants isolated from fruits, vegetables, herbs and spices have drawn great attention owing to their numerous health-promoting effects. Cinnamaldehyde (CA), an abundant antioxidant in cinnamon spice, has been explored more intensely over the last decade as it has been demonstrated to be effective and safe in the treatment of various diseases. Structurally, a substituted aldehyde group with an unsaturated carbon–carbon double bond with two electrophilic sites for reaction with receptors and enzymes can exert diverse biological effects. Although cinnamon has been traditionally used as a spice and herbal remedy, many studies investigating the most dominant functional compound, CA, and its biological activities have been reported in recent years. This review article intends to present an overview of recent advances in analytical methods and the application of cinnamon extract/oil, CA and its derivatives, CA-polymer/biomolecule conjugates and CA micro/nanosystems in alleviating various chronic diseases including cancer, diabetes, obesity, cardiovascular disease, neurological disorders, osteoarthritis and osteoporosis. Both in vitro and in vivo studies have demonstrated the improved pharmacological efficiency of CA and its derivatives as well as their polymer/drug/biomolecule conjugates and micro/nanoencapsulated forms, suggesting a possible alternative natural therapy and adjuvant therapy with conventional drugs via a synergistic process. Full article
(This article belongs to the Special Issue Natural Antioxidants in Pharmaceuticals and Dermatocosmetology)
Show Figures

Figure 1

15 pages, 1908 KiB  
Article
Surface Functionalized Polyhydroxyalkanoate Nanoparticles via SpyTag–SpyCatcher System for Targeted Breast Cancer Treatment
by Jin Young Heo, Min Kyung Sung, Seonhye Jang, Hansol Kim, Youngdo Jeong, Dong-Jin Jang, Sang-Jae Lee, Seong-Bo Kim and Sung Tae Kim
Pharmaceutics 2025, 17(6), 721; https://doi.org/10.3390/pharmaceutics17060721 - 29 May 2025
Viewed by 649
Abstract
Background/Objectives: Biodegradable polymers have emerged as promising platforms for drug delivery. Produced by microbiomes, polyhydroxyalkanoates (PHAs) offer excellent biocompatibility, biodegradability, and environmental sustainability. In this study, we report the surface functionalization of PHA-based nanoparticles (NPs) using the SpyTag–SpyCatcher system to enhance cellular uptake. [...] Read more.
Background/Objectives: Biodegradable polymers have emerged as promising platforms for drug delivery. Produced by microbiomes, polyhydroxyalkanoates (PHAs) offer excellent biocompatibility, biodegradability, and environmental sustainability. In this study, we report the surface functionalization of PHA-based nanoparticles (NPs) using the SpyTag–SpyCatcher system to enhance cellular uptake. Methods: Initial conjugation with mEGFP-SpyTag enabled visualization, followed by decoration with HER2-specific Affibody-SpyCatcher and/or TAT-SpyCatcher peptides. The prepared NPs retained a diameter of <200 nm and a negatively charged surface. Results: Affibody-functionalized NPs significantly enhanced internalization and cytotoxicity in HER2-overexpressing SK-BR-3 cells, whereas TAT-functionalized NPs promoted uptake across various cell types, independently of HER2 expression. Dual-functionalized NPs exhibited synergistic or attenuated effects based on the HER2 expression levels, highlighting the critical role of ligand composition in targeted delivery. Conclusions: The results of this study demonstrate that the SpyTag–SpyCatcher-mediated surface engineering of PHA NPs offers a modular and robust strategy for active targeting in nanomedicine. Full article
Show Figures

Graphical abstract

19 pages, 3012 KiB  
Article
A Novel Brain-Targeting Nanoparticle Loaded with Biatractylolide and Its Protective Effect on Alzheimer’s Disease
by Qianmei Hu, Candi Liu, Jiawang Tan, Jixiang Wang, Hao Yang, Yi Liu, Haochu Mao, Zixuan Jiang, Xing Feng and Xiaojun Tao
Pharmaceuticals 2025, 18(6), 809; https://doi.org/10.3390/ph18060809 - 28 May 2025
Viewed by 596
Abstract
Background: To enhance the bioavailability and neuroprotective efficacy of biatractylolide against Alzheimer’s disease by developing a novel Tween-80-modified pullulan–chenodeoxycholic acid nanoparticle as a delivery vehicle. Methods: Chenodeoxycholic acid (CDCA) was chemically conjugated to pullulan to yield hydrophobically modified pullulan (PUC), onto which [...] Read more.
Background: To enhance the bioavailability and neuroprotective efficacy of biatractylolide against Alzheimer’s disease by developing a novel Tween-80-modified pullulan–chenodeoxycholic acid nanoparticle as a delivery vehicle. Methods: Chenodeoxycholic acid (CDCA) was chemically conjugated to pullulan to yield hydrophobically modified pullulan (PUC), onto which polysorbate 80 (Tween-80) was subsequently adsorbed. The PUC polymers with CDCA substitution levels were analyzed by 1H NMR spectroscopy. Nanoparticles were fabricated via the dialysis method and characterized by transmission electron microscopy and dynamic light scattering for morphology, size, and surface charge. In vitro neuroprotection was assessed by exposing SH-SY5Y and PC12 cells to 20 µM Aβ25-35 to induce cytotoxicity, followed by pretreatment with biatractylolide-loaded PUC (BD-PUC) nanoparticle solutions at various biatractylolide concentrations. The in vivo brain-targeting capability of both empty PUC and BD-PUC particles was evaluated using a live imaging system. Results: The 1H NMR analysis confirmed three distinct CDCA substitution degrees (8.97%, 10.66%, 13.92%). Transmission electron microscopy revealed uniformly dispersed, spherical nanoparticles. Dynamic light scattering measurements showed a hydrodynamic diameter of ~200 nm and a negative zeta potential. Exposure to 20 µM Aβ25-35 significantly reduced SH-SY5Y and PC12 cell viability; pretreatment with BD-PUC nanoparticles markedly enhanced cell survival rates and preserved cellular morphology compared to cells treated with free biatractylolide. Notably, the cytoprotective effect of BD-PUC exceeded that of the free drug. In vivo imaging demonstrated that both empty PUC and Tween-80-adsorbed BD-PUC nanoparticles effectively accumulated in the brain. Conclusions: The protective effect of BD-PUC on SH-SY5Y and PC12 cells induced by Aβ25-35 was higher than free biatractylolide solution, and the BD-PUC nanosolution modified with Tween-80 showed a brain-targeting effect. Full article
(This article belongs to the Special Issue Natural Products for Therapeutic Potential)
Show Figures

Figure 1

20 pages, 5071 KiB  
Article
Effect of E-Beam Irradiation on Solutions of Fullerene C60 Conjugate with Polyvinylpyrrolidone and Folic Acid
by Anna V. Titova, Zhanna B. Lyutova, Alexandr V. Arutyunyan, Aleksandr S. Aglikov, Mikhail V. Zhukov, Lyudmila V. Necheukhina, Darya V. Zvyagina, Victor P. Sedov, Maria A. Markova, Anton V. Popugaev and Alina A. Borisenkova
Polymers 2025, 17(9), 1259; https://doi.org/10.3390/polym17091259 - 5 May 2025
Viewed by 551
Abstract
The radiation sterilization of polymer-based drug solutions can change the characteristics that determine the efficiency of drug targeting, such as particle sizes in the solution and their surface potential. The effect of E-beam treatment at doses of 3 and 8 kGy in a [...] Read more.
The radiation sterilization of polymer-based drug solutions can change the characteristics that determine the efficiency of drug targeting, such as particle sizes in the solution and their surface potential. The effect of E-beam treatment at doses of 3 and 8 kGy in a Xe or air atmosphere on the hydrodynamic properties of dilute solutions of polyvinylpyrrolidone (PVP) conjugate with fullerene C60 and folic acid (FA-PVP-C60) was studied and compared with native PVP K30. The capillary viscometry method was used to determine the intrinsic viscosity of solutions. The particle sizes (Rh) were determined using the DLS method. The zeta potential of the particles was determined using the PALS method. The morphological features of the conjugate surface irradiated in a Xe atmosphere with a dose of 8 kGy FA-PVP-C60 were studied by AFM. The functionalization of FA-PVP-C60 and PVP during E-beam treatment was examined using UV- and FTIR-spectrometry. When the diluted solutions of FA-PVP-C60 and PVP were irradiated in air with a dose of 3 kGy, destruction of polymer chains occurred predominantly, but when the dose was increased to 8 kGy, intermolecular cross-linking occurred, leading to an increase in the characteristic viscosity and particle size in the solution. It was shown that the average particle sizes, amounting to 3 and 8 nm for PVP and 4 and 20 nm for FA-PVP-C60, did not change significantly under E-beam irradiation in a Xe atmosphere in the considered dose range. The zeta potential of the particles remained virtually unchanged for both PVP and FA-PVP-C60 under all irradiation conditions. The obtained results indicate the possibility of performing radiation sterilization of FA-PVP-C60 conjugate solutions in an inert gas atmosphere in the range of studied doses. Full article
(This article belongs to the Special Issue Polymers and Their Role in Drug Delivery, 2nd Edition)
Show Figures

Figure 1

22 pages, 3662 KiB  
Review
Resorcinarene-Based Polymer Conjugated for Pharmaceutical Applications
by Carlos Matiz, Karen Castellanos and Mauricio Maldonado
Processes 2025, 13(5), 1325; https://doi.org/10.3390/pr13051325 - 26 Apr 2025
Viewed by 619
Abstract
Resorcinarenes are polyhydroxylated platforms consisting of 4, 5, 8, or more units of resorcinol. The numbers refer to the number of resorcinol units, with 4-unit platforms being the most stable. Investigation into their use in pharmaceutical applications has increased due to high versatility [...] Read more.
Resorcinarenes are polyhydroxylated platforms consisting of 4, 5, 8, or more units of resorcinol. The numbers refer to the number of resorcinol units, with 4-unit platforms being the most stable. Investigation into their use in pharmaceutical applications has increased due to high versatility and functionalization. They exhibit significant flexibility due to their methylene bridges and to the interactions of hydrogen bridges and van der Waals forces. These platforms can be used in an increasing number of applications, which include the functionalization of nanoparticles and relevant materials, the synthesis of catalysts, the removal of contaminants, and analytical separations in analytes such as benzodiazepines and norepinephrine. For this last application, resorcinarenes are functionalized with specific important functional groups. Polymers were developed in the 20th century for the development of materials with significant improvements in thermal and mechanical properties. They are cross-linked polymeric structures, mainly made up of monomers such as styrene, divinylbenzene acrylate, vinylpyridine, and vinyl acetate, among others. They often have a homogeneous, porous structure, but this structure can vary significantly depending on the type of solvent used. Therefore, they have been applied in the functionalization of the polyhydroxylated platforms. In this review, the structure, properties, and synthesis of resorcinarenes, as well as the use of polymeric matrices, are analyzed, emphasizing the functionalization of organic polymers using resorcinarenes. Furthermore, the respective applications in controlled drug delivery, pharmaceutical transport, and therapeutics, which are diverse and show promising growth, will be explored. Full article
(This article belongs to the Special Issue Feature Review Papers in Section “Pharmaceutical Processes”)
Show Figures

Figure 1

14 pages, 9175 KiB  
Article
Amphiphilic Celecoxib-Polysaccharide Delivery System for Enhanced Colon-Targeted Colitis Therapy
by Qiao Qiao, Xian Wan, Jie Li, Weijun Chen, Enxuan Li, Lipeng Qiu and Huiming Tu
Pharmaceutics 2025, 17(4), 511; https://doi.org/10.3390/pharmaceutics17040511 - 12 Apr 2025
Viewed by 646
Abstract
Background: Ulcerative colitis (UC), a subtype of chronic inflammatory bowel disease (IBD), is primarily treated with oral medications to reduce inflammation and alleviate symptoms. Celecoxib (CXB) is an attractive candidate for UC; however, its limited solubility and low bioavailability pose significant challenges [...] Read more.
Background: Ulcerative colitis (UC), a subtype of chronic inflammatory bowel disease (IBD), is primarily treated with oral medications to reduce inflammation and alleviate symptoms. Celecoxib (CXB) is an attractive candidate for UC; however, its limited solubility and low bioavailability pose significant challenges to its clinical application. Methods: We reported a novel chondroitin sulfate A–Celecoxib (CSA-CXB) polymeric nanoprodrug to address the limited solubility and low bioavailability of CXB. CXB was conjugated to chondroitin sulfate A (CSA) via succinic anhydride (SA) and ethylenediamine to prepare CSA-CXB polymers, which can self-assemble into nanoparticle structural prodrugs in aqueous condition. We investigated the stability, blood compatibility, and responsiveness of the nanoparticles. The ability of the nanoparticles to treat UC in vitro and in vivo was then evaluated. Results: The CSA-CXB nanoprodrug was spherical with a mean particle size of 188.4 ± 2.2 nm, a zeta potential of −22.9 ± 0.1 mV, and sustained drug release behavior. Furthermore, CSA-CXB exhibited remarkable antioxidant and anti-inflammatory effects, as it can significantly increase the free radical scavenging rate and reduce the expression level of ROS, TNF-α, IL-6, nitric oxide (NO), and COX-2 protein in vitro. In vivo results demonstrated that CSA-CXB targeted the mice’s colon efficiently mitigate UC symptoms by inhibiting the expression of inflammatory cytokine. Conclusions: The CSA-CXB nanoprodrug can improve the therapeutic impact of CXB, and has potential as a new preparation for a clinical UC treatment nanoprodrug. Full article
(This article belongs to the Special Issue Natural Macromolecule-Based Nanocarriers for Drug Delivery)
Show Figures

Figure 1

17 pages, 2739 KiB  
Article
Microfluidics-Assisted Formulation of Polymeric Oxytocin Nanoparticles for Targeted Brain Delivery
by Emmanuel Adediran, Sharon Vijayanand, Akanksha Kale, Mahek Gulani, Jennifer C. Wong, Andrew Escayg, Kevin S. Murnane and Martin J. D’Souza
Pharmaceutics 2025, 17(4), 452; https://doi.org/10.3390/pharmaceutics17040452 - 1 Apr 2025
Viewed by 802
Abstract
Background: The neuropeptide oxytocin has been identified as a potential therapeutic molecule. However, the therapeutic potential of this molecule is limited due to the challenges faced in oxytocin delivery to the brain. Scientific innovation has led to the breakthrough discovery of many modalities [...] Read more.
Background: The neuropeptide oxytocin has been identified as a potential therapeutic molecule. However, the therapeutic potential of this molecule is limited due to the challenges faced in oxytocin delivery to the brain. Scientific innovation has led to the breakthrough discovery of many modalities to encapsulate molecules for targeted drug delivery, which can enhance oxytocin delivery to the brain. This research aimed to explore a microfluidics-based system that optimizes the formulation of cross-linked bovine serum albumin (BSA) nanoparticles encapsulating oxytocin. Methods: First, the formulation parameters were optimized using a design of experiments (DOE) by evaluating the effect of flow rate, polymer concentration, and the binary solvent mixture polarity on the nanoparticle size. Drug encapsulation efficiency, release, and kinetics profile were characterized. These oxytocin nanoparticles were conjugated to rabies virus glycoprotein (RVG), a brain-targeting ligand, and the conjugation efficiency was determined. Results: The sizes of the nanoparticles were between 50 nm and 75 nm with a <0.4 polydispersity index. The encapsulation efficiency was >80%. Approximately 58% of oxytocin was released from the nanoparticles within the first six hours, showing an initial burst that is ideal for seizure control and thereafter exhibiting the Korsmeyer–Peppas release kinetics. Conclusions: For the first time, we demonstrated the microfluidics method of formulating nanoparticles with particle size of less than 100 nm, with improved encapsulation efficiency and optimal release profile for oxytocin brain delivery. Full article
(This article belongs to the Special Issue Microneedles for Drug and Vaccine Delivery)
Show Figures

Figure 1

17 pages, 2362 KiB  
Article
Gemcitabine–Doxorubicin Combination Polymer-Drug Conjugate Prepared by SPAAC Click Chemistry: In Vitro Characterization
by Omotola D. Gbadegesin and Simeon K. Adesina
Int. J. Mol. Sci. 2025, 26(6), 2798; https://doi.org/10.3390/ijms26062798 - 20 Mar 2025
Viewed by 762
Abstract
Combination chemotherapy is preferred for the treatment of ovarian cancer (OC). Systemic toxicity, however, frequently limits the effectiveness of treatment. Polymer–drug conjugates (PDCs) containing synergistic combinations of chemotherapeutic drugs can be used to enhance therapeutic efficacy. We earlier reported the use of a [...] Read more.
Combination chemotherapy is preferred for the treatment of ovarian cancer (OC). Systemic toxicity, however, frequently limits the effectiveness of treatment. Polymer–drug conjugates (PDCs) containing synergistic combinations of chemotherapeutic drugs can be used to enhance therapeutic efficacy. We earlier reported the use of a strain-promoted [3 + 2] azide–alkyne cycloaddition (SPAAC)-mediated polymerization method for the preparation of single-drug PDCs. In this report, the polymerization method was used to prepare gemcitabine–doxorubicin combination PDC. The PDC had a high molecular weight (Mw 1360 kDa) and high drug loading (36.6% weight gemcitabine; 7.0% weight doxorubicin). It demonstrated cathepsin B-catalyzed drug release at pH 5.0 and good hydrolytic stability at pH 7.4. The combination index analysis of free gemcitabine and free doxorubicin showed a concentration-dependent synergism (combination index < 1) in OVCAR-3 OC cells. Compared to individual gemcitabine PDC (the concentration that inhibited 50% growth (IC50) > 50 µg/mL) and doxorubicin PDC (IC50 = 1.79 µg/mL), the combination PDC (IC50 = 0.99 µg/mL) showed greater cytotoxicity against OVCAR-3 cells and was less cytotoxic than the equivalent free drug combination (IC50 = 0.11 µg/mL). The gemcitabine–doxorubicin combination PDC is promising for targeted combination chemotherapy of OC. Full article
(This article belongs to the Special Issue Gynecologic Oncology: Molecular Mechanisms and Therapies)
Show Figures

Figure 1

16 pages, 3154 KiB  
Article
Tailoring the Composition of HA/PEG Mixed Nano-Assemblies for Anticancer Drug Delivery
by Beatrice Zurletti, Ilaria Andreana, Iris Chiara Salaroglio, Valeria Bincoletto, Maela Manzoli, Barbara Rolando, Paola Milla, Chiara Riganti, Barbara Stella and Silvia Arpicco
Molecules 2025, 30(6), 1349; https://doi.org/10.3390/molecules30061349 - 17 Mar 2025
Viewed by 671
Abstract
Self-assembling amphiphilic polymers represent highly promising materials with emerging applications across various fields. In these polymers, the presence of hydrophilic and hydrophobic segments within their structure drives the self-assembly process in aqueous environments, leading to organized structures capable of incorporating lipophilic drugs. Their [...] Read more.
Self-assembling amphiphilic polymers represent highly promising materials with emerging applications across various fields. In these polymers, the presence of hydrophilic and hydrophobic segments within their structure drives the self-assembly process in aqueous environments, leading to organized structures capable of incorporating lipophilic drugs. Their high chemical versatility enables the design of tailored structures to meet specific requirements, such as the active targeting ability, thereby broadening their potential applications. In this work, a polyethylene glycol-phospholipid conjugate was employed to form nanocarriers loaded with a lipophilic derivative of gemcitabine. To achieve nano-assemblies actively targeted towards cancer cells overexpressing the hyaluronic acid (HA) receptor CD44, a HA-phospholipid conjugate was co-formulated in various molar ratios (1%, 10%, and 20%). All formulations exhibited a mean diameter below 130 nm, a negative zeta potential (approximately −30 mV), and a high encapsulation efficiency (above 90%). These nano-assemblies demonstrated stability during storage and effectively released the encapsulated drug in a cell culture medium. Upon incubation with cancer cells, the nano-assemblies were internalized via a CD44 endocytosis-mediated mechanism, with the extent of internalization depending on the HA conjugate content. Consistently, cell viability studies revealed that the nanocarriers decorated with higher amounts of HA exerted a higher cytotoxicity, enabling a fine tuning of the nano-assembly properties. Full article
(This article belongs to the Special Issue Design and Application Based on Versatile Nano-Composites)
Show Figures

Figure 1

20 pages, 3591 KiB  
Article
Novel HSA-PMEMA Nanomicelles Prepared via Site-Specific In Situ Polymerization-Induced Self-Assembly for Improved Intracellular Delivery of Paclitaxel
by Yang Chen, Shuang Liang, Binglin Chen, Fei Jiao, Xuliang Deng and Xinyu Liu
Pharmaceutics 2025, 17(3), 316; https://doi.org/10.3390/pharmaceutics17030316 - 1 Mar 2025
Viewed by 962
Abstract
Background/Objectives: Paclitaxel (PTX) is a potent anticancer drug that is poorly soluble in water. To enhance its delivery efficiency in aqueous environments, amphiphilic polymer micelles are often used as nanocarriers for PTX in clinical settings. However, the hydrophilic polymer segments on the [...] Read more.
Background/Objectives: Paclitaxel (PTX) is a potent anticancer drug that is poorly soluble in water. To enhance its delivery efficiency in aqueous environments, amphiphilic polymer micelles are often used as nanocarriers for PTX in clinical settings. However, the hydrophilic polymer segments on the surface of these micelles may possess potential immunogenicity, posing risks in clinical applications. To address this issue, nanomicelles based on human serum albumin (HSA)–hydrophobic polymer conjugates constructed via site-specific in situ polymerization-induced self-assembly (SI-PISA) are considered a promising alternative. The HSA shell not only ensures good biocompatibility but also enhances cellular uptake because of endogenous albumin trafficking pathways. Moreover, compared to traditional methods of creating protein–hydrophobic polymer conjugates, SI-PISA demonstrates higher reaction efficiency and better preservation of protein functionality. Methods: We synthesized HSA-PMEMA nanomicelles via SI-PISA using HSA and methoxyethyl methacrylate (MEMA)—a novel hydrophobic monomer with a well-defined and stable chemical structure. The protein activity and the PTX intracellular delivery efficiency of HSA-PMEMA nanomicelles were evaluated. Results: The CD spectra of HSA and HSA-PMEMA exhibited similar shapes, and the relative esterase-like activity of HSA-PMEMA was 94% that of unmodified HSA. Flow cytometry results showed that Cy7 fluorescence intensity in cells treated with HSA-PMEMA-Cy7 was approximately 1.35 times that in cells treated with HSA-Cy7; meanwhile, HPLC results indicated that, under the same conditions, the PTX loading per unit protein mass on HSA-PMEMA was approximately 1.43 times that of HSA. These collectively contributed to a 1.78-fold overall PTX intracellular delivery efficiency of HSA-PMEMA compared to that of HSA. Conclusions: In comparison with HSA, HSA-PMEMA nanomicelles exhibit improved cellular uptake and higher loading efficiency for PTX, effectively promoting the intracellular delivery of PTX. Tremendous potential lies in these micelles for developing safer and more efficient next-generation PTX formulations for tumor treatment. Full article
(This article belongs to the Special Issue Advanced Materials Science and Technology in Drug Delivery)
Show Figures

Graphical abstract

42 pages, 8215 KiB  
Review
Hydrogels from Protein–Polymer Conjugates: A Pathway to Next-Generation Biomaterials
by Oubadah Alayoubi, Yağmur Poyraz, Gana Hassan, Sümeyye Berfin Gül, Nergiz Çalhan, Naz Mina Mert Şahin, Megha Gautam, Aylin Kutlu, Bengü Özuğur Uysal, Ebru Demet Akten and Önder Pekcan
Gels 2025, 11(2), 96; https://doi.org/10.3390/gels11020096 - 29 Jan 2025
Cited by 1 | Viewed by 1337
Abstract
Hybrid hydrogels from protein–polymer conjugates are biomaterials formed via the chemical bonding of a protein molecule with a polymer molecule. Protein–polymer conjugates offer a variety of biological properties by combining the mechanical strength of polymers and the bioactive functionality of proteins. These properties [...] Read more.
Hybrid hydrogels from protein–polymer conjugates are biomaterials formed via the chemical bonding of a protein molecule with a polymer molecule. Protein–polymer conjugates offer a variety of biological properties by combining the mechanical strength of polymers and the bioactive functionality of proteins. These properties allow these conjugates to be used as biocompatible components in biomedical applications. Protein–polymer conjugation is a vital bioengineering strategy in many fields, such as drug delivery, tissue engineering, and cancer therapy. Protein–polymer conjugations aim to create materials with new and unique properties by combining the properties of different molecular components. There are various ways of creating protein–polymer conjugates. PEGylation is one of the most common conjugation techniques where a protein is conjugated with Polyethylene Glycol. However, some limitations of PEGylation (like polydispersity and low biodegradability) have prompted researchers to devise novel synthesis techniques like PEGylation, where synthetic polypeptides are used as the polymer component. This review will illustrate the properties of protein–polymer conjugates, their synthesis methods, and their various biomedical applications. Full article
Show Figures

Figure 1

Back to TopTop