Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = polymer dispersed liquid crystal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5335 KiB  
Article
Study on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystals Doped with Cellulose Nanocrystals
by Jiayan Wang, Yan Qiao, Ziyi Yang, Yue Han, Hui Zhang, Zhiguang Li, Guili Zheng, Yanjun Zhang and Lizhi Zhu
Molecules 2025, 30(15), 3273; https://doi.org/10.3390/molecules30153273 - 5 Aug 2025
Abstract
The present study focuses on the effect of doping KH560-modified cellulose nanocrystals (CNCs) on the electro-optical characteristics of polymer-dispersed liquid crystals (PDLCs). PDLC films were fabricated through the polymerization-initiated phase separation (PIPS) process and doped with CNC nanoparticles at various concentrations. At low [...] Read more.
The present study focuses on the effect of doping KH560-modified cellulose nanocrystals (CNCs) on the electro-optical characteristics of polymer-dispersed liquid crystals (PDLCs). PDLC films were fabricated through the polymerization-initiated phase separation (PIPS) process and doped with CNC nanoparticles at various concentrations. At low concentrations, the CNCs at the interface, by virtue of their unique chiral characteristics, induce an orderly arrangement of liquid crystal molecules. Meanwhile, the interaction between the film’s fiber structure and the liquid crystal droplets brings about an augmentation in the arrangement efficiency. The excellent dispersion of CNCs diminishes the random alignment of liquid crystal molecules and mitigates light scattering. Additionally, it aids in the deflection of the liquid crystal director, facilitating the lubrication of the liquid crystals’ movement. It is remarkable that within the range of relatively lower CNCs doping concentrations, specifically from 0.005 wt% to 0.05 wt%, the PDLC films exhibit lower threshold and saturation voltages, faster response, enhanced viewing angle performance and higher contrast. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

13 pages, 3342 KiB  
Article
Effects of Diverse Acrylates on the Electro-Optical Performance of Polymer-Dispersed Liquid Crystal Films
by Nan Sun, Zuowei Zhang and Huai Yang
Molecules 2025, 30(11), 2284; https://doi.org/10.3390/molecules30112284 - 23 May 2025
Viewed by 582
Abstract
This study investigated the influence of different functional groups on the electro-optical properties of polymer-dispersed liquid crystal (PDLC) films. Twelve acrylate monomers with functional groups like amino, halogen, and double-bond were introduced into PDLC films, and twelve samples were prepared. The electro-optical properties [...] Read more.
This study investigated the influence of different functional groups on the electro-optical properties of polymer-dispersed liquid crystal (PDLC) films. Twelve acrylate monomers with functional groups like amino, halogen, and double-bond were introduced into PDLC films, and twelve samples were prepared. The electro-optical properties and microstructure of the films were characterized. The results show that compared to films with amino and halogen groups, those with hydroxyl groups have the best balance of driving voltage and contrast, achieving higher contrast at lower driving voltage, making this preparation scheme ideal for low-voltage, high-contrast PDLC films. Also, in the presence of hydroxyl groups, introducing double bonds increases saturation voltage and decreases saturation. Hydrogen-bond engineering through strategically positioned hydroxyl groups in acrylate monomers optimizes PDLC performance by enabling compact polymer networks and controlled phase separation, achieving superior contrast ratios (163) and low saturation voltages (15.8 V), while amino groups induce steric limitations and dual-bond systems that disrupt hydrogen-bond efficacy, highlighting hydroxyl spatial design as critical for electro-optical optimization. Full article
Show Figures

Figure 1

13 pages, 4225 KiB  
Article
Enhanced Infrared Shielding Function in ATO-Doped Polymer-Dispersed Liquid Crystal Films
by Hongren Chen, Baohua Yuan, Xiao Wang, Xiaoming Zhang, Qilei Wang, Zuowei Zhang, Yunxiao Ren, Yihai Yang, Zihui Ye, Ruochen Lan, Lanying Zhang, Wei Hu, Yong Jiang and Huai Yang
Molecules 2025, 30(8), 1730; https://doi.org/10.3390/molecules30081730 - 11 Apr 2025
Viewed by 462
Abstract
The enhanced infrared shielding function of antimony tin oxide (ATO)-doped polymer-dispersed liquid crystal (PDLC) film enables its use for smart windows, because it can switch between transparent and scattered states, which can protect people’s privacy. When PDLC film is used for a building’s [...] Read more.
The enhanced infrared shielding function of antimony tin oxide (ATO)-doped polymer-dispersed liquid crystal (PDLC) film enables its use for smart windows, because it can switch between transparent and scattered states, which can protect people’s privacy. When PDLC film is used for a building’s doors and windows or external walls, we hope that it can have a higher infrared shielding capability, in order to reduce the indoor temperature affected by solar irradiation, so as to reduce the energy consumption caused by refrigeration equipment. However, the infrared shielding capability of the existing PDLC is far from sufficient. In this work, modified ATO nanoparticles of different sizes were introduced into the PDLC system to improve its infrared shielding capability. It was found that when the ATO particle size is 20 nm and the doping content is 0.6 wt%, the modified PDLC sample provides optimal infrared shielding function while maintaining excellent electro-optical properties. Full article
(This article belongs to the Special Issue Polymeric Liquid Crystals and Applications, 2nd Edition)
Show Figures

Figure 1

13 pages, 5237 KiB  
Article
A Control-Oriented Model for Polymer-Dispersed Liquid Crystal Films as an Actuator for Natural Light Control
by Alexander H. Pesch and Chiara Vetter
Actuators 2025, 14(4), 167; https://doi.org/10.3390/act14040167 - 28 Mar 2025
Viewed by 820
Abstract
A polymer-dispersed liquid crystal (PDLC) film is a device that can transition from opaque to transparent when electrically charged. These films can be used as actuators to control light levels in response to changing natural light. However, the current state of the art [...] Read more.
A polymer-dispersed liquid crystal (PDLC) film is a device that can transition from opaque to transparent when electrically charged. These films can be used as actuators to control light levels in response to changing natural light. However, the current state of the art for controlling PDLC films is limited to on/off functionality, and few works in the current body of literature have explored continuous control. This study develops a novel nonlinear model for PDLCs in the context of the feedback control of light. This study also demonstrates the model’s utility by comparing experimental data of a PDLC in feedback with a proportional–integral (PI) controller for disturbance rejection and tracking of a desired light setpoint. This development is motivated by the need for a smart greenhouse that can provide programmable optimized light levels for plant growth. Specifically, a light sensor is composed of a circuit with photodiodes and calibrated for the photosynthetically active radiation range. The light sensor is placed under the film, separate from an exogenous light source, allowing for feedback control to be applied. A proportional–integral type control law is selected for stiffness and the ability to eliminate steady-state error, and it is implemented using a microcontroller. An equivalent analog control effort is applied to the PDLC via a PWM voltage signal and an H-bridge type driver. Details necessary for the driving of the PDLC are presented. Open-loop identification of the nonlinear quasi-static and dynamic step-response transients of the PDLC at different control levels are presented and modeled. Finally, closed-loop experimental and simulated results are presented for both light disturbance rejection and setpoint tracking. This shows that the proposed control framework allows for continuous control of light. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

11 pages, 3461 KiB  
Article
Effects of Multi-Fluorinated Liquid Crystals with High Refractive Index on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystals
by Yunxiao Ren and Wei Hu
Materials 2025, 18(7), 1406; https://doi.org/10.3390/ma18071406 - 21 Mar 2025
Viewed by 530
Abstract
Polymer-dispersed liquid crystals (PDLCs) are composite materials, in which LCs are dispersed in the form of microdroplets in a polymer matrix. As a composite material, its electro-optical properties are affected by many factors such as molecular structure, composition, and the microstructure of the [...] Read more.
Polymer-dispersed liquid crystals (PDLCs) are composite materials, in which LCs are dispersed in the form of microdroplets in a polymer matrix. As a composite material, its electro-optical properties are affected by many factors such as molecular structure, composition, and the microstructure of the LCs and polymers. In this work, PDLC films were prepared based on the thiol-ene click reaction, and effects of refractive indexes of polymers and LCs on their electro-optical properties were studied. The refractive indexes of the polymer matrix are adjusted by controlling the content of sulfur element, and those of the LCs are adjusted by adding multi-fluorinated LCs with high refractive index. By regulating the refractive indexes of the polymer matrix and LCs, the maximum transmittance of the film is raised and the viewing angle of the film is also extended. This work could afford some ideas for the directional regulation of the viewing angles and the electro-optical properties of the PDLC film. Full article
(This article belongs to the Special Issue Advanced and Smart Materials in Photoelectric Applications)
Show Figures

Figure 1

15 pages, 4921 KiB  
Article
Thin Cells of Polymer-Modified Liquid Crystals Described by Voronoi Diagrams
by Felicity Woolhouse and Ingo Dierking
Materials 2025, 18(5), 1106; https://doi.org/10.3390/ma18051106 - 28 Feb 2025
Cited by 2 | Viewed by 660
Abstract
We investigated patterns formed during the polymerization process of bifunctional monomers in a liquid crystal for both large polymer concentrations (polymer-dispersed liquid crystals, PDLC) and small concentrations (polymer-stabilized liquid crystals, PSLC). The resulting experimental patterns are reminiscent of Voronoi diagrams, so a reverse [...] Read more.
We investigated patterns formed during the polymerization process of bifunctional monomers in a liquid crystal for both large polymer concentrations (polymer-dispersed liquid crystals, PDLC) and small concentrations (polymer-stabilized liquid crystals, PSLC). The resulting experimental patterns are reminiscent of Voronoi diagrams, so a reverse Voronoi algorithm was developed that provides the seed locations of cells, thus allowing a computational reproduction of the experimental patterns. Several metrics were developed to quantify the commonality between the faithful experimental patterns and the idealized and generated ones. This led to descriptions of the experimental patterns with accuracies better than 90% and showed that the curvature or concavity of the cell edges was below 2%. Possible reasons for the discrepancies between the original and generated Voronoi diagrams are discussed. The introduced algorithm and quantification of the patterns could be transferred to many other experimental problems, for example, melting of thin polymer films, ultra-thin metal films, or bio-membranes. The discrepancies between the experimental and ideal Voronoi diagrams are quantified, which may be useful in the quality control of privacy windows, reflective displays, or smart glass. Full article
(This article belongs to the Special Issue The 15th Anniversary of Materials—Recent Advances in Soft Matter)
Show Figures

Figure 1

39 pages, 4703 KiB  
Article
Mechanisms of the Photomechanical Response in Thin-Film Dye-Doped Glassy Polymers
by Zoya Ghorbanishiadeh, Ankita Bhuyan, Bojun Zhou, Morteza Sheibani Karkhaneh and Mark G. Kuzyk
Polymers 2025, 17(2), 254; https://doi.org/10.3390/polym17020254 - 20 Jan 2025
Viewed by 1173
Abstract
This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness [...] Read more.
This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating. While photo-isomerization of dopant molecules is commonly observed in dye-doped polymers, the shape changes of a molecule might not couple strongly to the host polymer through steric mechanical interactions, thus not contributing substantially to a macroscopic shape change. To gain insights into the effectiveness of such mechanical coupling, we directly probe the dopant molecules using dichroism measurements simultaneously while measuring the photomechanical response and find mechanical coupling to be small enough to make photothermal heating—mediated by the transfer of optical energy as heat to the polymer—the dominant mechanism. We also predict the fraction of light energy converted to mechanical energy using a model whose parameters are thermodynamic material properties that are measured with independent experiments. We find that in the thin-film geometry, these dye-doped glassy polymers are as efficient as any other material but their large Young’s modulus relative to other organic materials, such as liquid crystal elastomers, makes them suitable in applications that require mechanically strong materials. The mechanical properties and the photomechanical response of thin films are observed to be significantly different than in fibers, suggesting that the geometry of the material and surface effects might play an important role. Full article
(This article belongs to the Special Issue Advanced Stimuli-Responsive Polymer Composites)
Show Figures

Figure 1

14 pages, 5809 KiB  
Article
Creating Tunable Micro-Optical Components via Photopolymerization 3D Printing Combined with Polymer-Dispersed Liquid Crystals
by Sheng-Yuan Zhang, Hsi-Fu Shih, Chuen-Lin Tien and Han-Yen Tu
Micromachines 2025, 16(1), 26; https://doi.org/10.3390/mi16010026 - 28 Dec 2024
Viewed by 1314
Abstract
Based on additive manufacturing via photopolymerization, this study combines polymer-dispersed liquid crystal (PDLC) technology with 3D printing technology to produce tunable micro-optical components with switchable diffraction or focusing characteristics. The diffraction grating and Fresnel zone plate are the research targets. Their structures are [...] Read more.
Based on additive manufacturing via photopolymerization, this study combines polymer-dispersed liquid crystal (PDLC) technology with 3D printing technology to produce tunable micro-optical components with switchable diffraction or focusing characteristics. The diffraction grating and Fresnel zone plate are the research targets. Their structures are designed and simulated to achieve expected optical functions. A liquid crystal display (LCD) 3D printer is used to produce structures on transparent conductive substrates. The printed structures are filled with PDLCs and covered with transparent conductive substrates to achieve tunable functions. The proposed configurations are implemented and verified. The experimental results show that the diffraction efficiency of the 0th order increases from 15% to 50% for the diffraction grating and the focusing spot intensity decreases from 74% to 12% after the application of an electric field. These results demonstrate the feasibility of the proposed tunable optical component configurations. Full article
(This article belongs to the Section D3: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

19 pages, 3765 KiB  
Article
Polymer Solutions in Microflows: Tracking and Control over Size Distribution
by Artem Bezrukov and Yuriy Galyametdinov
Polymers 2025, 17(1), 28; https://doi.org/10.3390/polym17010028 - 26 Dec 2024
Viewed by 907
Abstract
Microfluidics provides cutting-edge technological advancements for the in-channel manipulation and analysis of dissolved macromolecular species. The intrinsic potential of microfluidic devices to control key characteristics of polymer macromolecules such as their size distribution requires unleashing its full capacity. This work proposes a combined [...] Read more.
Microfluidics provides cutting-edge technological advancements for the in-channel manipulation and analysis of dissolved macromolecular species. The intrinsic potential of microfluidic devices to control key characteristics of polymer macromolecules such as their size distribution requires unleashing its full capacity. This work proposes a combined approach to analyzing the microscale behavior of polymer solutions and modifying their properties. We utilized the idea of modeling cross-channel diffusion in polydisperse polymer microflows using dynamic light scattering size distribution curves as the source data. The model was implemented into a Matlab script which predicts changes in polymer size distribution at microfluidic chip outputs. We verified the modeling predictions in experiments with a series of microchips by detecting the optical responses of injected nematic liquid crystals in the presence of microfluidic polymer species and analyzing the polymer size distribution after microfluidic processing. The results offer new approaches to tuning the size and dispersity of macromolecules in solution, developing auxiliary tools for such techniques as dynamic light scattering, and labs-on-chips for the combined diagnostics and processing of polymers. Full article
(This article belongs to the Special Issue Functional Polymers and Novel Applications)
Show Figures

Figure 1

10 pages, 2170 KiB  
Article
Nanostructured Polymer-Dispersed Liquid Crystals Using a Ferroelectric Smectic A Liquid Crystal
by Masaki Yamaguchi, Hiroyuki Matsukizono, Yasushi Okumura and Hirotsugu Kikuchi
Molecules 2024, 29(20), 4837; https://doi.org/10.3390/molecules29204837 - 12 Oct 2024
Cited by 3 | Viewed by 1814
Abstract
Nanostructured polymer-dispersed liquid crystals (nano-PDLCs) are transparent and optically isotropic materials in which submicron-sized liquid crystal (LC) domains are dispersed within a polymer matrix. Nano-PDLCs can induce birefringence by applying an electric field (E-field) based on the reorientation of the LC [...] Read more.
Nanostructured polymer-dispersed liquid crystals (nano-PDLCs) are transparent and optically isotropic materials in which submicron-sized liquid crystal (LC) domains are dispersed within a polymer matrix. Nano-PDLCs can induce birefringence by applying an electric field (E-field) based on the reorientation of the LC molecules. If nano-PDLCs are utilized as light-scattering-less birefringence memory materials, it is necessary to suppress the relaxation of the LC molecule orientation after the removal of the E-field. We focused on the ferroelectric smectic A (SmA) phase to suppress the relaxation of LC molecules, owing to its layered structure and high viscosity. Although nano-PDLCs require a strong E-field to reorient their LC molecules because of the anchoring effect at the LC/polymer interface, the required field strength can be reduced using a ferroelectric smectic A (SmAF) LC with a large dielectric constant. In this study, we fabricated a nano-PDLC by shining an ultraviolet light on a mixture comprised an SmAF LC, photocurable monomers, and a photo-initiator. The electro-birefringence effect was evaluated using polarizing optical microscopy. After the removal of the E-field, an enhanced memory effect was observed in the sample using SmAF LC compared with nematic LC-based nano-PDLCs. Full article
(This article belongs to the Special Issue Polymeric Liquid Crystals and Applications)
Show Figures

Graphical abstract

13 pages, 874 KiB  
Article
Electro-Optic Kerr Response in Optically Isotropic Liquid Crystal Phases
by Tetiana Yevchenko, Dorota Dardas, Natalia Bielejewska and Arkadiusz C. Brańka
Materials 2024, 17(19), 4926; https://doi.org/10.3390/ma17194926 - 9 Oct 2024
Viewed by 1076
Abstract
The results of an experimental investigation of the temperature and wavelength dependence of the Kerr constant (K) of mixtures with an increasing amount of chiral dopant in an isotropic liquid crystal phase are reported. The material was composed of a nematic [...] Read more.
The results of an experimental investigation of the temperature and wavelength dependence of the Kerr constant (K) of mixtures with an increasing amount of chiral dopant in an isotropic liquid crystal phase are reported. The material was composed of a nematic liquid crystal (5CB) and a chiral dopant (CE2), which formed non-polymer-stabilized liquid crystalline blue phases with an exceptionally large value of K∼2 × 10−9 mV−2. The measurements were performed on liquid and blue phases at several concentrations covering a range of temperatures and using three wavelengths: 532 nm, 589 nm and 633 nm. The work focused on changes caused by concentration and their impact on the increase in the value of K, and it was found that in the case of the 5CB/CE2 mixture these changes were significant and quite systematic with temperature and wavelength. It is shown that the dispersion relation based on the single-band birefringence model described K well in isotropic liquid crystal phases at all of the measured concentrations. In an isotropic fluid, both temperature-dependent parameters in the dispersion relation had a simple linear form and, therefore, the K-surface could be described by only four constants. In the blue phase, the expression reproducing the temperature variation of K depended on concentration, which could vary from being almost linear to quasi-linear and could be represented well by an inverse exponential analytic expression. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

20 pages, 6969 KiB  
Article
Predicting the Release Mechanism of Amorphous Solid Dispersions: A Combination of Thermodynamic Modeling and In Silico Molecular Simulation
by Stefanie Walter, Paulo G. M. Mileo, Mohammad Atif Faiz Afzal, Samuel O. Kyeremateng, Matthias Degenhardt, Andrea R. Browning and John C. Shelley
Pharmaceutics 2024, 16(10), 1292; https://doi.org/10.3390/pharmaceutics16101292 - 2 Oct 2024
Cited by 4 | Viewed by 3580
Abstract
Background: During the dissolution of amorphous solid dispersion (ASD) formulations, the drug load (DL) often impacts the release mechanism and the occurrence of loss of release (LoR). The ASD/water interfacial gel layer and its specific phase behavior in connection with DL strongly dictate [...] Read more.
Background: During the dissolution of amorphous solid dispersion (ASD) formulations, the drug load (DL) often impacts the release mechanism and the occurrence of loss of release (LoR). The ASD/water interfacial gel layer and its specific phase behavior in connection with DL strongly dictate the release mechanism and LoR of ASDs, as reported in the literature. Thermodynamically driven liquid-liquid phase separation (LLPS) and/or drug crystallization at the interface are the key phase transformations that drive LoR. Methods: In this study, a combination of Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) thermodynamic modeling and in silico molecular simulation was applied to investigate the release mechanism and the occurrence LoR of an ASD formulation consisting of ritonavir as the active pharmaceutical ingredient (API) and the polymer, polyvinylpyrrolidone-co-vinyl acetate (PVPVA64). A thermodynamically modeled ternary phase diagram of ritonavir (PVPVA64) and water was applied to predict DL-dependent LLPS in the ASD/water interfacial gel layer. Microscopic Erosion Time Testing (METT) was used to experimentally validate the phase diagram predictions. Additionally, in silico molecular simulation was applied to provide further insights into the phase separation, the release mechanism, and aggregation behavior on a molecular level. Results: Thermodynamic modeling, molecular simulation, and experimental results were consistent and complementary, providing evidence that ASD/water interactions and phase separation are essential factors driving the dissolution behavior and LoR at 40 wt% DL of the investigated ritonavir/PVPVA64 ASD system, consistent with previous studies. Conclusions: This study provides insights into the potential of blending thermodynamic modeling, molecular simulation, and experimental research to comprehensively understand ASD formulations. Such a combined approach can be leveraged as a computational framework to gain insights into the ASD dissolution mechanism, thereby facilitating in silico screening, designing, and optimization of formulations with the benefit of significantly reducing the number of experimental tests. Full article
Show Figures

Figure 1

38 pages, 5633 KiB  
Review
Fundamental Aspects of Stretchable Mechanochromic Materials: Fabrication and Characterization
by Christina Tang
Materials 2024, 17(16), 3980; https://doi.org/10.3390/ma17163980 - 10 Aug 2024
Cited by 7 | Viewed by 3457
Abstract
Mechanochromic materials provide optical changes in response to mechanical stress and are of interest in a wide range of potential applications such as strain sensing, structural health monitoring, and encryption. Advanced manufacturing such as 3D printing enables the fabrication of complex patterns and [...] Read more.
Mechanochromic materials provide optical changes in response to mechanical stress and are of interest in a wide range of potential applications such as strain sensing, structural health monitoring, and encryption. Advanced manufacturing such as 3D printing enables the fabrication of complex patterns and geometries. In this work, classes of stretchable mechanochromic materials that provide visual color changes when tension is applied, namely, dyes, polymer dispersed liquid crystals, liquid crystal elastomers, cellulose nanocrystals, photonic nanostructures, hydrogels, and hybrid systems (combinations of other classes) are reviewed. For each class, synthesis and processing, as well as the mechanism of color change are discussed. To enable materials selection across the classes, the mechanochromic sensitivity of the different classes of materials are compared. Photonic systems demonstrate high mechanochromic sensitivity (Δnm/% strain), large dynamic color range, and rapid reversibility. Further, the mechanochromic behavior can be predicted using a simple mechanical model. Photonic systems with a wide range of mechanical properties (elastic modulus) have been achieved. The addition of dyes to photonic systems has broadened the dynamic range, i.e., the strain over which there is an optical change. For applications in which irreversible color change is desired, dye-based systems or liquid crystal elastomer systems can be formulated. While many promising applications have been demonstrated, manufacturing uniform color on a large scale remains a challenge. Standardized characterization methods are needed to translate materials to practical applications. The sustainability of mechanochromic materials is also an important consideration. Full article
(This article belongs to the Section Smart Materials)
Show Figures

Figure 1

31 pages, 9721 KiB  
Review
Solar Window Innovations: Enhancing Building Performance through Advanced Technologies
by Mehrdad Ghamari and Senthilarasu Sundaram
Energies 2024, 17(14), 3369; https://doi.org/10.3390/en17143369 - 9 Jul 2024
Cited by 10 | Viewed by 3485
Abstract
Building-integrated photovoltaic (BIPV) glazing systems with intelligent window technologies enhance building energy efficiency by generating electricity and managing daylighting. This study explores advanced BIPV glazing, focusing on building-integrated concentrating photovoltaic (BICPV) systems. BICPV integrates concentrating optics, such as holographic films, luminescent solar concentrators [...] Read more.
Building-integrated photovoltaic (BIPV) glazing systems with intelligent window technologies enhance building energy efficiency by generating electricity and managing daylighting. This study explores advanced BIPV glazing, focusing on building-integrated concentrating photovoltaic (BICPV) systems. BICPV integrates concentrating optics, such as holographic films, luminescent solar concentrators (LSC), Fresnel lenses, and compound parabolic concentrators (CPCs), with photovoltaic cells. Notable results include achieving 17.9% electrical efficiency using cylindrical holographic optical elements and crystalline silicon cells at a 3.5× concentration ratio. Dielectric CPCs showed 97.7% angular acceptance efficiency in simulations and 94.4% experimentally, increasing short-circuit current and maximum power by 87.0% and 96.6%, respectively, across 0° to 85° incidence angles. Thermochromic hydrogels and thermotropic smart glazing systems demonstrated significant HVAC energy savings. Large-area 1 m2 PNIPAm-based thermotropic window outperformed conventional double glazing in Singapore. The thermotropic parallel slat transparent insulation material (TT PS-TIM) improved energy efficiency by up to 21.5% compared to double glazing in climates like London and Rome. Emerging dynamic glazing technologies combine BIPV with smart functions, balancing transparency and efficiency. Photothermally controlled methylammonium lead iodide PV windows achieved 68% visible light transmission, 11.3% power conversion efficiency, and quick switching in under 3 min. Polymer-dispersed liquid crystal smart windows provided 41–68% visible transmission with self-powered operation. Full article
(This article belongs to the Collection Featured Papers in Solar Energy and Photovoltaic Systems Section)
Show Figures

Figure 1

13 pages, 4121 KiB  
Article
The Impact of Curing Temperature and UV Light Intensity on the Performance of Polymer-Dispersed Liquid Crystal Devices Exhibiting a Permanent Memory Effect
by Ana Mouquinho and João Sotomayor
Crystals 2024, 14(6), 571; https://doi.org/10.3390/cryst14060571 - 20 Jun 2024
Cited by 1 | Viewed by 1428
Abstract
PDLC films, synthesized via polymerization-induced phase separation (PIPS) utilizing both temperature and UV monochromatic radiation, were derived from a blend of E7 nematic liquid crystal (LC) and PolyEGDMA875 (polyethyleneglycoldimethacrylate) oligomers, serving as the precursor for the polymeric matrix. The influence of the curing [...] Read more.
PDLC films, synthesized via polymerization-induced phase separation (PIPS) utilizing both temperature and UV monochromatic radiation, were derived from a blend of E7 nematic liquid crystal (LC) and PolyEGDMA875 (polyethyleneglycoldimethacrylate) oligomers, serving as the precursor for the polymeric matrix. The influence of the curing temperature on thermal polymerization, UV light intensity on photochemical polymerization, and exposure time during these processes on the electro-optical characteristics of PDLC films was thoroughly examined. Observations revealed that employing thermal polymerization during device preparation notably enhanced the permanent memory effect of the PDLC films. Sustained high transparency (TOFF = 45%) over an extended duration at room temperature, even subsequent to voltage cessation, was achieved. This transition initiated from an opaque state (T0 = 0%) through to a transparent state (TMAX = 65%), resulting in a substantial 70% permanent memory effect. Full article
(This article belongs to the Special Issue Optoelectronics of Thin Films and Nanoparticles (2nd Edition))
Show Figures

Figure 1

Back to TopTop