Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (233)

Search Parameters:
Keywords = polymer delivery devices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1038 KB  
Article
Designing Poly(vinyl formal) Membranes for Controlled Diclofenac Delivery: Integrating Classical Kinetics with GRNN Modeling
by Igor Garcia-Atutxa and Francisca Villanueva-Flores
Appl. Sci. 2026, 16(2), 562; https://doi.org/10.3390/app16020562 - 6 Jan 2026
Viewed by 111
Abstract
Controlled-release systems must translate material design choices into predictable pharmacokinetic (PK) profiles, yet purely mechanistic or purely data-driven models often underperform when tuning complex polymer networks. Here, we develop tunable poly(vinyl formal) membranes (PVFMs) for diclofenac delivery and integrate classical kinetic analysis with [...] Read more.
Controlled-release systems must translate material design choices into predictable pharmacokinetic (PK) profiles, yet purely mechanistic or purely data-driven models often underperform when tuning complex polymer networks. Here, we develop tunable poly(vinyl formal) membranes (PVFMs) for diclofenac delivery and integrate classical kinetic analysis with a Generalized Regression Neural Network (GRNN) to connect formulation variables to release behavior and PK-relevant targets. PVFMs were synthesized across a gradient of crosslink densities by varying HCl content; diclofenac release was quantified under standardized conditions with geometry and dosing rigorously controlled (thickness, effective area, surface-area-to-volume ratio, and areal drug loading are reported to ensure reproducibility). Release profiles were fitted to Korsmeyer–Peppas, zero-order, first-order, Higuchi, and hyperbolic tangent models, while a GRNN was trained on material descriptors and time to predict cumulative release and flux, including out-of-sample conditions. Increasing crosslink density monotonically reduced swelling, areal release rate, and overall release efficiency (strong linear trends; r ≈ 0.99) and shifted transport from anomalous to Super Case II at the highest crosslinking. Classical models captured regime transitions but did not sustain high accuracy across the full design space; in contrast, the GRNN delivered superior predictive performance and generalized to conditions absent from training, enabling accurate interpolation/extrapolation of release trajectories. Beyond prior work, we provide a material-to-PK design map in which crosslinking, porosity/tortuosity, and hydrophobicity act as explicit “knobs” to shape burst, flux, and near-zero-order behavior, and we introduce a hybrid framework where mechanistic models guide interpretation while GRNN supplies robust, data-driven prediction for formulation selection. This integrated PVFM–GRNN approach supports rational design and quality control of controlled-release devices for diclofenac and is extendable to other therapeutics given appropriate descriptors and training data. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

45 pages, 6602 KB  
Review
Four-Dimensional Printing of Shape Memory Polymers for Biomedical Applications: Advances in DLP and SLA Manufacturing
by Raj Kumar Pittala, Marc Anthony Torres, Neha Reddy, Sara Swank and Melanie Ecker
Polymers 2026, 18(1), 24; https://doi.org/10.3390/polym18010024 - 22 Dec 2025
Viewed by 623
Abstract
Shape memory polymers (SMPs) represent an innovative class of materials that possess programmed, reversible shape-changing capabilities in response to external stimuli. The recent emergence of SMPs’ advanced manufacturing, specifically 4D printing, has created exceptional opportunities for use in biomedical engineering. This review presents [...] Read more.
Shape memory polymers (SMPs) represent an innovative class of materials that possess programmed, reversible shape-changing capabilities in response to external stimuli. The recent emergence of SMPs’ advanced manufacturing, specifically 4D printing, has created exceptional opportunities for use in biomedical engineering. This review presents a critical synthesis of the latest advances in the chemistry, biomedical applications, manufacturing strategies, and clinical translation of SMPs, highlighting vat photopolymerization techniques, such as stereolithography (SLA) and digital light processing (DLP). Notably, 4D-printed SMPs can promote spatiotemporally controlled architectures, and applications include minimally invasive implants, dynamic tissue scaffolds, and multifunctional drug delivery. This paper focuses on recent advances in resin design, multi-responsive and nanocomposite resins, AI-guided material discovery, and emerging biocompatible and biodegradable formulations, while outlining current roadblocks to clinical implementation, including cytotoxicity, sterilization, regulatory compliance, and device shelf-life. Our goal is to elucidate the relationship between material design, processing, and biomedical performance to inform researchers of potential future directions for 4D-printed SMPs and next-generation, patient-centered medical devices. Full article
Show Figures

Graphical abstract

20 pages, 4255 KB  
Article
Hydroxypropyl Methylcellulose Capsules Enhance Aerodynamic Performance of Carrier-Based Dry Powder Inhaler Formulations: A Comprehensive Evaluation of Capsule Material Effects
by Camille Dumont, Sandrine Picco, Beatriz Noriega-Fernandes, Pierre Verlhac, Andrea Elena Cortez, Camille Boulet, Molly Gallagher, Christopher Bock and Vincent Jannin
Pharmaceutics 2025, 17(12), 1621; https://doi.org/10.3390/pharmaceutics17121621 - 17 Dec 2025
Viewed by 578
Abstract
Background/Objectives: This study aims to investigate the underexplored impact of capsule type on the performances of capsule-based dry powder inhalers (cDPIs). It compares specific properties of hard gelatin-based capsules (Hard Gelatin Capsules (HGC), HGC including polyethylene glycol (HGC + PEG)) and hypromellose-based [...] Read more.
Background/Objectives: This study aims to investigate the underexplored impact of capsule type on the performances of capsule-based dry powder inhalers (cDPIs). It compares specific properties of hard gelatin-based capsules (Hard Gelatin Capsules (HGC), HGC including polyethylene glycol (HGC + PEG)) and hypromellose-based capsules, (Zephyr® Vcaps® (VC), Zephyr® Vcaps® Plus (VCP) and Vcaps® Plus Zephyr Inhance™ (VCP-I)) with aerosolization performances of model carrier-based formulation, providing insights into their impact on pulmonary drug delivery efficacy. Methods: Aerosolization properties of a model phenytoin/lactose blend formulation filled in the different capsules was evaluated using a Next Generation Impactor (NGI) with RS01 device. Capsule shell characteristics were evaluated in terms of water activity, static charges, and inner surface aspect and roughness. Results: Hypromellose-based capsules, especially VC and VCP-I, exhibited significantly higher drug delivery performances compared to gelatin-based capsules. In particular, VCP-I demonstrated good results with excellent batch-to-batch reproducibility and 51% of the nominal dose available for lung absorption. Although capsule inner surface showed clear differences between both polymer families, no clear correlation could be found between cDPI performances and capsule roughness and density of charge. All capsules presented good mechanical properties in the conditions of the tests. Conclusions: Capsule type exerts a significant impact on cDPI performances. These findings highlight the importance of capsule selection as a critical material attribute in the design and optimization of inhalation products. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

25 pages, 4652 KB  
Article
Antibacterial Agent-Loaded, Novel In Situ Forming Implants Made with Poly(Isosorbide Sebacate) and Dimethyl Isosorbide as a Solvent for Periodontitis Treatment
by Monika Śmiga-Matuszowicz, Bożena Nowak and Danuta Wojcieszyńska
Molecules 2025, 30(24), 4717; https://doi.org/10.3390/molecules30244717 - 9 Dec 2025
Viewed by 411
Abstract
Isosorbide-based aliphatic polyesters are a promising class of biodegradable polymers for biomedical applications, representing an attractive alternative to poly(α-hydroxy acids). Derived from the bio-based bicyclic diol, they combine structural rigidity, tunable hydrophilicity, and enhanced biocompatibility, making them suitable for drug delivery and sustainable [...] Read more.
Isosorbide-based aliphatic polyesters are a promising class of biodegradable polymers for biomedical applications, representing an attractive alternative to poly(α-hydroxy acids). Derived from the bio-based bicyclic diol, they combine structural rigidity, tunable hydrophilicity, and enhanced biocompatibility, making them suitable for drug delivery and sustainable medical devices. In this study, we developed novel in situ forming implant (ISFI) formulations composed of poly(isosorbide sebacate) (PISEB) and dimethyl isosorbide (DMI), and evaluated their applicability for local delivery of doxycycline hyclate (DOXY), minocycline hydrochloride (MIN), and/or eugenol (EUG). Basic characteristics of new ISFI formulations were investigated. Rheological analysis demonstrated that the liquid formulations exhibited shear-thinning behavior, which is advantageous for ISFI systems. However, the MIN-loaded formulation exhibited excessively rapid drug release, with a pronounced initial burst (86.4 ± 5.9%) within 24 h, whereas the DOXY-loaded system showed a lower burst of 41.1 ± 5.9% over the same period. The effect of EUG addition on depot morphology and antibiotic release profiles was also assessed. In vitro drug release studies demonstrated that EUG reduced the release rate of both antibiotics, increasing and prolonging their antibacterial activity. Eugenol co-released with antibiotics also reduced the pro-inflammatory effect of the released antibiotic doses by more than tenfold. Full article
(This article belongs to the Special Issue New Strategies for Drug Development)
Show Figures

Figure 1

25 pages, 4246 KB  
Article
Drug Delivery Device Design and Compatibility with Nitrogen Dioxide Gas Sterilization
by Noelle Ray, Julia Diane Schexnayder, Aiysha Ashfaq, Nusrat Sarwahrdy, Delaney Lisco, Minufar Abdollahi Khabisi, Trevor Bateman, Tom Sadler, David Opie and Mohamad Al-Sheikhly
Pharmaceuticals 2025, 18(12), 1869; https://doi.org/10.3390/ph18121869 - 8 Dec 2025
Viewed by 661
Abstract
Polymeric materials have become important components in prefilled syringes, drug delivery systems, and advanced medical devices. Background/Objectives: Nitrogen dioxide gas is used for the terminal sterilization of drug delivery systems. For the implementation of sterilization methods, compatibility with materials must be demonstrated [...] Read more.
Polymeric materials have become important components in prefilled syringes, drug delivery systems, and advanced medical devices. Background/Objectives: Nitrogen dioxide gas is used for the terminal sterilization of drug delivery systems. For the implementation of sterilization methods, compatibility with materials must be demonstrated such that the materials maintain product requirements and specifications after sterilization and at the time of use (i.e., product shelf life). Methods: Commonly used polymers were selected based on their chemical structures to provide insight into the nature of reactions that occur at the temperature and NO2 concentration levels used in the sterilization process. After exposure to the NO2 process, materials were evaluated for chemical, mechanical, and biocompatibility properties. Results: In this paper, we demonstrated the compatibility of polymers comprising carbonyl, unsaturated ester, and ketone groups which have been used in medical devices sterilized with NO2. No significant chemical or physical changes were observed upon the treatment of Amorphous Polyester, Polysulfone (PSU), Polycarbonate (PC), PolyEtherEtherKetone (PEEK), PolyArylEtherKetone (PAEK), and Polypropylene (PP) with NO2 at a sterilization temperature of 20 °C. At this relatively low sterilization temperature, the reactions of NO2 with the polymer do not typically occur because the activation energies of these reactions require much higher temperatures. Conclusions: Not all materials will be compatible with NO2 sterilization, and even with the established data, many devices will need to have their polymers evaluated for compatibility before moving to NO2 sterilization. These results will provide guidance to device designers selecting materials for new drug delivery devices and to regulators that review the safety and efficacy of these devices. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

29 pages, 7648 KB  
Article
Tailoring the Release of Paclitaxel from Electrospun Nonwovens
by Bartosz Jaroszewski, Monika Musiał-Kulik, Ryszard Smolarczyk, Tomasz Cichoń, Alina Drzyzga, Ewelina Pilny, Mateusz Stojko, Jakub Włodarczyk, Joanna Jaworska, Anna Kaps, Piotr Paduszyński, Marzena Jaworska-Kik, Małgorzata Pastusiak, Paweł Chaber, Arkadiusz Orchel, Katarzyna Jelonek and Janusz Kasperczyk
Int. J. Mol. Sci. 2025, 26(23), 11540; https://doi.org/10.3390/ijms262311540 - 28 Nov 2025
Viewed by 486
Abstract
Implantable drug delivery devices may enhance therapeutic efficacy by allowing localized drug release, and they may overcome the drawbacks of conventional systemic treatment. Electrospun nanofibers are promising drug delivery systems due to their high surface-to-volume ratio, porosity, and easy drug encapsulation. However, controlled [...] Read more.
Implantable drug delivery devices may enhance therapeutic efficacy by allowing localized drug release, and they may overcome the drawbacks of conventional systemic treatment. Electrospun nanofibers are promising drug delivery systems due to their high surface-to-volume ratio, porosity, and easy drug encapsulation. However, controlled and sustained drug release is required to improve therapeutic efficacy and reduce toxicity. Also, the ability to tailor the release drug dose would be a useful tool for providing an optimal and individualized approach for the treatment. Therefore, the aim of the study was to analyze the possibility to tailor the release of paclitaxel (PTX) from poly(D,L-lactide-co-glycolide) (PDLGA) electrospun nonwovens by modifying the comonomer molar ratio. For this purpose, three kinds of polymers were compared with lactidyl-to-glycolidyl comonomer ratios of 86:14, 70:30, and 48:52. Also, nonwovens obtained from a blend of PDLGA and PVA were used to analyze the effect of the addition of the hydrophilic polymer on degradation and, thus, the release rate. The comprehensive analysis of the developed nonwovens was conducted through an evaluation of the morphology, in vitro degradation, and drug release process, as well as cytotoxicity. It has been observed that all kinds of the developed PDLGA nonwovens provide an extended-release profile but with different release rates, which depend on the comonomer unit ratio and molar mass of the copolymer. Moreover, the increase in hydrophilicity caused by PVA sufficiently accelerates PTX release. The biological activity of released PTX was confirmed under in vitro and in vivo conditions against 4T1 mouse mammary carcinoma. The results of the study enabled us to gain insight into the influence of polymer choice on PTX release from PDLGA ES implants, which may be helpful in their easier translation into the clinic and for better adjustment of the PTX dose for individual treatment. Full article
(This article belongs to the Special Issue Design, Synthesis, Application and Mechanism of Functional Polymers)
Show Figures

Figure 1

17 pages, 6018 KB  
Article
Electrohydrodynamic Coating with Acyclovir PLGA Conjugate for Antiviral Functionalization of Medical Surfaces
by Tomasz Urbaniak and Witold Musiał
Int. J. Mol. Sci. 2025, 26(22), 10983; https://doi.org/10.3390/ijms262210983 - 13 Nov 2025
Viewed by 407
Abstract
Sexually transmitted infections, notably herpes simplex virus, remain significant global health concerns. Localized delivery systems that provide sustained antiviral activity at mucosal surfaces offer an attractive alternative to systemic therapies. In this study, we developed electrohydrodynamically deposited coatings utilizing a covalent acyclovir–poly (lactic-co-glycolic [...] Read more.
Sexually transmitted infections, notably herpes simplex virus, remain significant global health concerns. Localized delivery systems that provide sustained antiviral activity at mucosal surfaces offer an attractive alternative to systemic therapies. In this study, we developed electrohydrodynamically deposited coatings utilizing a covalent acyclovir–poly (lactic-co-glycolic acid) (ACV–PLGA) conjugate for potential antiviral functionalization of medical devices. The ACV–PLGA prodrug was synthesized via drug-initiated ring-opening polymerization, yielding a copolymer characterized by FTIR, NMR, GPC, and DSC, with controlled drug loading and biodegradable properties. Systematic optimization of electrospinning and electrospraying parameters enabled the fabrication of both particulate and nanofibrous coatings on silicone ring models. Morphological analysis by SEM demonstrated that polymer concentration, solvent composition, and applied voltage critically governed coating architecture, ranging from microparticle layers to uniform bead-free fibers. In vitro studies revealed morphology-dependent degradation profiles and sustained release of ACV over 56 days. This integrated approach combining covalent prodrug synthesis with tunable electrohydrodynamic deposition offers a promising strategy for long-acting local antiviral prophylaxis via functionalized medical surfaces. Full article
(This article belongs to the Special Issue Advances in Polymers and Polysaccharides in Delivery Systems)
Show Figures

Figure 1

34 pages, 3132 KB  
Review
Innovative Applications of Hydrogels in Contemporary Medicine
by Maciej Rybicki, Karolina Czajkowska, Agata Grochowska, Bartłomiej Białas, Michał Dziatosz, Igor Karolczak, Julia Kot, Radosław Aleksander Wach and Karol Kamil Kłosiński
Gels 2025, 11(10), 798; https://doi.org/10.3390/gels11100798 - 3 Oct 2025
Cited by 1 | Viewed by 3320
Abstract
Hydrogels are hydrophilic, soft polymer networks with high water content and mechanical properties that are tunable; they are also biocompatible. Therefore, as biomaterials, they are of interest to modern medicine. In this review, the main applications of hydrogels in essential clinical applications are [...] Read more.
Hydrogels are hydrophilic, soft polymer networks with high water content and mechanical properties that are tunable; they are also biocompatible. Therefore, as biomaterials, they are of interest to modern medicine. In this review, the main applications of hydrogels in essential clinical applications are discussed. Chemical, physical, or hybrid crosslinking of either synthetic or natural polymers allow for the precise control of hydrogels’ physicochemical properties and their specific characteristics for certain applications, such as stimuli-responsiveness, drug retention and release, and biodegradability. Hydrogels are employed in gynecology to regenerate the endometrium, treat infections, and prevent pregnancy. They show promise in cardiology in myocardial infarction therapy through injectable scaffolds, patches in the heart, and medication delivery. In rheumatoid arthritis, hydrogels act as drug delivery systems, lubricants, scaffolds, and immunomodulators, ensuring effective local treatment. They are being developed, among other applications, as antimicrobial coatings for stents and radiotherapy barriers for urology. Ophthalmology benefits from the use of hydrogels in contact lenses, corneal bandages, and vitreous implants. They are used as materials for chemoembolization, tumor models, and drug delivery devices in cancer therapy, with wafers of Gliadel presently used in clinics. Applications in abdominal surgery include hydrogel-coated meshes for hernia repair or Janus-type hydrogels to prevent adhesions and aid tissue repair. Results from clinical and preclinical studies illustrate hydrogels’ diversity, though problems remain with mechanical stability, long-term safety, and mass production. Hydrogels are, in general, next-generation biomaterials for regenerative medicine, individualized treatment, and new treatment protocols. Full article
(This article belongs to the Special Issue Polymer Hydrogels and Networks)
Show Figures

Figure 1

51 pages, 4345 KB  
Review
Zwitterionic Poly(Carboxybetaine Methacrylate)s in Drug Delivery, Antifouling Coatings, and Regenerative Tissue Platforms
by Theodore Sentoukas, Wojciech Walach, Katarzyna Filipek and Barbara Trzebicka
Materials 2025, 18(19), 4514; https://doi.org/10.3390/ma18194514 - 28 Sep 2025
Cited by 2 | Viewed by 3282
Abstract
Poly(carboxybetaine methacrylate)s (PCBMA) belongs to a class of zwitterionic polymers that offer promising alternatives to polyethylene glycol (PEG) in biomedical applications. This review highlights how the unique zwitterionic structure of PCBMA dictates its strong antifouling behavior, low immunogenicity, and sensitivity to environmental stimuli [...] Read more.
Poly(carboxybetaine methacrylate)s (PCBMA) belongs to a class of zwitterionic polymers that offer promising alternatives to polyethylene glycol (PEG) in biomedical applications. This review highlights how the unique zwitterionic structure of PCBMA dictates its strong antifouling behavior, low immunogenicity, and sensitivity to environmental stimuli such as pH and ionic strength. These features make PCBMA promising for designing advanced systems suited for complex biological environments. This review describes PCBMA-based materials—ranging from hydrogels, nanogels, and surface coatings to drug carriers and protein conjugates—and critically evaluates their performance in drug delivery, tissue engineering, diagnostics, and implantable devices. Comparative studies demonstrated that PCBMA consistently outperformed other zwitterionic polymers and PEG in resisting protein adsorption, maintaining bioactivity of conjugated molecules, and ensuring long circulation times in vivo. Molecular dynamics simulations provide additional information into the hydration shells and conformational behaviors of PCBMA in aqueous dispersions. These insights underscore PCBMA’s broad potential as a promising high-performance material for next generation healthcare technologies. Full article
(This article belongs to the Special Issue Feature Paper in the Section 'Polymeric Materials' (3rd Edition))
Show Figures

Graphical abstract

46 pages, 3900 KB  
Review
Beyond Packaging: A Perspective on the Emerging Applications of Biodegradable Polymers in Electronics, Sensors, Actuators, and Healthcare
by Reshma Kailas Kumar, Chaoying Wan and Paresh Kumar Samantaray
Materials 2025, 18(19), 4485; https://doi.org/10.3390/ma18194485 - 26 Sep 2025
Viewed by 1543
Abstract
Biopolymers have emerged as a transformative class of materials that reconcile high-performance functionality with environmental stewardship. Their inherent capacity for controlled degradation and biocompatibility has driven rapid advancements across electronics, sensing, actuation, and healthcare. In flexible electronics, these polymers serve as substrates, dielectrics, [...] Read more.
Biopolymers have emerged as a transformative class of materials that reconcile high-performance functionality with environmental stewardship. Their inherent capacity for controlled degradation and biocompatibility has driven rapid advancements across electronics, sensing, actuation, and healthcare. In flexible electronics, these polymers serve as substrates, dielectrics, and conductive composites that enable transient devices, reducing electronic waste without compromising electrical performance. Within sensing and actuation, biodegradable polymer matrices facilitate the development of fully resorbable biosensors and soft actuators. These systems harness tailored degradation kinetics to achieve temporal control over signal transduction and mechanical response, unlocking applications in in vivo monitoring and on-demand drug delivery. In healthcare, biodegradable polymers underpin novel approaches in tissue engineering, wound healing, and bioresorbable implants. Their tunable chemical architectures and processing versatility allow for precise regulation of mechanical properties, degradation rates, and therapeutic payloads, fostering seamless integration with biological environments. The convergence of these emerging applications underscores the pivotal role of biodegradable polymers in advancing sustainable technology and personalized medicine. Continued interdisciplinary research into polymer design, processing strategies, and integration techniques will accelerate commercialization and broaden the impact of these lower eCO2 value materials across diverse sectors. This perspective article comments on the innovation in these sectors that go beyond the applications of biodegradable materials in packaging applications. Full article
(This article belongs to the Special Issue Recent Developments in Bio-Based and Biodegradable Plastics)
Show Figures

Graphical abstract

50 pages, 4023 KB  
Review
Organic Bioelectronics: Diversity of Electronics Along with Biosciences
by Syed Abdul Moiz, Mohammed Saleh Alshaikh and Ahmed N. M. Alahmadi
Biosensors 2025, 15(9), 587; https://doi.org/10.3390/bios15090587 - 7 Sep 2025
Cited by 2 | Viewed by 3361
Abstract
This review article provides an introductory overview of organic bioelectronics, focusing on the creation of electrical devices that use specialized carbon-based semiconducting materials to interact successfully with biological processes. These organic materials demonstrate flexibility, biocompatibility, and the capacity to carry both electrical and [...] Read more.
This review article provides an introductory overview of organic bioelectronics, focusing on the creation of electrical devices that use specialized carbon-based semiconducting materials to interact successfully with biological processes. These organic materials demonstrate flexibility, biocompatibility, and the capacity to carry both electrical and ionic impulses, making them an ideal choice for connecting human tissue with electronic technology. The review study examines diverse materials, such as the conductive polymers Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and Polyaniline (PANI), along with critical devices like organic electrochemical transistors (OECTs), which are exceptionally efficient for sensitive biosensing applications. Significant applications include implanted neural interfaces for the brain and nerves, wearable health monitoring, tissue engineering scaffolds that facilitate tissue repair, and sophisticated drug delivery systems. The review acknowledges current challenges, including long-term stability and safety, while envisioning a future where these technologies revolutionize healthcare, human–machine interaction, and environmental monitoring via continuous multidisciplinary innovation. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

51 pages, 4281 KB  
Review
Advances in Hydrogel Film Fabrication and Functional Applications Across Biomedical and Environmental Fields
by Alberto Ubaldini and Sara Calistri
Appl. Sci. 2025, 15(17), 9579; https://doi.org/10.3390/app15179579 - 30 Aug 2025
Cited by 2 | Viewed by 2411
Abstract
Hydrogel films are a promising class of materials due to their peculiar property of retaining water as well as responding to external stimuli. In contrast with conventional hydrogels, films provide enhanced responsiveness along with greater compliance to be integrated into devices as well [...] Read more.
Hydrogel films are a promising class of materials due to their peculiar property of retaining water as well as responding to external stimuli. In contrast with conventional hydrogels, films provide enhanced responsiveness along with greater compliance to be integrated into devices as well as on surfaces. This review is designed to comprehensively explore the many aspects of hydrogel films. It covers the principles of gelation; preparation methods, such as solvent casting, spin coating, and photolithography; and characterization. This review also presents the most common polymers (both natural and synthetic) utilized for the preparation of the hydrogel, the systems, such as nanoparticles, liposomes and hybrid metal–organic structure, that can be used as additives and the aspects related to the biocompatibility of hydrogels. In the second part, this review discusses the potential applications of hydrogel films and the challenges that still need to be overcome. Particular attention is given to biomedical applications, such as drug delivery, wound healing, and tissue engineering, but environmental and agricultural uses are also explored. Finally, this review presents recent examples of real-world applications of hydrogel films and explores the possibility they have for a wide variety of needs. Full article
(This article belongs to the Section Surface Sciences and Technology)
Show Figures

Figure 1

13 pages, 1103 KB  
Article
Prolonged Gel Delivery to Oral Cavity from a Silicone Tube: In Vivo Assessment
by Suhail Alghanem, Ewelina Dziurkowska, Mateusz Lampkowski, Iwona Ordyniec-Kwaśnica and Małgorzata Sznitowska
Pharmaceutics 2025, 17(9), 1095; https://doi.org/10.3390/pharmaceutics17091095 - 22 Aug 2025
Viewed by 2443
Abstract
Objectives: This study evaluated the comfort of using silicone tubes installed in the oral cavity as a reservoir for a hydrogel that allows for a slow delivery of the active substance acting locally or systemically. Methods: Perforated silicone tubes 8 cm [...] Read more.
Objectives: This study evaluated the comfort of using silicone tubes installed in the oral cavity as a reservoir for a hydrogel that allows for a slow delivery of the active substance acting locally or systemically. Methods: Perforated silicone tubes 8 cm long with two internal diameters were used: T1 (1.5 mm) and T2 (2.4 mm). The reservoirs were filled with hydrogel placebo formulations: carbomer 1.5% (C), hydroxyethylcellulose 4% (HEC), or hydroxypropylmethylcellulose (hypromellose) 3% (HPMC). Physical parameters of the gel were determined with a viscometer and a texture analyzer. During 4 h of application, the volunteers reported sensory perceptions, and the rate of gel erosion was evaluated. The results were correlated with the viscosity, rheology, and dissolution rate of the gels measured in vitro. Results: Volunteers reported only mild discomfort wearing the device, preferring smaller-sized tubes. The tubes were easy to apply and generally comfortable, with no reports of significant discomfort. Despite similar viscosity and rheology, the polymer type had a significant impact on erosion rate, both in vitro and in vivo. After 4 h of application in vivo, more than 90% of the carbomer gel remained in the tube, while in the case of less cohesive HPMC or HEC gels, this was about 50%. A statistically significant correlation was observed between the in vitro and in vivo mean erosion percentages for the HEC and HPMC gels. Conclusions: This study supports the use of silicone tubes as effective reservoir devices for prolonging the residence time of drug formulations in the oral cavity. Full article
(This article belongs to the Special Issue Development and Optimization of Buccal Films Formulations)
Show Figures

Figure 1

30 pages, 4096 KB  
Review
New Frontiers in 3D Printing Using Biocompatible Polymers
by Nagireddy Poluri, Jacob Carter, John Grasso, Walter Miller, Matthew Leinbach, Frederick Durant, Riley Benbrook, Assa John, Allan Wang and Xiao Hu
Int. J. Mol. Sci. 2025, 26(16), 8016; https://doi.org/10.3390/ijms26168016 - 19 Aug 2025
Cited by 1 | Viewed by 2938
Abstract
Biocompatible polymers have emerged as essential materials in medical 3D printing, enabling the fabrication of scaffolds, tissue constructs, drug delivery systems, and biosensors for applications in and on the human body. This review aims to provide a comprehensive overview of the current state [...] Read more.
Biocompatible polymers have emerged as essential materials in medical 3D printing, enabling the fabrication of scaffolds, tissue constructs, drug delivery systems, and biosensors for applications in and on the human body. This review aims to provide a comprehensive overview of the current state of 3D-printable biocompatible polymers and their composites, with an emphasis on their processing methods, properties, and biomedical uses. The scope of this work includes both natural and synthetic biocompatible polymers, polymer–nanocomposite systems, and bioinks that do not require photo initiators. The relevant literature was critically examined to classify materials by type, evaluate their compatibility with major 3D printing techniques such as stereolithography, selective laser sintering, and fused deposition modeling, and assess their performance in various medical applications. Key findings highlight that reinforced polymer composites, tailored surface chemistries, and hybrid printing strategies significantly expand the range of functional, customizable, and affordable biomedical devices. This review concludes by discussing present-day applications and emerging trends, underscoring that 3D-printable biocompatible polymers are rapidly transitioning from research to clinical practice, offering transformative potential for patient-specific healthcare solutions. Full article
(This article belongs to the Special Issue Latest Review Papers in Macromolecules 2025)
Show Figures

Figure 1

25 pages, 17212 KB  
Article
Three-Dimensional Printing of Personalized Carbamazepine Tablets Using Hydrophilic Polymers: An Investigation of Correlation Between Dissolution Kinetics and Printing Parameters
by Lianghao Huang, Xingyue Zhang, Qichen Huang, Minqing Zhu, Tiantian Yang and Jiaxiang Zhang
Polymers 2025, 17(15), 2126; https://doi.org/10.3390/polym17152126 - 1 Aug 2025
Cited by 2 | Viewed by 1194
Abstract
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision [...] Read more.
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision drug delivery, enabling customizable and the fabrication of multifunctional structures with precise control over morphology and release behavior in pharmaceutics. However, the influence of 3D printing parameters on the printed tablets, especially regarding in vitro and in vivo performance, remains poorly understood, limiting the optimization of manufacturing processes for controlled-release profiles. Objective: To establish the fabrication process of 3D-printed controlled-release tablets via comprehensively understanding the printing parameters using fused deposition modeling (FDM) combined with hot-melt extrusion (HME) technologies. HPMC-AS/HPC-EF was used as the drug delivery matrix and carbamazepine (CBZ) was used as a model drug to investigate the in vitro drug delivery performance of the printed tablets. Methodology: Thermogravimetric analysis (TGA) was employed to assess the thermal compatibility of CBZ with HPMC-AS/HPC-EF excipients up to 230 °C, surpassing typical processing temperatures (160–200 °C). The formation of stable amorphous solid dispersions (ASDs) was validated using differential scanning calorimetry (DSC), hot-stage polarized light microscopy (PLM), and powder X-ray diffraction (PXRD). A 15-group full factorial design was then used to evaluate the effects of the fan speed (20–100%), platform temperature (40–80 °C), and printing speed (20–100 mm/s) on the tablet properties. Response surface modeling (RSM) with inverse square-root transformation was applied to analyze the dissolution kinetics, specifically t50% (time for 50% drug release) and Q4h (drug released at 4 h). Results: TGA confirmed the thermal compatibility of CBZ with HPMC-AS/HPC-EF, enabling stable ASD formation validated by DSC, PLM, and PXRD. The full factorial design revealed that printing speed was the dominant parameter governing dissolution behavior, with high speeds accelerating release and low speeds prolonging release through porosity-modulated diffusion control. RSM quadratic models showed optimal fits for t50% (R2 = 0.9936) and Q4h (R2 = 0.9019), highlighting the predictability of release kinetics via process parameter tuning. This work demonstrates the adaptability of polymer composite AM for tailoring drug release profiles, balancing mechanical integrity, release kinetics, and manufacturing scalability to advance multifunctional 3D-printed drug delivery devices in pharmaceutics. Full article
Show Figures

Graphical abstract

Back to TopTop