Zwitterionic Poly(Carboxybetaine Methacrylate)s in Drug Delivery, Antifouling Coatings, and Regenerative Tissue Platforms
Abstract
1. Introduction
2. Carboxybetaine Methacrylate Monomer: Synthesis and Properties
3. Carboxybetaine Methacrylate Polymers and Their Properties
3.1. Homopolymers
Entry | Polymerization Technique | Mn (kDa), (Mw/Mn) | Yield | Polymerization Conditions | Used For | Ref. |
---|---|---|---|---|---|---|
1 | Free radical | - | 93% | CBMA(2) and ACVA initiator in water | Homopolymer for aqueous solution studies | Liaw et al. [24] |
2 | 33 | CBMA(1) and AIBN initiator in water/methanol (4:1) | Homopolymer for water-binding studies | Ma et al. [33] | ||
3 | 11.4 | CBMA(1), AIBN, and 2-mercaptoethanol as chain transfer agents | Homopolymer | Kitano et al. [35] | ||
4 | ATRP | 13.64 | - | t-BuCBMA, 2-aminoethyl 2-bromoisobutyrate ATRP initiator, copper bromide [Cu(I)Br]/1,1,4,7,10,10-Hexamethyltriethylenetetramine (HMTETA) catalyst system in DMF; and hydrolysis in TFA | Conjugation with poly(lactic-co-glycolic acid) | Cao et al. [26] |
5 | 12.4 | CBMA-EE with ethyl 2-bromoisobutanoate (EBIB) initiator, CuBr, and PMDETA in methanol | Block copolymerization with CBMA(2) | Zhang et al. [36] | ||
6 | 3.5 | - | CBMA(2), EBIB initiator, and HMTETA/CuBr in 1:1 methanol–DMF | Block copolymerization with 2,2-di(acryloyloxy-1-ethoxy)propane-co 4,4-trimethylene dipiperidine) P(ADA-co-TMDP) | Ma et al. [37] | |
7 | 2.5 (1.04), 6.5 (1.17) | - | t-BuCBMA, N-hydroxysuccinimide (NHS)-terminated initiator, and Cu(I)Br/HMTETA catalyst system in DMF; hydrolysis of tert-butyl groups in TFA | Conjugation with α-chymotrypsin | Keefe et al. [38] | |
8 | 5.41 (1.03) | - | tBuCBMA monomer, NHS ester of 2-bromopropanoic acid as the ATRP initiator, and the Cu(I)Br/HMTETA catalyst system in anhydrous DMF; hydrolysis of tert-butyl groups in TFA | Conjugation with liposomes | Cao et al. [39] | |
9 | 35.5 (1.51) | - | CBMA(2) monomer, EBIB as initiator, and (CuBr)/(CuBr2)/2,2′-bipyridine (bpy) as catalysts in H2O/DMF | Functionalization with curcumin | Zhao et al. [40] | |
10 | 88.7 (1.32) | CBMA(2) monomer, EBIB initiator, and the CuBr/CuBr2/bpy catalyst system in H2O/DMF | Conjugation with LK7 enzyme | Zhao et al. [41] | ||
11 | 8.1 (1.4), 11.9 (1.6), 20.9 (1.7), 30.8 (1.8), 38.7 (1.9) | - | CBMA(2) monomer, lysozyme-conjugated ATRP initiator, Cu(II)Br, sodium ascorbate (NaAsc), and HMTETA in octanol/water | Conjugation with lysozyme | Baker et al. [42] | |
12 | RAFT | 4.5, 9.8, 18, 32.4 | CBMA(2), CPADB CTA, and 2,2′-azobis [2-(2-imidazolin-2-yl)propane] dihydrochloride as initiator in water–ethanol (2:1) | Homopolymer for cosolvency studies with ethanol | Higaki et al. [34] | |
13 | 13.4 | - | CBMA(1) in water, 2-Cyano-2-methylethyl dithiobenzoate (CMEDTB) CTA, and ACVA in DMF | Copolymerization with (4-ethoxy-4′-methacrylamide) azobenzene | Shrivastava et al. [43] | |
14 | DP = 60 and 90 | - | CBMA(1), ACVA, and 4-CPADB CTA in water/DMF (4/1) | Block copolymerization with ethylhexyl acrylate PEHA | Matsuoka et al. [44] | |
15 | 11.9 (1.13), 25.2 (1.2), 33.6 (1.15), 64.5 (1.16) | - | CBMA(1), CPADB CTA, and ACVA in a water/DMF (4/1) | Block copolymerization with n-butyl acrylate (n-BA) | Murugaboopathy et al. [45] | |
16 | 9.5 (1.17) | 83% | CBMA(1), Morpholine-functionalized-4-Cyano-4-(2-phenylethanesulfanyl-thiocarbonyl)sulfanylpentanoic acid CTA, and ACVA in pH 3.5 water | Copolymerization with HPMA | Ning et al. [31] | |
17 | 18.7 (1.07), 39.5 (1.10), 28.4 (1.06) | 87% 80%, 90% | CBMA(1), CPADB CTA, and 2,2′-Azobis [2-(2-imidazolin-2-yl)propane] dihydrochloride (VA-044) radical initiator in water | Copolymerization with SBMA | Lim et al. [32] | |
18 | 49, 99, 198 DP | - | CBMA(1) and PETTC CTA (VA-044) in water/2,2,2-trifluoroethanol (TFE) (8/2) | Lim et al. [21] | ||
19 | 6.49, 11.65 | 75% | CBMA(2), 2-cyanopropan-2-yl benzodithioate CTA, and AIBN as initiator in methanol | Homopolymer for complexation with siRNA | Peng et al. [46] | |
20a | Photo-RAFT | 31.6 | - | CBMA(2), sodium pyruvate (SP) photoinitiator, CPADB CTA, and AIBN in water/DMSO (9:1) | Homopolymer | Jazani et al. [47] |
20b | 80.2, 92.9 | - | CBMA(2), sodium pyruvate (SP) photoinitiator, CT-CPADB-conjugated CTA, and AIBN in water/DMSO (9:1) | Conjugation with CT |
3.2. Copolymers and Their Self-Assembly
Entry | Copolymers | Method | Synthesis of PCBMA Block | Yield | Mn [kDa] | Size of Aggregates [nm] | Loaded Drug | DLE, DLC | Size after Loading [nm] | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
1 | PLGA-b-PCBMA(1) | ATRP and Click | CuBr/HMTETA, DMF, and TFA deprotection | - | - | 150 | DOX | 5% 1% | 138.5 | Cao et al. [26] |
2 | PDMNBMA-b-PCBMA(2) | ATRP | PDMAEMA-Br, CuBr/bpy, and CBMA(2)/MeOH | ~9 | - | BSA complexation | DLE 85.6, 92.7, 96.1% | 229, 172, 142 nm | Jin et al. [48] | |
3 | PCBMA(2)-b-p(ADA-TMDP) | CuBr/HMTETA, MeOH/DMF | - | 15.3 | 69 | DOX | 35%, 14% | 77 | Ma et al. [37] | |
4 | PCBMA-EE-b-PCBMA(2) | PCBMAEE50 macroinitiator, CBMA(2), and CuBr/PMDETA in methanol | - | 14.5, 15.0, 15.6, 18.3 | Plasmid DNA | - | 150–200, 130–180, 93, (80–90 for N/P = 10/1) | Zhang et al. [36] | ||
5 | PCBMA(2)-PPO-PCBMA(2) | Br-PPO-Br macroinitiator, CBMA(2), and CuBr/bpy in methanol | - | 19 | - | - | - | - | Li et al. [54] | |
6 | Dextran-g-[PDMAEMA-b-PCBMA(2)] | Dextran-g-PDMAEMA-macroinitiator, CBMA(2), and CuBr/PMDETA in MeOH/water (2/3) | - | 82, 91, 104 | - | Plasmid DNA | 100~120 (N/P = 10/1) | Xiu et al. [49] | ||
7 | PGA-g-(PGMA/PHTE-b-PCBMA(1)-b-PFHEMA) | RAFT + ATRP + Click | t-BuCBMA and PMDETA in DMF | - | 11.85 | ~20 | DOX | - | ~20 | Wang et al. [52] |
8 | PCBMA(1)-b-PEMAAB | RAFT | CPDB/ACVA, CBMA(1), and DMF/H2O, 70 °C, 2 h | - | 20, 22, 30 | 120–180, 30–40 after UV | - | - | - | Shrivastava et al. [43] |
9 | PCBMA(1)-b-PEHA | CPADB/ACVA, CBMA(1), and DMF/H2O(4/1), 70 °C, 2 h | 24–40% | ~19, ~25 | 6–12 layer thickness | - | - | - | Matsuoka et al. [44] | |
10 | [P(n-BA)]-b-PCBMA(1)] | PCBMA(1)-macroCTA, nBA, and AIBN in MeOH, 70 °C | - | 11.9, 25.2, 33.6, 64.5 | 64 and 79 in water, 65 and 86 in 1 M NaCl | - | - | - | Murugaboopathy et al. [45] | |
11 | PCBMA(1)-b-PHPMA | PCBMA(1)-macroCTA, HPMA, and ACVA in water, 70 °C | 99% | ~45 | 34.5 | - | - | - | Ning et al. [31] | |
12 | PCBMA(2)-b-PCL-b-PCBMA(2) | CPADB-SS-PCL-SS-CPADB macro-CTA, CBMA(2), and AIBN in THF/saturated saltwater (1:1) | 45% | ~6 | 102 | DOX | 41%, 15% | 124 | Jiang et al. [51] | |
13 | PCBMA(1)-b-PSBMA | CBMA(1)-macroCTA, SBMA, and VA-044 in H2O | 43–70% | 64.6, 59.0, 96.5, 85.8, 99.2, 82.3, 75.0 | 40.9, 31.9, 62.9, 39.7, 54.6, 51.1, 26.4 at 25 °C | - | - | Lim et al. [32] | ||
14 | PCBMA(1)-b-PSBMA, PSBMA-b-PCMA(1)-b-PSBMA | PCBMA(1) or PSBMA-macroCTA, PETTC, and VA-044 in H2O/TFE (8/2) | - | 25.7, 31.2, 68.3, 40.1, 71.0 | - | - | - | Lim et al. [21] | ||
15 | PFBMA-b-PCBMA(1), PBMA-b-PCBMA | PFBMA-macro-RAFT, t-Bu(CBMA), and AIBN | - | 7.3, 5 | 110 | Ciprofloxacin | 145 | Xiao et al. [53] | ||
16 | PCBMA(1)-g-(PAA-b-PLA) | CBMA-tBu in DMF; amidation onto PAA-b-PLA; and deprotection with TFA | - | ~20, ~35 | 29, 65 | Labeled with Cu-64 by an embedded chelator and tyramine | - | - | Li et al. [56] | |
17 | PMPC-b-PCBMA(2) | PMPC-macroCTA, CBMA(2), and ACVA in water/methanol mixture | 86.6% | 23.5 | 18.9 at pH 3, 5–9 at pH >4 | - | - | - | Yokota et al. [19] | |
18 | P(NIPAM-co-CBMA(2)) | Free radical | CBMA(2), NIPAM, and APS/TEMED in water | - | 42.5, 44.8 | 115–135 at 37 °C, ~90 upon cooling down | - | - | - | Ζhao et al. [50] |
19 | 2°, 3°, 4° CBMA–EE random copolymers | 2°, 3°, and 4° CBMA–EE and APS in water (pH 5) | - | ~30–35 | 81–352 (N/P = 40) | Carr et al. [55] | ||||
20 | P(CBMA(1)-co-MBA) | CBMA(1), BMA, AIBN, and 2-mercaptoethanol in ethanol | - | 11.4, 17.8, 347, 429, 163 | - | - | - | - | Kitano et al. [35] |
3.3. Star-Like (Co)Polymers of Carboxybetaine Methacrylate
4. Applications of Poly(Carboxybetaine Methacrylate) in Biological Systems
4.1. Poly(Carboxybetaine Methacrylate) Conjugates with Biological Molecules
4.2. Nanogels for Drug Delivery
4.3. Hydrogels for Tissue Engineering
4.4. Membranes for Filtration and Separation
4.5. Grafted Surfaces
5. Molecular Dynamics of Poly(Carboxybetaine Methacrylate)
6. Conclusions and Future Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
γ-APS | 3-aminopropyltriethoxysilane |
ACVA | 4,4′-azobis(4-cyanovaleric acid) |
ADA | 2,2-di(acryloyloxy-1-ethoxy)propane |
AIBN | Azobisisobutyronitrile |
ALCAM | Activated leukocyte cell adhesion molecule |
APS | Ammonium persulfate |
ATRP | Atom transfer radical polymerization |
AuNRs | Gold nanorods |
BIBB | 2-bromoisobutyryl bromide |
bpy | 2,2′-bipyridine |
BrTMOS | Trimethoxysilane |
BSA | Bovine serum albumin |
CBAAs | Polycarboxybetaine acrylamides |
CBMA | Carboxybetaine methacrylate |
CBMAX | Carboxybetaine dimethacrylate |
CPADB | 4-cyanopentanoic acid dithiobenzoate |
CuBr | Copper bromide |
CuBr2 | Copper (II) bromide |
CAC | Critical aggregation concentration |
β-CD | β-cyclodextrin |
CMEDTB | 2-cyano-2-methylethyl dithiobenzoate |
CTA | Chain transfer agent |
CT | α-chymotrypsin |
CTCs | Circulating tumor cells |
Da | Dalton |
DLC | Drug-loading content |
DLE | Drug-loading efficiency |
DMAEMA | 2-(dimethylamino)ethyl methacrylate |
DMF | Dimethylformamide |
DMSO | Dimethyl sulfoxide |
DNA | Deoxyribonucleic acid |
DOPA | 3,4-dihydroxy-L-phenylalanine |
DOX | Doxorubicin |
DP | Degree of polymerization |
DTT | Dithiothreitol |
EBIB | Ethyl 2-bromoisobutanoate |
EDC | N-(3-dimethylaminopropyl)-N′-(ethylcarbodiimide hydrochloride) |
EGDMA | Ethylene glycol dimethacrylate |
EMAAB | 4-ethoxy-4′-methacrylamide |
FBS | Fetal bovine serum |
FHEA | 2-(perfluorohexyl)ethyl acrylate |
FXII900 | Factor XII inhibitor |
GLBT | 2-((2-(methacryloyloxy)ethyl)dimethylammonio)-acetate |
GMA | Glycidyl methacrylate |
GOx | Glucose oxidase |
GPC | Gel permeation chromatography |
HEMA | 2-hydroxyethyl methacrylate |
HMTETA | 1,1,4,7,10,10-Hexamethyltriethylenetetramine |
HUVECs | Human umbilical vein endothelial cells |
IgG | Immunoglobulin G |
IPN | Interpenetrating polymer network |
LGA | d,l-lactide-co-glycolide |
LK7 | Ac-LVFFARK-NH2 |
MAEL | 2-(methacryloyloxy) ethyl lipoate) |
MBAA | N,N′-methylenebisacrylamide |
MD | Molecular dynamics |
MNPs | Monodispersed metal nanoparticles |
MOF | Metal–organic framework |
NDMCC | N,N′-dimethacryloylcystine |
NHS | N-hydroxysuccinimide |
NIPAM | N,N-isopropylacrylamide |
PAC | Powdered activated carbon |
PANI | Polyaniline |
PBMA | Poly(n-butyl methacrylate) |
PBS | Phosphate-buffered saline |
PCBMA | Poly(carboxybetaine methacrylate) |
PCL | Poly(ε-caprolactone) |
PCMA | Poly(phosphorylcholine methacrylate) |
PDPA | Poly(2-(diisopropylamino)ethyl methacrylate) |
PEG | Polyethylene glycol |
PEGDMA | Poly(ethyleneglycol) dimethacrylate |
PEGMA | Poly(oligoethylene glycol methacrylate) |
PEHA | Poly(ethylhexyl acrylate) |
PEI | Polyethylenimine |
PEMAAB | Poly(4-ethoxy-4′-methacrylamide) |
PES | Polyethersulfone |
PET | Photoinduced electron transfer |
PFHEA | Poly[2-(perfluorohexyl)ethyl acrylate] |
PHPMA | Hydroxypropyl methacrylamide |
PHTE | N-propynoyl-hydrazinecarboxylic acid tert-butyl ester |
PMDETA | N,N,N′,N″,N″-pentamethyldiethylenetriamine |
PMMA | Poly(methyl methacrylate) |
PMPC | Poly(2-(methacryloyloxy) ethyl phosphorylcholine) |
PLA | Poly(l-lactide) |
PLGA | Poly(lactic-co-glycolic acid) |
PSBMA | Poly(sulfobetaine methacrylate) |
PVA | Polyvinyl alcohol |
PVP | Poly(N-vinylpyrrolidone) |
RAFT | Reversible addition–fragmentation chain transfer |
RGD | Arginine–Glycine–Aspartic acid–D-Phenylalanine–Lysine |
RhB-HEMA | Rhodamine B-labeled 2-hydroxyethyl methacrylate |
SAMs | Self-assembled monolayers |
SEC | Size exclusion chromatography |
SNPs | Silica nanoparticles |
SP | Sodium pyruvate |
SPR | Surface plasmon resonance |
t-BuCBMA | 2-tert-butoxy-N-(2-(methacryloyloxy)ethyl)-N,N-dimethyl-2-oxoethanaminium |
TEGDMA | Triethylene glycol dimethacrylate |
TEMED | N,N,N′,N′-tetramethylethylenediamine |
TFA | Trifluoroacetic acid |
TFE | 2,2,2-trifluoroethanol |
THF | Tetrahydrofuran |
TMDP | 4,4-trimethylene dipiperidine |
References
- Hou, Y.; Lu, H. Protein PEPylation: A New Paradigm of Protein–Polymer Conjugation. Bioconjug. Chem. 2019, 30, 1604–1616. [Google Scholar] [CrossRef]
- Bertrand, N.; Grenier, P.; Mahmoudi, M.; Lima, E.M.; Appel, E.A.; Dormont, F.; Lim, J.-M.; Karnik, R.; Langer, R.; Farokhzad, O.C. Mechanistic Understanding of in Vivo Protein Corona Formation on Polymeric Nanoparticles and Impact on Pharmacokinetics. Nat. Commun. 2017, 8, 777. [Google Scholar] [CrossRef]
- Kim, H.R.; Andrieux, K.; Delomenie, C.; Chacun, H.; Appel, M.; Desmaële, D.; Taran, F.; Georgin, D.; Couvreur, P.; Taverna, M. Analysis of Plasma Protein Adsorption onto PEGylated Nanoparticles by Complementary Methods: 2-DE, CE and Protein Lab-on-Chip® System. Electrophoresis 2007, 28, 2252–2261. [Google Scholar] [CrossRef]
- Pelaz, B.; del Pino, P.; Maffre, P.; Hartmann, R.; Gallego, M.; Rivera-Fernández, S.; de la Fuente, J.M.; Nienhaus, G.U.; Parak, W.J. Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake. ACS Nano 2015, 9, 6996–7008. [Google Scholar] [CrossRef] [PubMed]
- Schöttler, S.; Becker, G.; Winzen, S.; Steinbach, T.; Mohr, K.; Landfester, K.; Mailänder, V.; Wurm, F.R. Protein Adsorption Is Required for Stealth Effect of Poly(Ethylene Glycol)- and Poly(Phosphoester)-Coated Nanocarriers. Nat. Nanotechnol. 2016, 11, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Walkey, C.D.; Olsen, J.B.; Guo, H.; Emili, A.; Chan, W.C.W. Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake. J. Am. Chem. Soc. 2012, 134, 2139–2147. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Z.; Bai, T.; Carr, L.; Ella-Menye, J.R.; Irvin, C.; Ratner, B.D.; Jiang, S. Zwitterionic Hydrogels Implanted in Mice Resist the Foreign-Body Reaction. Nat. Biotechnol. 2013, 31, 553–556. [Google Scholar] [CrossRef]
- Bavli, Y.; Chen, B.-M.; Gross, G.; Hershko, A.; Turjeman, K.; Roffler, S.; Barenholz, Y. Anti-PEG Antibodies before and after a First Dose of Comirnaty® (MRNA-LNP-Based SARS-CoV-2 Vaccine). J. Control. Release 2023, 354, 316–322. [Google Scholar] [CrossRef]
- Chen, B.-M.; Cheng, T.-L.; Roffler, S.R. Polyethylene Glycol Immunogenicity: Theoretical, Clinical, and Practical Aspects of Anti-Polyethylene Glycol Antibodies. ACS Nano 2021, 15, 14022–14048. [Google Scholar] [CrossRef]
- Kong, Y.W.; Dreaden, E.C. PEG: Will It Come Back to You? Polyethelyne Glycol Immunogenicity, COVID Vaccines, and the Case for New PEG Derivatives and Alternatives. Front. Bioeng. Biotechnol. 2022, 10, 879988. [Google Scholar] [CrossRef] [PubMed]
- Kozma, G.T.; Shimizu, T.; Ishida, T.; Szebeni, J. Anti-PEG Antibodies: Properties, Formation, Testing and Role in Adverse Immune Reactions to PEGylated Nano-Biopharmaceuticals. Adv. Drug Deliv. Rev. 2020, 154–155, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Y.; Yuan, C.; Xu, X.; Zhou, W.; Huang, Y.; Lu, H.; Zheng, Y.; Luo, G.; Shang, J.; et al. Polyethylene Glycol (PEG)-Associated Immune Responses Triggered by Clinically Relevant Lipid Nanoparticles in Rats. NPJ Vaccines 2023, 8, 169. [Google Scholar] [CrossRef]
- Zalba, S.; Ten Hagen, T.L.M.; Burgui, C.; Garrido, M.J. Stealth Nanoparticles in Oncology: Facing the PEG Dilemma. J. Control. Release 2022, 351, 22–36. [Google Scholar] [CrossRef]
- Tian, M.; Keshavarz, M.; Demircali, A.A.; Han, B.; Yang, G.Z. Localized Microrobotic Delivery of Enzyme-Responsive Hydrogel-Immobilized Therapeutics to Suppress Triple-Negative Breast Cancer. Small 2025, 21, 2408813. [Google Scholar] [CrossRef]
- Cabanach, P.; Pena-Francesch, A.; Sheehan, D.; Bozuyuk, U.; Yasa, O.; Borros, S.; Sitti, M.; Cabanach, P.; Pena-Francesch, A.; Sheehan, D.; et al. Zwitterionic 3D-Printed Non-Immunogenic Stealth Microrobots. Adv. Mater. 2020, 32, 2003013. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Ouyang, X.; Xie, H.; Peng, S. Responsive Zwitterionic Materials for Enhanced Drug Delivery. Langmuir 2025, 41, 3744–3756. [Google Scholar] [CrossRef]
- Chang, Y. Designs of Zwitterionic Polymers. J. Polym. Res. 2022, 29, 286. [Google Scholar] [CrossRef]
- Zheng, L.; Sundaram, H.S.; Wei, Z.; Li, C.; Yuan, Z. Applications of Zwitterionic Polymers. React. Funct. Polym. 2017, 118, 51–61. [Google Scholar] [CrossRef]
- Yokota, K.; Takahashi, R.; Ngan, V.T.; Nishimura, T.; Kappl, M.; Fujii, S.; Yusa, S. ichi Preparation of Water-Soluble Polyion Complex (PIC) Micelles with PH-Responsive Carboxybetaine Block. Macromol. Rapid Commun. 2024, 45, 2400532. [Google Scholar] [CrossRef]
- Madsen, J.; Armes, S.P.; Bertal, K.; MacNeil, S.; Lewis, A.L. Preparation and Aqueous Solution Properties of Thermoresponsive Biocompatible AB Diblock Copolymers. Biomacromolecules 2009, 10, 1875–1887. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Matsuoka, H.; Saruwatari, Y. One-Pot Synthesis of Double and Triple Polybetaine Block Copolymers and Their Temperature-Responsive Solution Behavior. Colloid Polym. Sci. 2021, 299, 1–13. [Google Scholar] [CrossRef]
- Rajan, R.; Matsumura, K. Inhibition of Protein Aggregation by Zwitterionic Polymer-Based Core-Shell Nanogels. Sci. Rep. 2017, 7, 45777. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhu, Y.; Zhang, J.; Xu, T.; Li, Q.; Guo, H.; Zhang, J.; Lin, C.; Zhang, L. A Comprehensive Study and Comparison of Four Types of Zwitterionic Hydrogels. J. Mater. Sci. 2018, 53, 13813–13825. [Google Scholar] [CrossRef]
- Liaw, D.J.; Huang, C.C.; Lee, W.F.; Borbély, J.; Kang, E.T. Synthesis and Characteristics of the Poly(Carboxybetaine)s and the Corresponding Cationic Polymers. J. Polym. Sci. A Polym. Chem. 1997, 35, 3527–3536. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, L.; Zhou, J.; Ye, L.; Hu, H.; Luo, Z.; Zhou, L. Surface Modification of PVA Hydrogel Membranes with Carboxybetaine Methacrylate via PET-RAFT for Anti-Fouling. Polymer 2019, 162, 80–90. [Google Scholar] [CrossRef]
- Cao, Z.; Yu, Q.; Xue, H.; Cheng, G.; Jiang, S. Nanoparticles for Drug Delivery Prepared from Amphiphilic PLGA Zwitterionic Block Copolymers with Sharp Contrast in Polarity between Two Blocks. Angew. Chem. Int. Ed. 2010, 49, 3771–3776. [Google Scholar] [CrossRef]
- Mai, S.; Yao, X.; Li, C.; Yin, Z.; Zhang, M.; Xu, J.; Diao, Z.; Yang, W. Carboxybetaine-Based Zwitterionic Polymer Nanogels with Long Blood Circulation for Cancer Therapy. Biomacromolecules 2023, 24, 2392–2405. [Google Scholar] [CrossRef]
- Cao, Z.; Brault, N.; Xue, H.; Keefe, A.; Jiang, S. Manipulating Sticky and Non-Sticky Properties in a Single Material. Angew. Chem. Int. Ed. 2011, 50, 6102–6104. [Google Scholar] [CrossRef]
- Cheng, G.; Xue, H.; Zhang, Z.; Chen, S.; Jiang, S. A Switchable Biocompatible Polymer Surface with Self-Sterilizing and Nonfouling Capabilities. Angew. Chem. Int. Ed. 2008, 47, 8831–8834. [Google Scholar] [CrossRef]
- Cheng, G.; Xue, H.; Li, G.; Jiang, S. Integrated Antimicrobial and Nonfouling Hydrogels to Inhibit the Growth of Planktonic Bacterial Cells and Keep the Surface Clean. Langmuir 2010, 26, 10425–10428. [Google Scholar] [CrossRef]
- Ning, Y.; Fielding, L.A.; Doncom, K.E.B.; Penfold, N.J.W.; Kulak, A.N.; Matsuoka, H.; Armes, S.P. Incorporating Diblock Copolymer Nanoparticles into Calcite Crystals: Do Anionic Carboxylate Groups Alone Ensure Efficient Occlusion? ACS Macro. Lett. 2016, 5, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Matsuoka, H.; Yusa, S.I.; Saruwatari, Y. Temperature-Responsive Behavior of Double Hydrophilic Carboxy-Sulfobetaine Block Copolymers and Their Self-Assemblies in Water. Langmuir 2019, 35, 1571–1582. [Google Scholar] [CrossRef]
- Ma, G.; Ji, F.; Lin, W.; Chen, S. Determination of Non-Freezing Water in Different Nonfouling Materials by Differential Scanning Calorimetry. J. Biomater. Sci. Polym. Ed. 2022, 33, 1012–1024. [Google Scholar] [CrossRef]
- Higaki, Y.; Kuraoka, N.; Masuda, T.; Nakamura, M.; Hifumi, E. Cononsolvency of Poly(Carboxybetaine Methacrylate) in Water–Ethanol Mixed Solvents. Polym. J. 2023, 55, 869–876. [Google Scholar] [CrossRef]
- Kitano, H.; Tada, S.; Mori, T.; Takaha, K.; Gemmei-Ide, M.; Tanaka, M.; Fukuda, M.; Yokoyama, Y. Correlation between the Structure of Water in the Vicinity of Carboxybetaine Polymers and Their Blood-Compatibility. Langmuir 2005, 21, 11932–11940. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Lin, W.; Chen, S. Gene Transfection in Complex Media Using PCBMAEE-PCBMA Copolymer with Both Hydrolytic and Zwitterionic Blocks. Biomaterials 2014, 35, 7909–7918. [Google Scholar] [CrossRef]
- Ma, J.; Kang, K.; Yi, Q.; Zhang, Z.; Gu, Z. Multiple PH Responsive Zwitterionic Micelles for Stealth Delivery of Anticancer Drugs. RSC Adv. 2016, 6, 64778–64790. [Google Scholar] [CrossRef]
- Keefe, A.J.; Jiang, S. Poly(Zwitterionic)Protein Conjugates Offer Increased Stability without Sacrificing Binding Affinity or Bioactivity. Nat. Chem. 2012, 4, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Zhang, L.; Jiang, S. Superhydrophilic Zwitterionic Polymers Stabilize Liposomes. Langmuir 2012, 28, 11625–11632. [Google Scholar] [CrossRef]
- Zhao, G.; Dong, X.; Sun, Y. Self-Assembled Curcumin-Poly(Carboxybetaine Methacrylate) Conjugates: Potent Nano-Inhibitors against Amyloid β-Protein Fibrillogenesis and Cytotoxicity. Langmuir 2019, 35, 1846–1857. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Qi, F.; Dong, X.; Zheng, J.; Sun, Y. LVFFARK Conjugation to Poly (Carboxybetaine Methacrylate) Remarkably Enhances Its Inhibitory Potency on Amyloid β-Protein Fibrillogenesis. React. Funct. Polym. 2019, 140, 72–81. [Google Scholar] [CrossRef]
- Baker, S.L.; Munasinghe, A.; Kaupbayeva, B.; Rebecca Kang, N.; Certiat, M.; Murata, H.; Matyjaszewski, K.; Lin, P.; Colina, C.M.; Russell, A.J. Transforming Protein-Polymer Conjugate Purification by Tuning Protein Solubility. Nat. Commun. 2019, 10, 4718. [Google Scholar] [CrossRef]
- Shrivastava, S.; Matsuoka, H. Photoresponsive Block Copolymer: Synthesis, Characterization, and Surface Activity Control. Langmuir 2014, 30, 3957–3966. [Google Scholar] [CrossRef]
- Matsuoka, H.; Yamakawa, Y.; Ghosh, A.; Saruwatari, Y. Nanostructure and Salt Effect of Zwitterionic Carboxybetaine Brush at the Air/Water Interface. Langmuir 2015, 31, 4827–4836. [Google Scholar] [CrossRef]
- Murugaboopathy, S.; Matsuoka, H. Salt-Dependent Surface Activity and Micellization Behaviour of Zwitterionic Amphiphilic Diblock Copolymers Having Carboxybetaine. Colloid Polym. Sci. 2015, 293, 1317–1328. [Google Scholar] [CrossRef]
- Peng, H.; Ji, W.; Zhao, R.; Lu, Z.; Yang, J.; Li, Y.; Zhang, X. PH-Sensitive Zwitterionic Polycarboxybetaine as a Potential Non-Viral Vector for Small Interfering RNA Delivery. RSC Adv. 2020, 10, 45059–45066. [Google Scholar] [CrossRef]
- Jazani, A.M.; Murata, H.; Cvek, M.; Lewandowska-Andralojc, A.; Bernat, R.; Kapil, K.; Hu, X.; De Luca Bossa, F.; Szczepaniak, G.; Matyjaszewski, K. Aqueous Photo-RAFT Polymerization under Ambient Conditions: Synthesis of Protein-Polymer Hybrids in Open Air. Chem. Sci. 2024, 15, 9742–9755. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Cai, T.; Wang, Y.; Wang, H.; Ji, J. Light-Responsive Polyion Complex Micelles with Switchable Surface Charge for Efficient Protein Delivery. ACS Macro. Lett. 2014, 3, 679–683. [Google Scholar] [CrossRef]
- Xiu, K.M.; Zhao, N.N.; Yang, W.T.; Xu, F.J. Versatile Functionalization of Gene Vectors via Different Types of Zwitterionic Betaine Species for Serum-Tolerant Transfection. Acta Biomater. 2013, 9, 7439–7448. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Bai, T.; Shao, Q.; Jiang, S.; Shen, A.Q. Thermoresponsive Self-Assembled NiPAm-Zwitterion Copolymers. Polym. Chem. 2015, 6, 1066–1077. [Google Scholar] [CrossRef]
- Jiang, J.; Li, J.; Zhou, B.; Niu, C.; Wang, W.; Wu, W.; Liang, J. Fabrication of Polymer Micelles with Zwitterionic Shell and Biodegradable Core for Reductively Responsive Release of Doxorubicin. Polymers 2019, 11, 1019. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yang, S.; Xiao, P.; Sun, Y.; Li, J.; Jiang, X.; Wu, W. Fluorination and Betaine Modification Augment the Blood–Brain Barrier-Crossing Ability of Cylindrical Polymer Brushes. Angew. Chem. Int. Ed. 2022, 61, e202201390. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Yin, M.; Yang, M.; Ren, J.; Liu, C.; Lian, J.; Lu, X.; Jiang, Y.; Yao, Y.; Luo, J. Lipase and PH-Responsive Diblock Copolymers Featuring Fluorocarbon and Carboxyl Betaine for Methicillin-Resistant Staphylococcus Aureus Infections. J. Control. Release 2024, 369, 39–52. [Google Scholar] [CrossRef]
- Li, Y.; Keefe, A.J.; Giarmarco, M.; Brault, N.D.; Jiang, S. Simple and Robust Approach for Passivating and Functionalizing Surfaces for Use in Complex Media. Langmuir 2012, 28, 9707–9713. [Google Scholar] [CrossRef]
- Carr, L.R.; Jiang, S. Mediating High Levels of Gene Transfer without Cytotoxicity via Hydrolytic Cationic Ester Polymers. Biomaterials 2010, 31, 4186–4193. [Google Scholar] [CrossRef]
- Li, A.; Luehmann, H.P.; Sun, G.; Samarajeewa, S.; Zou, J.; Zhang, S.; Zhang, F.; Welch, M.J.; Liu, Y.; Wooley, K.L. Synthesis and in Vivo Pharmacokinetic Evaluation of Degradable Shell Cross-Linked Polymer Nanoparticles with Poly(Carboxybetaine) versus Poly(Ethylene Glycol) Surface-Grafted Coatings. ACS Nano 2012, 6, 8970–8982. [Google Scholar] [CrossRef]
- Lin, W.; Ma, G.; Ji, F.; Zhang, J.; Wang, L.; Sun, H.; Chen, S. Biocompatible Long-Circulating Star Carboxybetaine Polymers. J. Mater. Chem. B 2015, 3, 440–448. [Google Scholar] [CrossRef]
- Lin, W.; Ma, G.; Wu, J.; Chen, S. Different in Vitro and in Vivo Behaviors between Poly(Carboxybetaine Methacrylate) and Poly(Sulfobetaine Methacrylate). Colloids Surf. B Biointerfaces 2016, 146, 888–894. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, W.; Yang, C.; Fan, Q.; Wu, W.; Jiang, X. Enhancing Tumor Penetration and Targeting Using Size-Minimized and Zwitterionic Nanomedicines. J. Control. Release 2016, 237, 115–124. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Liu, W.; Wang, W.H.; Weitzhandler, I.; Li, X.; Qi, Y.; Liu, J.; Pang, Y.; Hunt, D.F.; Chilkoti, A. Site-Specific Zwitterionic Polymer Conjugates of a Protein Have Long Plasma Circulation. ChemBioChem 2015, 16, 2451–2455. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Mi, L.; Cao, Z.; Xue, H.; Yu, Q.; Carr, L.; Jiang, S. Functionalizable and Ultrastable Zwitterionic Nanogels. Langmuir 2010, 26, 6883–6886. [Google Scholar] [CrossRef]
- Zhang, L.; Xue, H.; Cao, Z.; Keefe, A.; Wang, J.; Jiang, S. Multifunctional and Degradable Zwitterionic Nanogels for Targeted Delivery, Enhanced MR Imaging, Reduction-Sensitive Drug Release, and Renal Clearance. Biomaterials 2011, 32, 4604–4608. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Z.; Li, Y.; Ella-Menye, J.R.; Bai, T.; Jiang, S. Softer Zwitterionic Nanogels for Longer Circulation and Lower Splenic Accumulation. ACS Nano 2012, 6, 6681–6686. [Google Scholar] [CrossRef]
- Lin, W.; He, Y.; Zhang, J.; Wang, L.; Wang, Z.; Ji, F.; Chen, S. Highly Hemocompatible Zwitterionic Micelles Stabilized by Reversible Cross-Linkage for Anti-Cancer Drug Delivery. Colloids Surf. B Biointerfaces 2014, 115, 384–390. [Google Scholar] [CrossRef]
- Ding, F.; Yang, S.; Gao, Z.; Guo, J.; Zhang, P.; Qiu, X.; Li, Q.; Dong, M.; Hao, J.; Yu, Q.; et al. Antifouling and PH-Responsive Poly(Carboxybetaine)-Based Nanoparticles for Tumor Cell Targeting. Front. Chem. 2019, 7, 770. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, S.; Jiang, S. Dual-Functional Biomimetic Materials: Nonfouling Poly(Carboxybetaine) with Active Functional Groups for Protein Immobilization. Biomacromolecules 2006, 7, 3311–3315. [Google Scholar] [CrossRef]
- Zhang, Z.; Chao, T.; Liu, L.; Cheng, G.; Ratner, B.D.; Jiang, S. Zwitterionic Hydrogels: An in Vivo Implantation Study. J. Biomater. Sci. Polym. Ed. 2009, 20, 1845–1859. [Google Scholar] [CrossRef] [PubMed]
- Carr, L.R.; Xue, H.; Jiang, S. Functionalizable and Nonfouling Zwitterionic Carboxybetaine Hydrogels with a Carboxybetaine Dimethacrylate Crosslinker. Biomaterials 2011, 32, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Carr, L.R.; Zhou, Y.; Krause, J.E.; Xue, H.; Jiang, S. Uniform Zwitterionic Polymer Hydrogels with a Nonfouling and Functionalizable Crosslinker Using Photopolymerization. Biomaterials 2011, 32, 6893–6899. [Google Scholar] [CrossRef] [PubMed]
- Carr, L.R.; Krause, J.E.; Ella-Menye, J.R.; Jiang, S. Single Nonfouling Hydrogels with Mechanical and Chemical Functionality Gradients. Biomaterials 2011, 32, 8456–8461. [Google Scholar] [CrossRef]
- Yang, W.; Xue, H.; Carr, L.R.; Wang, J.; Jiang, S. Zwitterionic Poly(Carboxybetaine) Hydrogels for Glucose Biosensors in Complex Media. Biosens. Bioelectron. 2011, 26, 2454–2459. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-Osuna, Á.A.; Cao, B.; Cheng, G.; Jana, S.C.; Espe, M.P.; Lama, B. New Antifouling Silica Hydrogel. Langmuir 2012, 28, 9700–9706. [Google Scholar] [CrossRef]
- Chien, H.W.; Tsai, W.B.; Jiang, S. Direct Cell Encapsulation in Biodegradable and Functionalizable Carboxybetaine Hydrogels. Biomaterials 2012, 33, 5706–5712. [Google Scholar] [CrossRef]
- Chien, H.W.; Xu, X.; Ella-Menye, J.R.; Tsai, W.B.; Jiang, S. High Viability of Cells Encapsulated in Degradable Poly(Carboxybetaine) Hydrogels. Langmuir 2012, 28, 17778–17784. [Google Scholar] [CrossRef]
- Mi, L.; Jiang, S. Synchronizing Nonfouling and Antimicrobial Properties in a Zwitterionic Hydrogel. Biomaterials 2012, 33, 8928–8933. [Google Scholar] [CrossRef]
- Yang, W.; Bai, T.; Carr, L.R.; Keefe, A.J.; Xu, J.; Xue, H.; Irvin, C.A.; Chen, S.; Wang, J.; Jiang, S. The Effect of Lightly Crosslinked Poly(Carboxybetaine) Hydrogel Coating on the Performance of Sensors in Whole Blood. Biomaterials 2012, 33, 7945–7951. [Google Scholar] [CrossRef]
- Chien, H.W.; Yu, J.; Li, S.T.; Chen, H.Y.; Tsai, W.B. An: In Situ Poly(Carboxybetaine) Hydrogel for Tissue Engineering Applications. Biomater. Sci. 2017, 5, 322–330. [Google Scholar] [CrossRef]
- Cai, N.; Li, Q.; Zhang, J.; Xu, T.; Zhao, W.; Yang, J.; Zhang, L. Antifouling Zwitterionic Hydrogel Coating Improves Hemocompatibility of Activated Carbon Hemoadsorbent. J. Colloid Interface Sci. 2017, 503, 168–177. [Google Scholar] [CrossRef]
- Ruseva, K.; Ivanova, K.; Todorova, K.; Vladov, I.; Nanev, V.; Tzanov, T.; Hinojosa-Caballero, D.; Argirova, M.; Vassileva, E. Antibiofilm Poly(Carboxybetaine Methacrylate) Hydrogels for Chronic Wounds Dressings. Eur. Polym. J. 2020, 132, 109673. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, J.; Song, J.; Yang, J.; Du, Z.; Zhao, W.; Guo, H.; Wen, C.; Li, Q.; Sui, X.; et al. A Multifunctional Pro-Healing Zwitterionic Hydrogel for Simultaneous Optical Monitoring of PH and Glucose in Diabetic Wound Treatment. Adv. Funct. Mater. 2020, 30, 1905493. [Google Scholar] [CrossRef]
- Li, Q.; Guo, H.; Yang, J.; Zhao, W.; Zhu, Y.; Sui, X.; Xu, T.; Zhang, J.; Zhang, L. MOF-Based Antibiofouling Hemoadsorbent for Highly Efficient Removal of Protein-Bound Bilirubin. Langmuir 2020, 36, 8753–8763. [Google Scholar] [CrossRef]
- He, B.; Yang, J.; Liu, Y.; Xie, X.; Hao, H.; Xing, X.; Liu, W. An in Situ-Forming Polyzwitterion Hydrogel: Towards Vitreous Substitute Application. Bioact. Mater. 2021, 6, 3085–3096. [Google Scholar] [CrossRef]
- Ruseva, K.; Todorova, K.; Zhivkova, T.; Milcheva, R.; Ivanov, D.; Dimitrov, P.; Alexandrova, R.; Vassileva, E. Novel Triple Stimuli Responsive Interpenetrating Poly(Carboxybetaine Methacrylate)/Poly(Sulfobetaine Methacrylate) Network. Gels 2023, 9, 90. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Du, Y.; Hu, G.; Zhang, L. Poly(Carboxybetaine Methacrylate)-Functionalized Magnetic Composite Particles: A Biofriendly Support for Lipase Immobilization. Int. J. Biol. Macromol. 2018, 107, 2660–2666. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Emmons, E.; Song, J. A Comparative Study of Zwitterionic Ligands-Mediated Mineralization and the Potential of Mineralized Zwitterionic Matrices for Bone Tissue Engineering. J. Mater. Chem. B 2014, 2, 7524–7533. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhu, W.; Ma, Y.; Zheng, H.; Zhang, X.; Li, D.; Pu, Z. A Flexible Glucose Biosensor Modified by Reduced-Swelling and Conductive Zwitterionic Hydrogel Enzyme Membrane. Anal. Bioanal. Chem. 2024, 416, 4849–4860. [Google Scholar] [CrossRef]
- Zeng, J.; Chen, H.; Dong, L.; Guo, X. Anti-Polyelectrolyte Effect of Zwitterionic Hydrogel Electrolytes Enabling High-Voltage Zinc-Ion Hybrid Capacitors. Adv. Funct. Mater. 2024, 34, 2314651. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Li, Y.; Zheng, W.; Liu, M.; Zhu, Y.; Sui, X.; Zhang, X.; Han, Q.; Lin, Y.; et al. A Zwitterionic Hydrogel Coated Titanium Surface with High-Efficiency Endothelial Cell Selectivity for Rapid Re-Endothelialization. Biomater. Sci. 2020, 8, 5441–5451. [Google Scholar] [CrossRef]
- Chien, H.W.; Fu, S.W.; Shih, A.Y.; Tsai, W.B. Modulation of the Stemness and Osteogenic Differentiation of Human Mesenchymal Stem Cells by Controlling RGD Concentrations of Poly(Carboxybetaine) Hydrogel. Biotechnol. J. 2014, 9, 1613–1623. [Google Scholar] [CrossRef]
- Chien, H.W.; Wu, J.C.; Chang, Y.C.; Tsai, W.B. Polycarboxybetaine-Based Hydrogels for the Capture and Release of Circulating Tumor Cells. Gels 2022, 8, 391. [Google Scholar] [CrossRef]
- Birkner, M.; Ulbricht, M. Ultrafiltration Membranes with Markedly Different PH- and Ion-Responsivity by Photografted Zwitterionic Polysulfobetain or Polycarbobetain. J. Memb. Sci. 2015, 494, 57–67. [Google Scholar] [CrossRef]
- Zhang, Z.; Chao, T.; Chen, S.; Jiang, S. Superlow Fouling Sulfobetaine and Carboxybetaine Polymers on Glass Slides. Langmuir 2006, 22, 10072–10077. [Google Scholar] [CrossRef]
- Zhang, Z.; Vaisocherová, H.; Cheng, G.; Yang, W.; Xue, H.; Jiang, S. Nonfouling Behavior of Polycarboxybetaine-Grafted Surfaces: Structural and Environmental Effects. Biomacromolecules 2008, 9, 2686–2692. [Google Scholar] [CrossRef]
- Ladd, J.; Zhang, Z.; Chen, S.; Hower, J.C.; Jiang, S. Zwitterionic Polymers Exhibiting High Resistance to Nonspecific Protein Adsorption from Human Serum and Plasma. Biomacromolecules 2008, 9, 1357–1361. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, M.; Chen, S.; Horbett, T.A.; Ratner, B.D.; Jiang, S. Blood Compatibility of Surfaces with Superlow Protein Adsorption. Biomaterials 2008, 29, 4285–4291. [Google Scholar] [CrossRef]
- Emmenegger, C.R.; Brynda, E.; Riedel, T.; Sedlakova, Z.; Houska, M.; Alles, A.B. Interaction of Blood Plasma with Antifouling Surfaces. Langmuir 2009, 25, 6328–6333. [Google Scholar] [CrossRef]
- Cheng, G.; Li, G.; Xue, H.; Chen, S.; Bryers, J.D.; Jiang, S. Zwitterionic Carboxybetaine Polymer Surfaces and Their Resistance to Long-Term Biofilm Formation. Biomaterials 2009, 30, 5234–5240. [Google Scholar] [CrossRef]
- Brault, N.D.; Gao, C.; Xue, H.; Piliarik, M.; Homola, J.; Jiang, S.; Yu, Q. Ultra-Low Fouling and Functionalizable Zwitterionic Coatings Grafted onto SiO2 via a Biomimetic Adhesive Group for Sensing and Detection in Complex Media. Biosens. Bioelectron. 2010, 25, 2276–2282. [Google Scholar] [CrossRef] [PubMed]
- Von Muhlen, M.G.; Brault, N.D.; Knudsen, S.M.; Jiang, S.; Manalis, S.R. Label-Free Biomarker Sensing in Undiluted Serum with Suspended Microchannel Resonators. Anal. Chem. 2010, 82, 1905–1910. [Google Scholar] [CrossRef] [PubMed]
- Krause, J.E.; Brault, N.D.; Li, Y.; Xue, H.; Zhou, Y.; Jiang, S. Photoiniferter-Mediated Polymerization of Zwitterionic Carboxybetaine Monomers for Low-Fouling and Functionalizable Surface Coatings. Macromolecules 2011, 44, 9213–9220. [Google Scholar] [CrossRef]
- Mahmud, G.; Huda, S.; Yang, W.; Kandere-Grzybowska, K.; Pilans, D.; Jiang, S.; Grzybowski, B.A. Carboxybetaine Methacrylate Polymers Offer Robust, Long-Term Protection against Cell Adhesion. Langmuir 2011, 27, 10800–10804. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Li, G.; Jiang, Y.; Zhang, Y.; Zou, J.J.; Wang, L.; Zhang, X. Silver-Zwitterion Organic-Inorganic Nanocomposite with Antimicrobial and Antiadhesive Capabilities. Langmuir 2013, 29, 3773–3779. [Google Scholar] [CrossRef]
- Kirk, J.T.; Brault, N.D.; Baehr-Jones, T.; Hochberg, M.; Jiang, S.; Ratner, D.M. Zwitterionic Polymer-Modified Silicon Microring Resonators for Label-Free Biosensing in Undiluted Human Plasma. Biosens. Bioelectron. 2013, 42, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Liu, S.; Bai, T.; Keefe, A.J.; Zhang, L.; Ella-Menye, J.R.; Li, Y.; Jiang, S. Poly(Carboxybetaine) Nanomaterials Enable Long Circulation and Prevent Polymer-Specific Antibody Production. Nano Today 2014, 9, 10–16. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, X.; Brault, N.D.; Keefe, A.J.; Han, X.; Deng, Y.; Xu, J.; Yu, Q.; Jiang, S. Cellulose Paper Sensors Modified with Zwitterionic Poly(Carboxybetaine) for Sensing and Detection in Complex Media. Anal. Chem. 2014, 86, 2871–2875. [Google Scholar] [CrossRef]
- Wang, H.; Yue, G.; Dong, C.; Wu, F.; Wei, J.; Yang, Y.; Zou, Z.; Wang, L.; Qian, X.; Zhang, T.; et al. Carboxybetaine Methacrylate-Modified Nylon Surface for Circulating Tumor Cell Capture. ACS Appl. Mater. Interfaces. 2014, 6, 4550–4559. [Google Scholar] [CrossRef]
- Chen, K.; Hu, F.; Gu, H.; Xu, H. Tuning of Surface Protein Adsorption by Spherical Mixed Charged Silica Brushes (MCB) with Zwitterionic Carboxybetaine Component. J. Mater. Chem. B 2017, 5, 435–443. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, Y. Poly(Carboxybetaine Methacrylate)-Grafted Silica Nanoparticle: A Novel Carrier for Enzyme Immobilization. Biochem. Eng. J. 2018, 132, 122–129. [Google Scholar] [CrossRef]
- Wang, J.; Hui, N. Zwitterionic Poly(Carboxybetaine) Functionalized Conducting Polymer Polyaniline Nanowires for the Electrochemical Detection of Carcinoembryonic Antigen in Undiluted Blood Serum. Bioelectrochemistry 2019, 125, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Ukita, R.; Wu, K.; Lin, X.; Carleton, N.M.; Naito, N.; Lai, A.; Do-Nguyen, C.C.; Demarest, C.T.; Jiang, S.; Cook, K.E. Zwitterionic Poly-Carboxybetaine Coating Reduces Artificial Lung Thrombosis in Sheep and Rabbits. Acta Biomater. 2019, 92, 71–81. [Google Scholar] [CrossRef]
- Qiao, Z.; Yao, Y.; Song, S.; Yin, M.; Yang, M.; Yan, D.; Yang, L.; Luo, J. Gold Nanorods with Surface Charge-Switchable Activities for Enhanced Photothermal Killing of Bacteria and Eradication of Biofilm. J. Mater. Chem. B 2020, 8, 3138–3149. [Google Scholar] [CrossRef] [PubMed]
- Naito, N.; Ukita, R.; Wilbs, J.; Wu, K.; Lin, X.; Carleton, N.M.; Roberts, K.; Jiang, S.; Heinis, C.; Cook, K.E. Combination of Polycarboxybetaine Coating and Factor XII Inhibitor Reduces Clot Formation While Preserving Normal Tissue Coagulation during Extracorporeal Life Support. Biomaterials 2021, 272, 120778. [Google Scholar] [CrossRef]
- Christau, S.; López Ruiz, A.; Habibi, N.; Witte, J.; Bannon, M.S.; McEnnis, K.; Lahann, J. Macrophage-Targeting Poly(Lactide-Co-Glycolic Acid) Nanoparticles Decorated with Multifunctional Brush Polymers. Part. Part. Syst. Charact. 2022, 39, 2100284. [Google Scholar] [CrossRef]
- He, Y.; Shao, Q.; Tsao, H.K.; Chen, S.; Goddard, W.A.; Jiang, S. Understanding Three Hydration-Dependent Transitions of Zwitterionic Carboxybetaine Hydrogel by Molecular Dynamics Simulations. J. Phys. Chem. B 2011, 115, 11575–11580. [Google Scholar] [CrossRef]
- He, Y.; Tsao, H.K.; Jiang, S. Improved Mechanical Properties of Zwitterionic Hydrogels with Hydroxyl Groups. J. Phys. Chem. B 2012, 116, 5766–5770. [Google Scholar] [CrossRef]
- Shao, Q.; Jiang, S. Effect of Carbon Spacer Length on Zwitterionic Carboxybetaines. J. Phys. Chem. B 2013, 117, 1357–1366. [Google Scholar] [CrossRef]
- Shao, Q.; Mi, L.; Han, X.; Bai, T.; Liu, S.; Li, Y.; Jiang, S. Differences in Cationic and Anionic Charge Densities Dictate Zwitterionic Associations and Stimuli Responses. J. Phys. Chem. B 2014, 118, 6956–6962. [Google Scholar] [CrossRef]
- Zhu, H.; Li, L.; Shen, J. Molecular Dynamics Simulations Suggest Conformational and Hydration Difference between Zwitterionic Poly (Carboxybetaine Methacrylate) and Poly (Ethylene Glycol). Chem. Phys. 2020, 532, 110599. [Google Scholar] [CrossRef]
- Kaupbayeva, B.; Boye, S.; Munasinghe, A.; Murata, H.; Matyjaszewski, K.; Lederer, A.; Colina, C.M.; Russell, A.J. Molecular Dynamics-Guided Design of a Functional Protein-ATRP Conjugate That Eliminates Protein-Protein Interactions. Bioconjug. Chem. 2021, 32, 821–832. [Google Scholar] [CrossRef] [PubMed]
Monomer | Yield | Synthesis Notes/Purification | Solubility Profile | Stability/pH Responsiveness | Ref. |
---|---|---|---|---|---|
CBMA(2) | 88% [24]; ~75% [25] | Prepared by reaction of DMAEMA with β-propiolactone (Liaw et al.) [24]; acrylic acid and 4-methoxyphenol in acetone [25]; purified by precipitation/solvent washing | Water, alcohols, DMSO; slightly soluble in DMF and dimethylacetamide | Stable under neutral conditions; hydrolyzes under strong acidic/basic environments (as a betaine structure) | Liaw et al. [24], Lin et al. [25] |
t-BuCBMA | 96% | Reaction of DMAEMA with tert-butyl bromoacetate in acetonitrile; product precipitated with ether and dried | Acetonitrile, DMF, and water | Stable in organic solvents; tert-butyl ester groups quantitatively hydrolyzed by TFA within 1 h to yield CBMA(1) | Cao et al. [26] |
CBMA(1) | - | Can be obtained by hydrolysis of t-BuCBMA or CBMA-EE using TFA, followed by ion-exchange resin purification | Water, slightly soluble in acetonitrile | Zwitterionic form with C1 spacer; stable under neutral aqueous conditions | Mai et al. [27] |
CBMA-OH | 96% | Prepared from sarcosine tert-butyl ester + glycidyl methacrylate and then TFA deprotection; purified by ether precipitation | TFA, H2O, and TFA/acetonitrile | pH-responsive: open form (CBMA-OH) ↔ closed lactone (CBMA-Ring); ultralow protein adsorption from plasma | Cao et al. [28] |
CBMA-EE | ~90% | Reaction of ethyl bromoacetate with DMAEMA in acetonitrile; precipitated and washed with ether | Acetonitrile, DMF; less soluble in water before hydrolysis | Hydrolyzes in aqueous or basic conditions to zwitterionic CBMA(1) | Cheng et al. [29] |
CBMA-EE SA | ~90% | Anion exchange: bromide counter-ion replaced with salicylate using sodium salicylate | Water, ethanol/water, and ethylene glycol | Hydrolyzes to zwitterionic CBMA(1) and releases salicylate as antimicrobial; provides dual nonfouling + bactericidal function | Cheng et al. [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sentoukas, T.; Walach, W.; Filipek, K.; Trzebicka, B. Zwitterionic Poly(Carboxybetaine Methacrylate)s in Drug Delivery, Antifouling Coatings, and Regenerative Tissue Platforms. Materials 2025, 18, 4514. https://doi.org/10.3390/ma18194514
Sentoukas T, Walach W, Filipek K, Trzebicka B. Zwitterionic Poly(Carboxybetaine Methacrylate)s in Drug Delivery, Antifouling Coatings, and Regenerative Tissue Platforms. Materials. 2025; 18(19):4514. https://doi.org/10.3390/ma18194514
Chicago/Turabian StyleSentoukas, Theodore, Wojciech Walach, Katarzyna Filipek, and Barbara Trzebicka. 2025. "Zwitterionic Poly(Carboxybetaine Methacrylate)s in Drug Delivery, Antifouling Coatings, and Regenerative Tissue Platforms" Materials 18, no. 19: 4514. https://doi.org/10.3390/ma18194514
APA StyleSentoukas, T., Walach, W., Filipek, K., & Trzebicka, B. (2025). Zwitterionic Poly(Carboxybetaine Methacrylate)s in Drug Delivery, Antifouling Coatings, and Regenerative Tissue Platforms. Materials, 18(19), 4514. https://doi.org/10.3390/ma18194514