Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = polyester core

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 11780 KB  
Article
Additive Manufacturing of Carbon Fiber Cores for Sandwich Structures: Optimization of Infill Patterns and Fiber Orientation for Improved Impact Resistance
by Claudio Tosto, Lorena Saitta, Ignazio Blanco, Gabriele Fichera, Mattia Evangelista, Jerin Jose, Alessia Pantaleoni and Irene Bavasso
J. Manuf. Mater. Process. 2025, 9(9), 299; https://doi.org/10.3390/jmmp9090299 - 1 Sep 2025
Viewed by 1190
Abstract
Carbon fiber-reinforced composites (CFRCs) are widely used in aerospace, automotive, and defense applications due to their high strength-to-weight ratio and excellent mechanical performance. In this study, cores and sandwich panels were fabricated via fused filament fabrication (FFF) using co-polyester filaments reinforced with 20 [...] Read more.
Carbon fiber-reinforced composites (CFRCs) are widely used in aerospace, automotive, and defense applications due to their high strength-to-weight ratio and excellent mechanical performance. In this study, cores and sandwich panels were fabricated via fused filament fabrication (FFF) using co-polyester filaments reinforced with 20 wt.% short carbon fibers. The mechanical response of the structures was evaluated under low-velocity impact (LVI) conditions using instrumented drop weight testing at energy levels ranging from 2 to 20 J. A three-factor, three-level full factorial experimental design was employed, considering build orientation (flat vs. upright), infill pattern (trihexagonal vs. triangular), and impact energy as factors. The maximum contact force was selected as the primary response variable. The results revealed that upright-printed specimens exhibited significantly improved impact resistance compared to flat-printed ones, with increases in peak force of up to 28% for cores and over 68% for sandwich structures. Among the tested infill geometries, the triangular pattern outperformed the trihexagonal one across all configurations and energy levels. The combination of upright orientation and triangular infill proved to be the most effective, providing enhanced energy absorption and reduced rear-side damage, especially under higher impact energies. These findings offer valuable insights into the design of lightweight, impact-resistant structures produced by additive manufacturing, with direct implications for structural components in demanding engineering environments. Full article
Show Figures

Graphical abstract

24 pages, 11911 KB  
Article
Development of a Modular Sandwich Panel with a Composite Core of Recycled Material for Application in Sustainable Building
by Juan José Valenzuela Expósito, Elena Picazo Camilo and Francisco Antonio Corpas Iglesias
Polymers 2024, 16(24), 3604; https://doi.org/10.3390/polym16243604 - 23 Dec 2024
Cited by 6 | Viewed by 2313
Abstract
In recent years, the construction industry has faced challenges related to rising material costs, labor shortages and environmental sustainability, resulting in an increased interest in modular construction cores composed of recycled materials, such as XPS, PUR, PLW and GFRP, from waste from the [...] Read more.
In recent years, the construction industry has faced challenges related to rising material costs, labor shortages and environmental sustainability, resulting in an increased interest in modular construction cores composed of recycled materials, such as XPS, PUR, PLW and GFRP, from waste from the truck body industry. Two resins, PUR and polyester, were used to bond these recycled composites. Physical, chemical and mechanical analyses showed that the panels formed with PUR resin had superior workability due to the higher open time of the resin, 11.3% better thermal conductivity than the commercial PLW panel (SP-PLW) and reduced porosity compared to those using polyester resin. The mechanical performance of the panels improved with higher structural reinforcement content (PLW and GFRP). Compared to a commercial panel (SP-PLW), the SP-RCM1 recycled panel showed 4% higher performance, demonstrating its potential for sustainable building applications. Thermal and microscopic characterizations showed good adhesion of the materials in the best performing formulations related to higher thermal stability. Therefore, this research aims to demonstrate the feasibility of using waste from the car industry in the manufacture of sandwich panels for modular construction to address these issues. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

18 pages, 7800 KB  
Article
Demonstrating the Efficacy of Core-Shell Silica Catalyst in Depolymerizing Polycarbonate
by Onofrio Losito, Pasquale Pisani, Alessia De Cataldo, Cosimo Annese, Marina Clausi, Roberto Comparelli, Daniela Pinto and Lucia D’Accolti
Polymers 2024, 16(22), 3209; https://doi.org/10.3390/polym16223209 - 19 Nov 2024
Cited by 1 | Viewed by 1845
Abstract
Polycarbonate (PC) is a highly versatile plastic material that is extensively utilized across various industries due to its superior properties, including high impact strength and heat resistance. However, its durability presents significant challenges for recycling and waste management. Polycarbonate is a thermoplastic polymer [...] Read more.
Polycarbonate (PC) is a highly versatile plastic material that is extensively utilized across various industries due to its superior properties, including high impact strength and heat resistance. However, its durability presents significant challenges for recycling and waste management. Polycarbonate is a thermoplastic polymer representative of the class of condensation reaction polymers obtained from the reaction of bisphenol A (BPA) and a carbonyl source, such as phosgene or alkyl and aryl carbonate. The recycling processes for PC waste include mechanical recycling, blending with other materials, pyrolysis, and chemical recycling. The latter is based on the cleavage of carbonate units to their corresponding monomers or derivatives through alcoholysis and/or hydrolysis and ammonolysis, normally under basic conditions and without catalysts. This study investigates the efficacy of the use of several heterogeneous catalysts based on silica gel as a robust support, including Sc(III)silicate (thortveitite), which has been previously reported for the preparation of polyesters, core-shell Si-ILs, and core-shell Si-ILs-ZnO, which has never been used before in the depolymerization of polycarbonate, proposing a sustainable and efficient method for recycling this valuable polymer. We chose to explore core-shell catalysts because these catalysts are robust and recyclable, and have been used in very harsh industrial processes. The core-shell silica catalysts used in this study were characterized by XRD; SEM_EDX, FT-IR, and ICP-OES analysis. In our experimental protocol, polycarbonate samples were exposed to the catalyst under controlled conditions (60–150 °C, for 12–24 h) using both oxygen and nitrogen nucleophiles. The depolymerization process was systematically monitored using advanced analytical techniques (GC/MS and GPC chromatography). The experimental results indicated that core-shell silica catalyst exhibits high efficacy, with up to 75% yield for the ammonolysis reaction, producing monomers of high purity. These monomers can be reused for the synthesis of new polycarbonate materials, contributing to a more sustainable approach to polycarbonate recycling. Full article
(This article belongs to the Special Issue Chemical Recycling of Polymers)
Show Figures

Graphical abstract

17 pages, 4956 KB  
Article
Evaluation of the UV Protection Properties of Para-Aramid Woven Fabrics with Various Specialty Core Yarns
by Klara Kostajnšek, Matejka Bizjak, Gözde Ertekin and Mustafa Ertekin
Polymers 2024, 16(21), 3090; https://doi.org/10.3390/polym16213090 - 31 Oct 2024
Viewed by 2163
Abstract
Para-aramid fibers, known for their remarkable strength and thermal stability, are frequently employed in protective textiles for military and aerospace applications. However, continuous exposure to ultraviolet (UV) radiation can damage their protective characteristics. This study analyzes the ultraviolet protection factor (UPF) and UV [...] Read more.
Para-aramid fibers, known for their remarkable strength and thermal stability, are frequently employed in protective textiles for military and aerospace applications. However, continuous exposure to ultraviolet (UV) radiation can damage their protective characteristics. This study analyzes the ultraviolet protection factor (UPF) and UV transmittance of woven fabrics produced from 30/2 Ne spun para-aramid yarns in the warp and 10 Ne core-spun yarns in the weft. The weft yarns consisted of three sheath fibers—para-aramid, meta-aramid, and polyester—in combination with different specialty core materials. The results show significant differences in UPF before and after UV exposure, with para-aramid sheaths giving the highest improvement. UV exposure caused structural changes in the fibers, resulting in increased UV protection, particularly in fabrics with para-aramid sheaths. This study concludes that the combination of para-aramid fibers with specific core materials significantly enhances UV protection, making them well-suited for applications in high UV exposure environments. Full article
(This article belongs to the Special Issue Advanced Study on Polymer-Based Textiles)
Show Figures

Graphical abstract

19 pages, 9194 KB  
Article
High-Velocity Impact Performance of Ballistic Fabric Using Core-Spun Compound Yarns
by Dan Yang, Shengdong Liu, Weitian Zhang, Qian Liu, Gaozheng Yao and Kai Zhu
Polymers 2024, 16(21), 2973; https://doi.org/10.3390/polym16212973 - 23 Oct 2024
Cited by 4 | Viewed by 1216
Abstract
In this paper, the usage of core-spun compound yarns in ballistic fabric to improve ballistic performance is considered, as with the use of core-spun compound yarns, the yarn friction inside the fabric is enhanced, and, therefore, the energy absorption capability of the fabric [...] Read more.
In this paper, the usage of core-spun compound yarns in ballistic fabric to improve ballistic performance is considered, as with the use of core-spun compound yarns, the yarn friction inside the fabric is enhanced, and, therefore, the energy absorption capability of the fabric is expected to increase. Three types of fabric were developed and compared. Fa refers to a woven type made with 100% Kevlar® filament yarns. Fb was woven with core-spun compound aramid yarns, which were made of Kevlar® filament yarns spun with staple aramid fiber. Fc was woven with core-spun compound polyester yarns, which were made of Kevlar® filament yarns spun with staple polyester fiber. There were two main purposes for comparing these types. The first was to confirm if the ballistic performance could be improved with the usage of core-spun compound yarns instead of pure filament yarns. The second was to investigate if different compositions of spun fiber would influence ballistic performance. The research results are positive and quite interesting. They show that the usage of core-spun compound yarn could indeed help to increase ballistic performance and that core-spun compound aramid yarns are better than core-spun compound polyester yarns in this function. The research was carried out using both ballistic tests and FEA models. Full article
(This article belongs to the Special Issue Polymer-Based Composite Structures and Mechanical Metamaterials)
Show Figures

Figure 1

17 pages, 1488 KB  
Article
A Comparative Analysis of Denim Fabric Performances from Cotton/Polyester Blended Rigid and Stretched Yarns
by Md Abul Shahid, Neslihan Okyay and Osman Babaarslan
Fibers 2024, 12(10), 86; https://doi.org/10.3390/fib12100086 - 9 Oct 2024
Cited by 4 | Viewed by 3836
Abstract
Cotton and polyester fiber blends are commonly used to improve the aesthetic features of finished items. The denim industry’s growing need for polyester fiber aids in analyzing the performance of denim fabrics woven from rigid and stretched weft yarn combined with cotton and [...] Read more.
Cotton and polyester fiber blends are commonly used to improve the aesthetic features of finished items. The denim industry’s growing need for polyester fiber aids in analyzing the performance of denim fabrics woven from rigid and stretched weft yarn combined with cotton and polyester. This study evaluates the weight, dimensional changes, stiffness, tensile and tearing strength, stretch, and comfort properties of denim fabric woven from cotton and polyester in various blended ratios. Here, Ne 14/1 (42 tex) 100% cotton warp yarn and Ne 18/1 (33 tex) weft yarns, consisting of 100% cotton, 75/25, 50/50, and 25/75 cotton/polyester (CO/PES) blends, as well as 100% polyester, were used to produce 3/1 Z twill denim fabric. The weft yarns were categorized into three groups: rigid, core-spun, and dual-core-spun yarns. Experimental results showed a higher polyester content in weft yarn, and denim fabrics’ tensile and tearing strength was improved, whereas fabrics’ weight loss, dimensional changes, and stretch properties were reduced. Furthermore, different statistical analyses were conducted to evaluate the type of weft yarn and blending ratio interaction and correlation with fabric properties. Additionally, a regression model was developed with the weft yarn type and blending ratio as independent variables to predict the fabric properties. Full article
Show Figures

Figure 1

21 pages, 8190 KB  
Article
Effect of Melamine Formaldehyde Resin Encapsulated UV Acrylic Resin Primer Microcapsules on the Properties of UV Primer Coating
by Yuming Zou, Yongxin Xia and Xiaoxing Yan
Polymers 2024, 16(16), 2308; https://doi.org/10.3390/polym16162308 - 15 Aug 2024
Cited by 11 | Viewed by 1772
Abstract
Ultra-Violet (UV) coatings are widely adaptable of substrates and produce low emissions of volatile organic compounds. UV coatings can extend service life by adding self-healing microcapsules that restore integrity after sustaining damage. In this study, UV coating was used as a core material; [...] Read more.
Ultra-Violet (UV) coatings are widely adaptable of substrates and produce low emissions of volatile organic compounds. UV coatings can extend service life by adding self-healing microcapsules that restore integrity after sustaining damage. In this study, UV coating was used as a core material; microcapsules were produced and added to the UV coating to enhance its self-healing property, providing a good protection for both the UV coating and the substrate. UV primer microcapsules were prepared with UV primer as the core material and melamine formaldehyde resin as the wall material. The UV primer containing more than 98.0% solids content was mainly composed of epoxy acrylic resin, polyester acrylic resin, trihydroxy methacrylate, trimethyl methacrylate, and photo initiator. The preparation process of the UV primer microcapsules was optimized. Further, the UV coating was prepared with better UV primer microcapsules, and the effects of the UV primer microcapsules alongside the comprehensive properties of the coating were studied. The best preparation process for the UV primer microcapsules was as follows: the wall-core mass ratio was 1:0.50, Triton X-100 and Span-20 as emulsifiers with an HLB value of 10.04, the microcapsule reaction temperature was 70 °C, and the reaction time of the was 3.0 h. When the quantity of the UV primer microcapsules increased in the coating, color difference ΔE of the coating increased, gloss decreased, transmittance decreased, elongation at break increased and then decreased, roughness increased, and self-healing rate first increased and then decreased. When the addition of the UV primer microcapsules reached 2.0%, the color difference ΔE of the coating was 1.71, the gloss was 106.63 GU, the transmittance was 78.80%, the elongation at break was 3.62%, the roughness was 0.204 μm, and the self-healing rate was 28.56%, which were the best comprehensive properties of the UV primer. To improve the comprehensive properties of the UV coatings, the UV coatings were modified by a microcapsule technology, which gave the UV coatings a better self-healing property. The application range of microcapsules for the UV coatings was broadened. Based on the previous research of microcapsules in UV coatings, the results further refined the study of the effects of adding self-healing microcapsules to UV coatings using the UV coating itself as the core material. Full article
(This article belongs to the Special Issue Recent Advances in Polymer Composites for Functional Applications)
Show Figures

Figure 1

17 pages, 6715 KB  
Article
PEGylated Micro/Nanoparticles Based on Biodegradable Poly(Ester Amides): Preparation and Study of the Core–Shell Structure by Synchrotron Radiation-Based FTIR Microspectroscopy and Electron Microscopy
by Davit Makharadze, Temur Kantaria, Ibraheem Yousef, Luis J. del Valle, Ramaz Katsarava and Jordi Puiggalí
Int. J. Mol. Sci. 2024, 25(13), 6999; https://doi.org/10.3390/ijms25136999 - 26 Jun 2024
Cited by 9 | Viewed by 3043
Abstract
Surface modification of drug-loaded particles with polyethylene glycol (PEG) chains is a powerful tool that promotes better transport of therapeutic agents, provides stability, and avoids their detection by the immune system. In this study, we used a new approach to synthesize a biodegradable [...] Read more.
Surface modification of drug-loaded particles with polyethylene glycol (PEG) chains is a powerful tool that promotes better transport of therapeutic agents, provides stability, and avoids their detection by the immune system. In this study, we used a new approach to synthesize a biodegradable poly(ester amide) (PEA) and PEGylating surfactant. These were employed to fabricate micro/nanoparticles with a core–shell structure. Nanoparticle (NP)-protein interactions and self-assembling were subsequently studied by synchrotron radiation-based FTIR microspectroscopy (SR-FTIRM) and transmission electron microscopy (TEM) techniques. The core–shell structure was identified using IR absorption bands of characteristic chemical groups. Specifically, the stretching absorption band of the secondary amino group (3300 cm−1) allowed us to identify the poly(ester amide) core, while the band at 1105 cm−1 (C-O-C vibration) was useful to demonstrate the shell structure based on PEG chains. By integration of absorption bands, a 2D intensity map of the particle was built to show a core–shell structure, which was further supported by TEM images. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

5 pages, 2284 KB  
Proceeding Paper
Simulation of Thermal–Electrical and Mechanical Behavior of Conductive Yarns
by Kirsten Weide-Zaage and Yuankai Huang
Eng. Proc. 2023, 52(1), 17; https://doi.org/10.3390/engproc2023052017 - 18 Jan 2024
Viewed by 985
Abstract
The reliability of conductive yarns used for textiles is, among other things, affected by washing and sweating as well as mechanical issues. This leads to corrosion of the metal surface and to breaks. The aim of this work was to gain a better [...] Read more.
The reliability of conductive yarns used for textiles is, among other things, affected by washing and sweating as well as mechanical issues. This leads to corrosion of the metal surface and to breaks. The aim of this work was to gain a better understanding of the influence of different materials (metal as well as non-conductive cores) on electrical behavior and material loss. Different yarns coated with copper, silver, NiCu and NiCuCo with nylon or polyester cores were investigated. The coating thickness as well as the grain distribution was modified. The temperature distribution, the displacements and the vacancy concentration in the metal grains were determined. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, E-Textiles 2023)
Show Figures

Figure 1

13 pages, 2077 KB  
Article
Enhancing Sustainability: Jute Fiber-Reinforced Bio-Based Sandwich Composites for Use in Battery Boxes
by Mina Arya, Else-Marie Malmek, Thomas Koch Ecoist, Jocke Pettersson, Mikael Skrifvars and Pooria Khalili
Polymers 2023, 15(18), 3842; https://doi.org/10.3390/polym15183842 - 21 Sep 2023
Cited by 12 | Viewed by 3295
Abstract
The rising industrial demand for environmentally friendly and sustainable materials has shifted the attention from synthetic to natural fibers. Natural fibers provide advantages like affordability, lightweight nature, and renewability. Jute fibers’ substantial production potential and cost-efficiency have propelled current research in this field. [...] Read more.
The rising industrial demand for environmentally friendly and sustainable materials has shifted the attention from synthetic to natural fibers. Natural fibers provide advantages like affordability, lightweight nature, and renewability. Jute fibers’ substantial production potential and cost-efficiency have propelled current research in this field. In this study, the mechanical behavior (tensile, flexural, and interlaminar shear properties) of plasma-treated jute composite laminates and the flexural behavior of jute fabric-reinforced sandwich composites were investigated. Non-woven mat fiber (MFC), jute fiber (JFC), dried jute fiber (DJFC), and plasma-treated jute fiber (TJFC) composite laminates, as well as sandwich composites consisting of jute fabric bio-based unsaturated polyester (UPE) composite as facing material and polyethylene terephthalate (PET70 and PET100) and polyvinyl chloride (PVC) as core materials were fabricated to compare their functional properties. Plasma treatment of jute composite laminate had a positive effect on some of the mechanical properties, which led to an improvement in Young’s modulus (7.17 GPa) and tensile strength (53.61 MPa) of 14% and 8.5%, respectively, as well as, in flexural strength (93.71 MPa) and flexural modulus (5.20 GPa) of 24% and 35%, respectively, compared to those of JFC. In addition, the results demonstrated that the flexural properties of jute sandwich composites can be significantly enhanced by incorporating PET100 foams as core materials. Full article
Show Figures

Figure 1

11 pages, 3112 KB  
Article
Health Monitoring System from Pyralux Copper-Clad Laminate Film and Random Forest Algorithm
by Chi Cuong Vu, Jooyong Kim and Thanh-Hai Nguyen
Micromachines 2023, 14(9), 1726; https://doi.org/10.3390/mi14091726 - 1 Sep 2023
Cited by 2 | Viewed by 2081
Abstract
Sensor technologies have been core features for various wearable electronic products for decades. Their functions are expected to continue to play an essential role in future generations of wearable products. For example, trends in industrial, military, and security applications include smartwatches used for [...] Read more.
Sensor technologies have been core features for various wearable electronic products for decades. Their functions are expected to continue to play an essential role in future generations of wearable products. For example, trends in industrial, military, and security applications include smartwatches used for monitoring medical indicators, hearing devices with integrated sensor options, and electronic skins. However, many studies have focused on a specific area of the system, such as manufacturing processes, data analysis, or actual testing. This has led to challenges regarding the reliability, accuracy, or connectivity of components in the same wearable system. There is an urgent need for studies that consider the whole system to maximize the efficiency of soft sensors. This study proposes a method to fabricate a resistive pressure sensor with high sensitivity, resilience, and good strain tolerance for recognizing human motion or body signals. Herein, the sensor electrodes are shaped on a thin Pyralux film. A layer of microfiber polyesters, coated with carbon nanotubes, is used as the bearing and pressure sensing layer. Our sensor shows superior capabilities in respiratory monitoring. More specifically, the sensor can work in high-humidity environments, even when immersed in water—this is always a big challenge for conventional sensors. In addition, the embedded random forest model, built for the application to recognize restoration signals with high accuracy (up to 92%), helps to provide a better overview when placing flexible sensors in a practical system. Full article
Show Figures

Figure 1

16 pages, 18271 KB  
Article
Development and Characterization of Hybrid, Temperature Sensing and Heating Yarns with Color Change
by Theresa Junge, Rike Brendgen, Carsten Grassmann, Thomas Weide and Anne Schwarz-Pfeiffer
Sensors 2023, 23(16), 7076; https://doi.org/10.3390/s23167076 - 10 Aug 2023
Cited by 7 | Viewed by 2698
Abstract
A person’s body temperature is an important indicator of their health status. A deviation of that temperature by just 2 °C already has or can lead to serious consequences, such as fever or hypothermia. Hence, the development of a temperature-sensing and heatable yarn [...] Read more.
A person’s body temperature is an important indicator of their health status. A deviation of that temperature by just 2 °C already has or can lead to serious consequences, such as fever or hypothermia. Hence, the development of a temperature-sensing and heatable yarn is an important step toward enabling and improving the monitoring and regulation of a person’s body temperature. This technology offers benefits to several industries, such as health care and sports. This paper focuses on the characterization and development of a hybrid yarn, which can measure and visualize temperature changes through a thermoresistive and thermochromic effect. Moreover, the yarn is able to serve as a flexible heating element by connecting to a power source. The structure of the yarn is designed in three layers. Each layer and component ensures the functionality and flexibility of the yarn and additional compatibility with further processing steps. A flexible stainless steel core was used as the heat-sensitive and heat-conducting material. The layer of polyester wrapped around the stainless steel yarn improves the wearing comfort and serves as substrate material for the thermochromic coating. The resulting hybrid yarn has a reproducible sensory function and changes its resistance by 0.15 Ω between 20 and 60 °C for a length of 30 cm. In addition, the yarn has a uniform and reproducible heating power, so that temperature steps can be achieved at a defined length by selecting certain voltages. The thermochromic color change is clearly visible between 28 and 29 °C. Due to its textile structure, the hybrid sensory and actuating yarn can easily be incorporated into a woven fabric or into a textile by means of joining technology sewing. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

12 pages, 2085 KB  
Article
Development of Mosquito-Repellent Camouflage Fabric Using Eucalyptus Oil with Moringa oleifera Gum
by Faiza Anwar, Mudassar Abbas, Mumtaz Hasan Malik, Amna Aziz Cheema, Suniya Tariq, Warda Afzal and Asfandyar Khan
ChemEngineering 2023, 7(4), 64; https://doi.org/10.3390/chemengineering7040064 - 20 Jul 2023
Cited by 8 | Viewed by 5184
Abstract
Military personnel are exposed to several harsh conditions and mosquitos in mountains and wild forests. Mosquito-repellent textiles can help them to cope with such conditions. The present research work established a sustainable approach for fabricating microcapsules from Eucalyptus oil, Moringa oleifera, and [...] Read more.
Military personnel are exposed to several harsh conditions and mosquitos in mountains and wild forests. Mosquito-repellent textiles can help them to cope with such conditions. The present research work established a sustainable approach for fabricating microcapsules from Eucalyptus oil, Moringa oleifera, and Arabic gum via a complex coacervation method. Moringa oleifera and Arabic gums were utilized as the outer shell of the microcapsules, whereas the core part was made of Eucalyptus oil in different concentrations. The military camouflage-printed polyester/cotton (PC) blended fabric was coated with the as-prepared microcapsules using the pad–dry–cure technique. The surface morphology of the microcapsules was examined using an optical microscope and scanning electron microscope (SEM), and the coated fabric’s mosquito-repellent property was investigated using a specified cage test according to a standard testing protocol. The water absorbency and air permeability of the treated samples were also evaluated in order to learn about the comfort properties. The cage test results revealed that the coated fabric had a good tendency to repel the mosquitoes used in the cage test. In addition, the coated fabric showed significant durability even after several rigorous washing cycles. However, the application of microcapsules to the fabric slightly affected the water absorbency and air permeability of the fabric. This study presents a novel sustainable approach for fabricating microcapsules from the mentioned precursors and their application in the field of textiles, particularly for military purposes. Full article
(This article belongs to the Collection Green and Environmentally Sustainable Chemical Processes)
Show Figures

Graphical abstract

14 pages, 4324 KB  
Article
Electrospun Fibers of Biocompatible and Biodegradable Polyesters, Poly(Ethylene Oxide) and Beeswax with Anti-Bacterial and Anti-Fungal Activities
by Selin Kyuchyuk, Dilyana Paneva, Nevena Manolova, Iliya Rashkov, Daniela Karashanova, Mladen Naydenov and Nadya Markova
Materials 2023, 16(13), 4882; https://doi.org/10.3390/ma16134882 - 7 Jul 2023
Cited by 4 | Viewed by 1605
Abstract
Fibrous materials composed of core–sheath fibers from poly(ethylene oxide) (PEO), beeswax (BW) and 5-nitro-8-hydroxyquinoline (NQ) were prepared via the self-organization of PEO and BW during the single-spinneret electrospinning of a homogeneous blend solution of the partners. Additionally, the application of the same approach [...] Read more.
Fibrous materials composed of core–sheath fibers from poly(ethylene oxide) (PEO), beeswax (BW) and 5-nitro-8-hydroxyquinoline (NQ) were prepared via the self-organization of PEO and BW during the single-spinneret electrospinning of a homogeneous blend solution of the partners. Additionally, the application of the same approach enabled the preparation of fibrous materials composed of core–double sheath fibers from PEO, poly(L-lactide) (PLA) and NQ or 5-chloro-7-iodo-8-hydroxyquinoline (CQ), as well as from PEO, poly(ε-caprolactone) (PCL) and NQ. The consecutive selective extraction of BW and of the polyester with hexane and tetrahydrofuran, respectively, evidenced that core–double sheath fibers from PEO/polyester/BW/drug consisted of a PEO core, a polyester inner sheath and a BW outer sheath. In order to evaluate the possibility of the application of fibrous materials from PEO/BW/NQ, PEO/PLA/BW/NQ, PEO/PCL/BW/NQ and PEO/PLA/BW/CQ for plant protection, microbiological studies were performed using both phytopathogenic microorganisms (Pseudomonas corrugata, Fusarium graminearum and Fusarium avenaceum) and beneficial microorganisms (Pseudomonas chlororaphis, Bacillus amyloliquefaciens and Trichoderma asperellum). It was found that the fibrous materials had anti-bacterial and anti-fungal activity against both phytopathogenic and beneficial microorganisms. This is the first report on the activity of fibrous materials loaded with 8-hydroxyquinoline derivatives not only against phytopathogenic but also against beneficial microorganisms that are of importance in agriculture. Full article
Show Figures

Graphical abstract

18 pages, 2134 KB  
Article
Polyester Nanocapsules for Intravenous Delivery of Artemether: Formulation Development, Antimalarial Efficacy, and Cardioprotective Effects In Vivo
by Alessandra Teixeira Vidal-Diniz, Homero Nogueira Guimarães, Giani Martins Garcia, Érika Martins Braga, Sylvain Richard, Andrea Grabe-Guimarães and Vanessa Carla Furtado Mosqueira
Polymers 2022, 14(24), 5503; https://doi.org/10.3390/polym14245503 - 15 Dec 2022
Cited by 6 | Viewed by 2252
Abstract
Artemether (ATM) is an effective antimalarial drug that also has a short half-life in the blood. Furthermore, ATM is also cardiotoxic and is associated with pro-arrhythmogenic risks. We aimed to develop a delivery system enabling the prolonged release of ATM into the blood [...] Read more.
Artemether (ATM) is an effective antimalarial drug that also has a short half-life in the blood. Furthermore, ATM is also cardiotoxic and is associated with pro-arrhythmogenic risks. We aimed to develop a delivery system enabling the prolonged release of ATM into the blood coupled with reduced cardiotoxicity. To achieve this, we prepared polymeric nanocapsules (NCs) from different biodegradable polyesters, namely poly(D,L-lactide) (PLA), poly-ε-caprolactone (PCL), and surface-modified NCs, using a monomethoxi-polyethylene glycol-block-poly(D,L-lactide) (PEG5kDa-PLA45kDa) polymer. Using this approach, we were able to encapsulate high yields of ATM (>85%, 0–4 mg/mL) within the oily core of the NCs. The PCL-NCs exhibited the highest percentage of ATM loading as well as a slow release rate. Atomic force microscopy showed nanometric and spherical particles with a narrow size dispersion. We used the PCL NCs loaded with ATM for biological evaluation following IV administration. As with free-ATM, the ATM-PCL-NCs formulation exhibited potent antimalarial efficacy using either the “Four-day test” protocol (ATM total at the end of the 4 daily doses: 40 and 80 mg/kg) in Swiss mice infected with P. berghei or a single low dose (20 mg/kg) of ATM in mice with higher parasitemia (15%). In healthy rats, IV administration of single doses of free-ATM (40 or 80 mg/kg) prolonged cardiac QT and QTc intervals and induced both bradycardia and hypotension. Repeated IV administration of free-ATM (four IV doses at 20 mg/kg every 12 h for 48 h) also prolonged the QT and QTc intervals but, paradoxically, induced tachycardia and hypertension. Remarkably, the incorporation of ATM in ATM-PCL-NCs reduced all adverse effects. In conclusion, the encapsulation of ATM in biodegradable polyester NCs reduces its cardiovascular toxicity without affecting its antimalarial efficacy. Full article
(This article belongs to the Special Issue Polymeric Nanoparticles for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop