Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = polycrystalline diamond film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4718 KiB  
Article
800 kHz Femtosecond Laser Cleaning of Microwave Plasma Chemical Vapor Deposition Diamond Growth Substrate
by Xiwang Wu and Xin Chen
Crystals 2025, 15(6), 517; https://doi.org/10.3390/cryst15060517 - 28 May 2025
Viewed by 342
Abstract
Microwave Plasma Chemical Vapor Deposition (MPCVD) plays a crucial role in the growth of high-quality diamonds. However, during the MPCVD process, residues such as polycrystalline diamond, and graphite often adhere to the high-temperature growth substrate surfaces, potentially degrading diamond growth quality. To effectively [...] Read more.
Microwave Plasma Chemical Vapor Deposition (MPCVD) plays a crucial role in the growth of high-quality diamonds. However, during the MPCVD process, residues such as polycrystalline diamond, and graphite often adhere to the high-temperature growth substrate surfaces, potentially degrading diamond growth quality. To effectively remove these contaminants and improve the quality of diamond growth, this study employed an 800 kHz femtosecond laser to clean growth substrates with residual deposits. We assessed the effects of multiple cleaning cycles on residue removal from the Foundation Trench Region (FTR) and Inwall Region (IR) and on substrate quality. The results indicate that multiple scans at a laser power of 2.38 W, a repetition rate of 800 kHz, a scanning speed of 1800 mm/s, and a scan spacing of 10 μm significantly removed residues, reduced substrate surface roughness, and restored substrate cleanliness. This approach enhances the quality and efficiency of diamond growth via MPCVD. The application of high-repetition-rate femtosecond laser cleaning techniques for growth substrates significantly improves the quality of regenerated diamond films, providing crucial support for the preparation of high-quality diamond materials. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

36 pages, 10690 KiB  
Article
Novel Amperometric Sensor Based on Glassy Graphene for Flow Injection Analysis
by Ramtin Eghbal Shabgahi, Alexander Minkow, Michael Wild, Dietmar Kissinger and Alberto Pasquarelli
Sensors 2025, 25(8), 2454; https://doi.org/10.3390/s25082454 - 13 Apr 2025
Cited by 1 | Viewed by 647
Abstract
Flow injection analysis (FIA) is widely used in drug screening, neurotransmitter detection, and water analysis. In this study, we investigated the electrochemical sensing performance of glassy graphene electrodes derived from pyrolyzed positive photoresist films (PPFs) via rapid thermal annealing (RTA) on SiO2 [...] Read more.
Flow injection analysis (FIA) is widely used in drug screening, neurotransmitter detection, and water analysis. In this study, we investigated the electrochemical sensing performance of glassy graphene electrodes derived from pyrolyzed positive photoresist films (PPFs) via rapid thermal annealing (RTA) on SiO2/Si and polycrystalline diamond (PCD). Glassy graphene films fabricated at 800, 900, and 950 °C were characterized using Raman spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM) to assess their structural and morphological properties. Electrochemical characterization in phosphate-buffered saline (PBS, pH 7.4) revealed that annealing temperature and substrate type influence the potential window and double-layer capacitance. The voltammetric response of glassy graphene electrodes was further evaluated using the surface-insensitive [Ru(NH3)6]3+/2+ redox marker, the surface-sensitive [Fe(CN)6]3−/4− redox couple, and adrenaline, demonstrating that electron transfer efficiency is governed by annealing temperature and substrate-induced microstructural changes. FIA with amperometric detection showed a linear electrochemical response to adrenaline in the 3–300 µM range, achieving a low detection limit of 1.05 µM and a high sensitivity of 1.02 µA cm−2/µM. These findings highlight the potential of glassy graphene as a cost-effective alternative for advanced electrochemical sensors, particularly in biomolecule detection and analytical applications. Full article
Show Figures

Figure 1

16 pages, 10741 KiB  
Article
Wear of End Mills with Carbon Coatings When Aluminum Alloy A97075 High-Speed Processing
by Evgeny E. Ashkinazi, Sergey V. Fedorov, Artem K. Martyanov, Dmitry N. Sovyk, Victor G. Ralchenko, Artem P. Litvinov, Artem A. Ershov and Vitaly I. Konov
Metals 2024, 14(12), 1344; https://doi.org/10.3390/met14121344 - 26 Nov 2024
Viewed by 743
Abstract
It is recommended to use high-speed milling to maintain an effective material removal rate and the required cutting-edge geometry. However, on the other hand, high speed increases wear, so the surface of the cutters is modified by deposition functional coatings. The wear of [...] Read more.
It is recommended to use high-speed milling to maintain an effective material removal rate and the required cutting-edge geometry. However, on the other hand, high speed increases wear, so the surface of the cutters is modified by deposition functional coatings. The wear of end mills made of CTS12D and H10F tungsten carbides during the high-speed processing of aluminum A97075 (B95T1) was compared. To increase the durability of the tools, well-proven technologies for deposition diamond-like and polycrystalline diamond coatings in microwave plasma with different film structures, which were determined by the coating growth conditions, were used. The milling cutter corner was mostly worn out, but the nature of the wear had its characteristics. It was revealed that at a forced cutting mode of about 1000 m/min, cutters made of CTS12D alloy with a nanocrystalline diamond coating with a “cauliflower” structure and with a diamond-like film showed 10% higher resistance. The primary wear mechanism was adhesive. Images of worn cutting edges were obtained using a 3D optical digital image processing system. Full article
Show Figures

Figure 1

15 pages, 3034 KiB  
Article
Polycrystalline Diamond Film Growth on Gallium Nitride with Low Boundary Thermal Resistance
by Ying Wang, Jiahao Yao, Yong Yang, Qian Fan, Xianfeng Ni and Xing Gu
Coatings 2024, 14(11), 1457; https://doi.org/10.3390/coatings14111457 - 15 Nov 2024
Cited by 1 | Viewed by 1525
Abstract
As the demand for high-frequency and high-power electronic devices has increased, gallium nitride (GaN), particularly in the context of high-electron mobility transistors (HEMTs), has attracted considerable attention. However, the ‘self-heating effect’ of GaN HEMTs represents a significant limitation regarding both performance and reliability. [...] Read more.
As the demand for high-frequency and high-power electronic devices has increased, gallium nitride (GaN), particularly in the context of high-electron mobility transistors (HEMTs), has attracted considerable attention. However, the ‘self-heating effect’ of GaN HEMTs represents a significant limitation regarding both performance and reliability. Diamond, renowned for its exceptional thermal conductivity, represents an optimal material for thermal management in HEMTs. This paper proposes a novel method for directly depositing diamond films onto N-polar GaN (NP-GaN) epitaxial layers. This eliminates the complexities of the traditional diamond growth process and the need for temporary substrate steps. Given the relative lag in the development of N-polar material growth technologies, which are marked by surface roughness issues, and the recognition that the thermal boundary resistance (TBRGaN/diamond) represents a critical factor constraining efficient heat transfer, our study has introduced a series of optimizations to enhance the quality of the diamond nucleation layer while ensuring that the integrity of the GaN buffer layer remains intact. Moreover, chemical mechanical polishing (CMP) technology was employed to effectively reduce the surface roughness of the NP-GaN base, thereby providing a more favorable foundation for diamond growth. The optimization trends observed in the thermal performance test results are encouraging. Integrating diamond films onto highly smooth NP-GaN epitaxial layers demonstrates a reduction in TBRGaN/diamond compared to that of diamond layers deposited onto NP-GaN with higher surface roughness that had undergone no prior process treatment. Full article
Show Figures

Figure 1

15 pages, 4176 KiB  
Article
Study on the Simulation and Experimental Impact of Substrate Holder Design on 3-Inch High-Quality Polycrystalline Diamond Thin Film Growth in a 2.45 GHz Resonant Cavity MPCVD
by Shuai Wu, Kesheng Guo, Jie Bai, Jiafeng Li, Jingming Zhu, Lei Liu, Lei Huang, Chuandong Zhang and Qiang Wang
Crystals 2024, 14(9), 821; https://doi.org/10.3390/cryst14090821 - 20 Sep 2024
Cited by 1 | Viewed by 1665
Abstract
In this study, three different substrate holder shapes—trapezoidal, circular frustum, and adjustable cyclic—were designed and optimized to enhance the quality of polycrystalline diamond films grown using microwave plasma chemical vapor deposition (MPCVD). Simulation results indicate that altering the shape of the substrate holder [...] Read more.
In this study, three different substrate holder shapes—trapezoidal, circular frustum, and adjustable cyclic—were designed and optimized to enhance the quality of polycrystalline diamond films grown using microwave plasma chemical vapor deposition (MPCVD). Simulation results indicate that altering the shape of the substrate holder leads to a uniform distribution of the electric field on the surface, significantly suppressing the formation of secondary plasma. This design ensures a more even distribution of the temperature field and plasma environment on the substrate holder, resulting in a heart-shaped distribution. Polycrystalline diamond films were synthesized under these three different substrate holder conditions, and their morphology and crystal quality were characterized using optical microscopy, Raman spectroscopy, and high-resolution X-ray diffraction. Under conditions of 5 kW power and 90 Torr pressure, the adjustable cyclic substrate holder produced high-quality 3-inch diamond films with low stress and narrow Raman full width at half maximum (FWHM). The results confirm the reliability of the simulations and the effectiveness of the adjustable cyclic substrate holder. This approach provides a viable method for scaling up the size and improving the quality of polycrystalline diamond films for future applications. Full article
Show Figures

Figure 1

18 pages, 5018 KiB  
Article
Magnetic Resonance Study of Bulky CVD Diamond Disc
by Alexander Shames, Alexander Panich, Lonia Friedlander, Haim Cohen, James Butler and Raymond Moreh
Materials 2024, 17(8), 1871; https://doi.org/10.3390/ma17081871 - 18 Apr 2024
Cited by 1 | Viewed by 1762
Abstract
Diamonds produced using chemical vapor deposition (CVD) have found many applications in various fields of science and technology. Many applications involve polycrystalline CVD diamond films of micron thicknesses. However, a variety of optical, thermal, mechanical, and radiation sensing applications require more bulky CVD [...] Read more.
Diamonds produced using chemical vapor deposition (CVD) have found many applications in various fields of science and technology. Many applications involve polycrystalline CVD diamond films of micron thicknesses. However, a variety of optical, thermal, mechanical, and radiation sensing applications require more bulky CVD diamond samples. We report the results of a magnetic resonance and structural study of a thick, sizable polycrystalline CVD diamond disc, both as-prepared and treated with e-beam irradiation/high-temperature annealing, as well as gamma irradiation. The combination of various magnetic resonance techniques reveals and enables the attribution of a plentiful collection of paramagnetic defects of doublet and triplet spin origin. Analysis of spectra, electron, and nuclear spin relaxation, as well as nuclear spin diffusion, supports the conclusion of significant macro- and micro-inhomogeneities in the distribution of nitrogen-related defects. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

13 pages, 2282 KiB  
Article
Structural and Photoelectronic Properties of κ-Ga2O3 Thin Films Grown on Polycrystalline Diamond Substrates
by Marco Girolami, Matteo Bosi, Sara Pettinato, Claudio Ferrari, Riccardo Lolli, Luca Seravalli, Valerio Serpente, Matteo Mastellone, Daniele M. Trucchi and Roberto Fornari
Materials 2024, 17(2), 519; https://doi.org/10.3390/ma17020519 - 22 Jan 2024
Cited by 5 | Viewed by 2369
Abstract
Orthorhombic κ-Ga2O3 thin films were grown for the first time on polycrystalline diamond free-standing substrates by metal-organic vapor phase epitaxy at a temperature of 650 °C. Structural, morphological, electrical, and photoelectronic properties of the obtained heterostructures were evaluated by optical [...] Read more.
Orthorhombic κ-Ga2O3 thin films were grown for the first time on polycrystalline diamond free-standing substrates by metal-organic vapor phase epitaxy at a temperature of 650 °C. Structural, morphological, electrical, and photoelectronic properties of the obtained heterostructures were evaluated by optical microscopy, X-ray diffraction, current-voltage measurements, and spectral photoconductivity, respectively. Results show that a very slow cooling, performed at low pressure (100 mbar) under a controlled He flow soon after the growth process, is mandatory to improve the quality of the κ-Ga2O3 epitaxial thin film, ensuring a good adhesion to the diamond substrate, an optimal morphology, and a lower density of electrically active defects. This paves the way for the future development of novel hybrid architectures for UV and ionizing radiation detection, exploiting the unique features of gallium oxide and diamond as wide-bandgap semiconductors. Full article
Show Figures

Figure 1

16 pages, 11551 KiB  
Article
Wear of Carbide Plates with Diamond-like and Micro-Nano Polycrystalline Diamond Coatings during Interrupted Cutting of Composite Alloy Al/SiC
by Evgeny E. Ashkinazi, Sergey V. Fedorov, Artem K. Martyanov, Vadim S. Sedov, Roman A. Khmelnitsky, Victor G. Ralchenko, Stanislav G. Ryzhkov, Andrey A. Khomich, Mikhail A. Mosyanov, Sergey N. Grigoriev and Vitaly I. Konov
J. Manuf. Mater. Process. 2023, 7(6), 224; https://doi.org/10.3390/jmmp7060224 - 8 Dec 2023
Cited by 5 | Viewed by 2494
Abstract
The complexity of milling metal matrix composite alloys based on aluminum like Al/SiC is due to their low melting point and high abrasive ability, which causes increased wear of carbide tools. One of the effective ways to improve its reliability and service life [...] Read more.
The complexity of milling metal matrix composite alloys based on aluminum like Al/SiC is due to their low melting point and high abrasive ability, which causes increased wear of carbide tools. One of the effective ways to improve its reliability and service life is to modify the surface by plasma chemical deposition of carbon-based multilayer functional layers from vapor (CVD) with high hardness and thermal conductivity: diamond-like (DLC) or polycrystalline diamond (PCD) coatings. Experiments on an indexable mill with CoroMill 200 inserts have shown that initial tool life increases up to 100% for cases with DLC and up to 300% for multilayered MCD/NCD films at a cutting speed of 800 m/min. The primary mechanism of wear of a carbide tool in this cutting mode was soft abrasion, when wear on both the rake and flank surfaces occurred due to the extrusion of cobalt binder between tungsten carbide grains, followed by their loss. Analysis of the wear pattern of plates with DLC and MCD/NCD coatings showed that abrasive wear begins to prevail against the background of soft abrasion. Adhesive wear is also present to a lesser extent, but there is no chipping of the base material from the cutting edge. Full article
Show Figures

Figure 1

13 pages, 3097 KiB  
Communication
Multi-Physical Analysis and Optimization in Integrated Lithium Niobate Modulator Using Micro-Structured Electrodes
by Jianchao Su, Guoliang Yang, Dandan Guo, Ming Li, Ninghua Zhu and Xin Wang
Photonics 2023, 10(7), 795; https://doi.org/10.3390/photonics10070795 - 10 Jul 2023
Cited by 3 | Viewed by 2033
Abstract
With the increase in the modulation rate of thin-film lithium niobate (LiNbO3, LN) modulators, the multi-physical field coupling effect between microwaves, light, and heat becomes more significant. In this study, we developed a thin-film LN modulator [...] Read more.
With the increase in the modulation rate of thin-film lithium niobate (LiNbO3, LN) modulators, the multi-physical field coupling effect between microwaves, light, and heat becomes more significant. In this study, we developed a thin-film LN modulator model using undoped pure LN thin film and T-shaped slow-wave electrodes. Furthermore, we utilized this model to simulate the microwave heating and light heating situations of the modulator. The temperature of the LN modulator was analyzed over time and with different signal frequencies. We also studied the influence of temperature rise on microwave and light signals, and we analyzed the change of S parameters and the Phase Shift of the light signal caused by temperature rise. Finally, we improved the thermodynamic characteristics of the modulator by adding a diamond heat dissipation layer. The diamond was obtained through the Chemical Vapor Deposition (CVD) technique and was a polycrystalline diamond. After adding the diamond heat dissipation layer, the temperature rise of the modulator was significantly improved, and the adverse effects of temperature rise on microwave signals were also significantly reduced. Full article
Show Figures

Figure 1

12 pages, 10789 KiB  
Article
Synthesis of Polycrystalline Diamond Films in Microwave Plasma at Ultrahigh Concentrations of Methane
by Artem Martyanov, Ivan Tiazhelov, Sergey Savin, Valery Voronov, Vitaly Konov and Vadim Sedov
Coatings 2023, 13(4), 751; https://doi.org/10.3390/coatings13040751 - 8 Apr 2023
Cited by 16 | Viewed by 3277
Abstract
Polycrystalline diamond (PCD) films are usually grown by chemical vapor deposition (CVD) in hydrogen–methane mixtures. The synthesis conditions determine the structure and quality of the grown material. Here, we report the complex effect of the microwave plasma CVD conditions on the morphology, growth [...] Read more.
Polycrystalline diamond (PCD) films are usually grown by chemical vapor deposition (CVD) in hydrogen–methane mixtures. The synthesis conditions determine the structure and quality of the grown material. Here, we report the complex effect of the microwave plasma CVD conditions on the morphology, growth rate and phase composition of the resulting PCD films. Specifically, we focus on the factors of (i) increased methane concentrations (νc) that are varied over a wide range of 4%–100% (i.e., pure methane gas) and (ii) substrate temperatures (Ts) varied between 700–1050 °C. Using scanning electron microscopy, X-ray diffraction and Raman spectroscopy, we show that diamond growth is possible even at ultrahigh methane concentrations, including νc = 100%, which requires relatively low synthesis temperatures of Ts < 800 °C. In general, lower substrate temperatures tend to facilitate the formation of higher-quality PCD films; however, this comes at the cost of lower growth rates. The growth rate of PCD coatings has a non-linear trend: for samples grown at Ts = 800 °C, the growth rate increases from 0.6 µm/h at νc = 4% to 3.4 µm/h at νc = 20% and then falls to 0.6 µm/h at νc = 100%. This research is a step toward control over the nature of the CVD-grown PCD material, which is essential for the precise and flexible production of diamond for various applications. Full article
(This article belongs to the Special Issue 2D Materials-Based Thin Films and Coatings)
Show Figures

Figure 1

21 pages, 3548 KiB  
Review
Application of Nano-Crystalline Diamond in Tribology
by Yue Xia, Yunxiang Lu, Guoyong Yang, Chengke Chen, Xiaojun Hu, Hui Song, Lifen Deng, Yuezhong Wang, Jian Yi and Bo Wang
Materials 2023, 16(7), 2710; https://doi.org/10.3390/ma16072710 - 28 Mar 2023
Cited by 12 | Viewed by 3459
Abstract
Nano-crystalline diamond has been extensively researched and applied in the fields of tribology, optics, quantum information and biomedicine. In virtue of its hardness, the highest in natural materials, diamond outperforms the other materials in terms of wear resistance. Compared to traditional single-crystalline and [...] Read more.
Nano-crystalline diamond has been extensively researched and applied in the fields of tribology, optics, quantum information and biomedicine. In virtue of its hardness, the highest in natural materials, diamond outperforms the other materials in terms of wear resistance. Compared to traditional single-crystalline and poly-crystalline diamonds, nano-crystalline diamond consists of disordered grains and thus possesses good toughness and self-sharpening. These merits render nano-crystalline diamonds to have great potential in tribology. Moreover, the re-nucleation of nano-crystalline diamond during preparation is beneficial to decreasing surface roughness due to its ultrafine grain size. Nano-crystalline diamond coatings can have a friction coefficient as low as single-crystal diamonds. This article briefly introduces the approaches to preparing nano-crystalline diamond materials and summarizes their applications in the field of tribology. Firstly, nano-crystalline diamond powders can be used as additives in both oil- and water-based lubricants to significantly enhance their anti-wear property. Nano-crystalline diamond coatings can also act as self-lubricating films when they are deposited on different substrates, exhibiting excellent performance in friction reduction and wear resistance. In addition, the research works related to the tribological applications of nano-crystalline diamond composites have also been reviewed in this paper. Full article
Show Figures

Figure 1

11 pages, 17438 KiB  
Article
Thickness Effects on Boron Doping and Electrochemical Properties of Boron-Doped Diamond Film
by Hangyu Long, Huawen Hu, Kui Wen, Xuezhang Liu, Shuang Liu, Quan Zhang and Ting Chen
Molecules 2023, 28(6), 2829; https://doi.org/10.3390/molecules28062829 - 21 Mar 2023
Cited by 14 | Viewed by 3458
Abstract
As a significant parameter in tuning the structure and performance of the boron-doped diamond (BDD), the thickness was focused on the mediation of the boron doping level and electrochemical properties. BDD films with different thicknesses were deposited on silicon wafers by the hot [...] Read more.
As a significant parameter in tuning the structure and performance of the boron-doped diamond (BDD), the thickness was focused on the mediation of the boron doping level and electrochemical properties. BDD films with different thicknesses were deposited on silicon wafers by the hot filament chemical vapor deposition (HFCVD) method. The surface morphology and composition of the BDD films were characterized by SEM and Raman, respectively. It was found that an increase in the BDD film thickness resulted in larger grain size, a reduced grain boundary, and a higher boron doping level. The electrochemical performance of the electrode equipped with the BDD film was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in potassium ferricyanide. The results revealed that the thicker films exhibited a smaller peak potential difference, a lower charge transfer resistance, and a higher electron transfer rate. It was believed that the BDD film thickness-driven improvements of boron doping and electrochemical properties were mainly due to the columnar growth mode of CVD polycrystalline diamond film, which led to larger grain size and a lower grain boundary density with increasing film thickness. Full article
(This article belongs to the Special Issue Carbon Nanomaterials: Design and Applications)
Show Figures

Figure 1

25 pages, 5377 KiB  
Review
Research Progress in Capping Diamond Growth on GaN HEMT: A Review
by Yingnan Wang, Xiufei Hu, Lei Ge, Zonghao Liu, Mingsheng Xu, Yan Peng, Bin Li, Yiqiu Yang, Shuqiang Li, Xuejian Xie, Xiwei Wang, Xiangang Xu and Xiaobo Hu
Crystals 2023, 13(3), 500; https://doi.org/10.3390/cryst13030500 - 14 Mar 2023
Cited by 10 | Viewed by 4799
Abstract
With the increased power density of gallium nitride (GaN) high electron mobility transistors (HEMTs), effective cooling is required to eliminate the self-heating effect. Incorporating diamond into GaN HEMT is an alternative way to dissipate the heat generated from the active region. In this [...] Read more.
With the increased power density of gallium nitride (GaN) high electron mobility transistors (HEMTs), effective cooling is required to eliminate the self-heating effect. Incorporating diamond into GaN HEMT is an alternative way to dissipate the heat generated from the active region. In this review, the four main approaches for the integration of diamond and GaN are briefly reviewed, including bonding the GaN wafer and diamond wafer together, depositing diamond as a heat-dissipation layer on the GaN epitaxial layer or HEMTs, and the epitaxial growth of GaN on the diamond substrate. Due to the large lattice mismatch and thermal mismatch, as well as the crystal structure differences between diamond and GaN, all above works face some problems and challenges. Moreover, the review is focused on the state-of-art of polycrystalline or nanocrystalline diamond (NCD) passivation layers on the topside of GaN HEMTs, including the nucleation and growth of the diamond on GaN HEMTs, structure and interface analysis, and thermal characterization, as well as electrical performance of GaN HEMTs after diamond film growth. Upon comparing three different nucleation methods of diamond on GaN, electrostatic seeding is the most commonly used pretreatment method to enhance the nucleation density. NCDs are usually grown at lower temperatures (600–800 °C) on GaN HEMTs, and the methods of “gate after growth” and selective area growth are emphasized. The influence of interface quality on the heat dissipation of capped diamond on GaN is analyzed. We consider that effectively reducing the thermal boundary resistance, improving the regional quality at the interface, and optimizing the stress–strain state are needed to improve the heat-spreading performance and stability of GaN HEMTs. NCD-capped GaN HEMTs exhibit more than a 20% lower operating temperature, and the current density is also improved, which shows good application potential. Furthermore, the existing problems and challenges have also been discussed. The nucleation and growth characteristics of diamond itself and the integration of diamond and GaN HEMT are discussed together, which can more completely explain the thermal diffusion effect of diamond for GaN HEMT and the corresponding technical problems. Full article
(This article belongs to the Special Issue Wide-Bandgap Semiconductors)
Show Figures

Figure 1

12 pages, 10080 KiB  
Article
CVD Diamond Growth Enhanced by a Dynamic Magnetic Field
by Xuezhang Liu, Kui Wen, Xiaohua Duan, Caihua Wang and Hangyu Long
Coatings 2023, 13(2), 441; https://doi.org/10.3390/coatings13020441 - 15 Feb 2023
Cited by 3 | Viewed by 2829
Abstract
A dynamic magnetic field (DMF) with different angular frequencies (50, 100, and 150 π rad/s) was introduced during diamond growth via hot filament chemical vapor deposition (HFCVD). The effects of the dynamic magnetic field on the growth rate, diamond quality, growth orientation, and [...] Read more.
A dynamic magnetic field (DMF) with different angular frequencies (50, 100, and 150 π rad/s) was introduced during diamond growth via hot filament chemical vapor deposition (HFCVD). The effects of the dynamic magnetic field on the growth rate, diamond quality, growth orientation, and deposition uniformity of large-area diamond films were investigated with scanning electron microscopy (SEM), X-ray diffractometry (XRD), and Raman spectroscopy. The correlation between diamond growth and angular frequency was discussed. The results showed that a faster growth rate (about 2.5 times) and higher diamond quality were obtained by increasing the angular frequency of the DMF. A (100) textured polycrystalline diamond film was achieved, and the preferential orientation was found to evolve from (110) to (100), while the expected uniform deposition of a large-area diamond film under DMF was not achieved. The enhancement effect of the DMF was ascribed to the activation of more gas molecules, which participated in CVD diamond growth. Full article
Show Figures

Figure 1

10 pages, 2764 KiB  
Article
Combined HF+MW CVD Approach for the Growth of Polycrystalline Diamond Films with Reduced Bow
by Vadim Sedov, Alexey Popovich, Stepan Linnik, Artem Martyanov, Junjun Wei, Sergei Zenkin, Evgeny Zavedeev, Sergey Savin, Alexander Gaydaychuk, Chengming Li, Victor Ralchenko and Vitaly Konov
Coatings 2023, 13(2), 380; https://doi.org/10.3390/coatings13020380 - 7 Feb 2023
Cited by 5 | Viewed by 2895
Abstract
A combination of two methods of chemical vapor deposition (CVD) of diamond films, microwave plasma–assisted (MW CVD) and hot filament (HF CVD), was used for the growth of 100 µm-thick polycrystalline diamond (PCD) layers on Si substrates. The bow of HF CVD and [...] Read more.
A combination of two methods of chemical vapor deposition (CVD) of diamond films, microwave plasma–assisted (MW CVD) and hot filament (HF CVD), was used for the growth of 100 µm-thick polycrystalline diamond (PCD) layers on Si substrates. The bow of HF CVD and MW CVD films showed opposite convex\concave trends; thus, the combined material allowed reducing the overall bow by a factor of 2–3. Using MW CVD for the growth of the initial 25 µm-thick PCD layer allowed achieving much higher thermal conductivity of the combined 110 µm-thick film at 210 W/m·K in comparison to 130 W/m·K for the 93 µm-thick pure HF CVD film. Full article
(This article belongs to the Special Issue 2D Materials-Based Thin Films and Coatings)
Show Figures

Figure 1

Back to TopTop