Synthesis of Polycrystalline Diamond Films in Microwave Plasma at Ultrahigh Concentrations of Methane
Abstract
:1. Introduction
2. Materials and Methods
- 1.
- In the first one, polycrystalline diamond films were grown at a fixed = 40% (an order of magnitude higher than the standard one) and various substrate temperatures (700–1050 °C). was adjusted by adjusting the pressure (54–86 Torr) and microwave power (3.5–5 kW). Higher power and pressure correspond to higher substrate temperature.
- 2.
- In the second one, growths were carried out at a fixed = 800 °C and various . Constant temperatures were maintained by pressure and microwave power (with increase in from 4% to 100%, the pressure and microwave power decreases 73 → 45 Torr and 4.5 → 2.2 kW, respectively, because higher value leads to a higher substrate temperature.
- 3.
- In the third one, substrate temperature and microwave power were fixed at 900 °C and 4 kW while methane concentrations varied = 3 → 100% only by pressure (80 → 45 Torr).
3. Results and Discussion
3.1. SEM Characterization
3.2. X-ray Diffraction
3.3. Growth Rates
3.4. Raman Spectroscopy
3.5. sp2/sp3 Ratio
3.6. Diamond Raman Peak width
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yue, Y.; Gao, Y.; Hu, W.; Xu, B.; Wang, J.; Zhang, X.; Zhang, Q.; Wang, Y.; Ge, B.; Yang, Z.; et al. Hierarchically structured diamond composite with exceptional toughness. Nature 2020, 582, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Inyushkin, A.V.; Taldenkov, A.N.; Ralchenko, V.G.; Bolshakov, A.P.; Koliadin, A.V.; Katrusha, A.N. Thermal conductivity of high purity synthetic single crystal diamonds. Phys. Rev. B 2018, 97, 144305. [Google Scholar] [CrossRef]
- Inyushkin, A.V.; Taldenkov, A.N.; Ralchenko, V.G.; Shu, G.; Dai, B.; Bolshakov, A.P.; Khomich, A.A.; Ashkinazi, E.E.; Boldyrev, K.N.; Han, J.; et al. Thermal conductivity of pink CVD diamond: Influence of nitrogen-related centers. J. Appl. Phys. 2023, 133, 025102. [Google Scholar] [CrossRef]
- Sedov, V.; Martyanov, A.; Khomich, A.; Savin, S.; Voronov, V.; Khmelnitskiy, R.; Bolshakov, A.; Ralchenko, V. Co-deposition of diamond and β-SiC by microwave plasma CVD in H2-CH4-SiH4 gas mixtures. Diam. Relat. Mater. 2019, 98, 107520. [Google Scholar] [CrossRef]
- Ralchenko, V.; Sedov, V.; Martyanov, A.; Voronov, V.; Savin, S.; Khomich, A.; Shevchenko, M.; Bolshakov, A. Diamond-germanium composite films grown by microwave plasma CVD. Carbon 2022, 190, 10–21. [Google Scholar] [CrossRef]
- Sedov, V.S.; Martyanov, A.; Popovich, A.; Savin, S.; Sovyk, D.; Tiazhelov, I.; Pasternak, D.; Mandal, S.; Ralchenko, V.G. Microporous poly- and monocrystalline diamond films produced from chemical vapor deposited diamond–germanium composites. Nanoscale Adv. 2023, 5, 1307–1315. [Google Scholar] [CrossRef]
- Abdullah, M.F.; Hussin, M.R.M.; Ismail, M.A.; Sabli, S.K.W. Chip-level thermal management in GaN HEMT: Critical review on recent patents and inventions. Microelectron. Eng. 2023, 273, 111958. [Google Scholar] [CrossRef]
- Chernykh, M.; Andreev, A.; Ezubchenko, I.; Chernykh, I.; Mayboroda, I.; Kolobkova, E.; Khrapovitskaya, Y.V.; Grishchenko, J.; Perminov, P.; Sedov, V.; et al. GaN-based heterostructures with CVD diamond heat sinks: A new fabrication approach towards efficient electronic devices. Appl. Mater. Today 2022, 26, 101338. [Google Scholar] [CrossRef]
- Sedov, V.; Martyanov, A.; Altakhov, A.; Popovich, A.; Shevchenko, M.; Savin, S.; Zavedeev, E.; Zanaveskin, M.; Sinogeykin, A.; Ralchenko, V.; et al. Effect of Substrate Holder Design on Stress and Uniformity of Large-Area Polycrystalline Diamond Films Grown by Microwave Plasma-Assisted CVD. Coatings 2020, 10, 939. [Google Scholar] [CrossRef]
- Sedov, V.; Kuznetsov, S.; Martyanov, A.; Ralchenko, V. Luminescent diamond composites. Funct. Diam. 2022, 2, 53–63. [Google Scholar] [CrossRef]
- Najar, K.A.; Sheikh, N.A.; Butt, M.M.; Mushtaq, S.; Shah, M.A. Engineered Synthetic Diamond Film as a Protective Layer for Tribological and Machining Applications: A Review. J. Bio- Tribo-Corros. 2019, 5, 59. [Google Scholar] [CrossRef]
- Yan, G.; Wu, Y.; Cristea, D.; Liu, L.; Tierean, M.; Wang, Y.; Lu, F.; Wang, H.; Yuan, Z.; Munteanu, D.; et al. Mechanical properties and wear behavior of multi-layer diamond films deposited by hot-filament chemical vapor deposition. Appl. Surf. Sci. 2019, 494, 401–411. [Google Scholar] [CrossRef]
- Ashkihazi, E.; Sedov, V.; Sovyk, D.; Khomich, A.; Bolshakov, A.; Ryzhkov, S.; Vinogradov, D.; Ralchenko, V.; Konov, V. Plateholder design for deposition of uniform diamond coatings on WC-Co substrates by microwave plasma CVD for efficient turning application. Diam. Relat. Mater. 2017, 75, 169–175. [Google Scholar] [CrossRef]
- Moore, S.L.; Samudrala, G.K.; Catledge, S.A.; Vohra, Y.K. Rapid Growth of Nanocrystalline Diamond on Single Crystal Diamond for Studies on Materials under Extreme Conditions. Sci. Rep. 2018, 8, 1402. [Google Scholar] [CrossRef]
- Mallik, A.K. Polycrystalline Diamond Characterisations for High End Technologies. In Some Aspects of Diamonds in Scientific Research and High Technology; IntechOpen: London, UK, 2019. [Google Scholar]
- Guo, D.; Cai, N.; Wu, G.; Xie, F.; Tan, S.; Jiang, N.; Li, H. Improving Pressure–Velocity Limit of Mechanical Seal with Polycrystalline Diamond Coating. Appl. Sci. 2020, 10, 6090. [Google Scholar] [CrossRef]
- Williams, O. Nanocrystalline diamond. Diam. Relat. Mater. 2011, 20, 621–640. [Google Scholar] [CrossRef]
- Sedov, V.; Ralchenko, V.; Khomich, A.; Vlasov, I.; Vul, A.; Savin, S.; Goryachev, A.; Konov, V. Si-doped nano- and microcrystalline diamond films with controlled bright photoluminescence of silicon-vacancy color centers. Diam. Relat. Mater. 2015, 56, 23–28. [Google Scholar] [CrossRef]
- Fuentes-Fernandez, E.; Alcantar-Peña, J.; Lee, G.; Boulom, A.; Phan, H.; Smith, B.; Nguyen, T.; Sahoo, S.; Ruiz-Zepeda, F.; Arellano-Jimenez, M.; et al. Synthesis and characterization of microcrystalline diamond to ultrananocrystalline diamond films via Hot Filament Chemical Vapor Deposition for scaling to large area applications. Thin Solid Films 2016, 603, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Sedov, V.S.; Martyanov, A.K.; Altakhov, A.S.; Savin, S.S.; Dobretsova, E.A.; Tiazhelov, I.A.; Pasternak, D.G.; Kaplunov, I.A.; Rogalin, V.E.; Ralchenko, V.G. Formation of Germanium–Vacancy Color Centers in CVD Diamond. J. Russ. Laser Res. 2022, 43, 503–508. [Google Scholar] [CrossRef]
- Karczemska, A.; Witkowski, D.; Ralchenko, V.; Bolshakov, A.; Sovyk, D.; Lysko, J.; Hassard, J. Diamond Microfluidic Devices Manufactured with the Replica Method. In Proceedings of the 2009 5th International Conference on Perspective Technologies and Methods in MEMS Design, Piscataway, NJ, USA, 22–24 April 2009; pp. 17–19. [Google Scholar]
- Mandal, S.; Yuan, C.; Massabuau, F.; Pomeroy, J.W.; Cuenca, J.; Bland, H.; Thomas, E.; Wallis, D.; Batten, T.; Morgan, D. Thick, Adherent Diamond Films on AlN with Low Thermal Barrier Resistance. ACS Appl. Mater. Interfaces 2019, 11, 40826–40834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Ramaneti, R.; Anaya, J.; Korneychuk, S.; Derluyn, J.; Sun, H.; Pomeroy, J.; Verbeeck, J.; Haenen, K.; Kuball, M. Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs. Appl. Phys. Lett. 2017, 111, 041901. [Google Scholar] [CrossRef] [Green Version]
- Kononenko, T.V.; Ralchenko, V.G.; Ashkinazi, E.E.; Polikarpov, M.; Ershov, P.; Kuznetsov, S.; Yunkin, V.; Snigireva, I.; Konov, V.I. Fabrication of polycrystalline diamond refractive X-ray lens by femtosecond laser processing. Appl. Phys. A 2016, 122, 152. [Google Scholar] [CrossRef]
- Salvatori, S.; Pettinato, S.; Piccardi, A.; Sedov, V.; Voronin, A.; Ralchenko, V. Thin Diamond Film on Silicon Substrates for Pressure Sensor Fabrication. Materials 2020, 13, 3697. [Google Scholar] [CrossRef] [PubMed]
- Pettinato, S.; Barettin, D.; Sedov, V.; Ralchenko, V.; Salvatori, S. Fabry-Perot Pressure Sensors Based on Polycrystalline Diamond Membranes. Materials 2021, 14, 1780. [Google Scholar] [CrossRef]
- Kononenko, T.; Sovyk, D.; Pivovarov, P.; Pavelyev, V.; Mezhenin, A.; Cherepanov, K.; Komlenok, M.; Sorochenko, V.; Khomich, A.; Pashinin, V.; et al. Fabrication of diamond diffractive optics for powerful CO2 lasers via replication of laser microstructures on silicon template. Diam. Relat. Mater. 2020, 101, 107656. [Google Scholar] [CrossRef]
- Ashkinazi, E.E.; Khmelnitskii, R.A.; Sedov, V.S.; Khomich, A.A.; Khomich, A.V.; Ralchenko, V.G. Morphology of Diamond Layers Grown on Different Facets of Single Crystal Diamond Substrates by a Microwave Plasma CVD in CH4-H2-N2 Gas Mixtures. Crystals 2017, 7, 166. [Google Scholar] [CrossRef] [Green Version]
- Podgursky, V.; Bogatov, A.; Yashin, M.; Viljus, M.; Bolshakov, A.; Sedov, V.; Volobujeva, O.; Mere, A.; Raadik, T.; Ralchenko, V. A comparative study of the growth dynamics and tribological properties of nanocrystalline diamond films deposited on the (110) single crystal diamond and Si(100) substrates. Diam. Relat. Mater. 2019, 92, 159–167. [Google Scholar] [CrossRef]
- Cicala, G.; Magaletti, V.; Carbone, G.; Senesi, G.S. Load sensitive super-hardness of nanocrystalline diamond coatings. Diam. Relat. Mater. 2020, 101, 107653. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Sun, F. Cutting performances of MCD, SMCD, NCD and MCD/NCD coated tools in high-speed milling of hot bending graphite molds. J. Mater. Process. Technol. 2020, 276, 116401. [Google Scholar] [CrossRef]
- Shenderova, O.A.; Gruen, D.M. Ultrananocrystalline Diamond: Synthesis, Properties and Applications; William Andrew: Norwich, NY, USA, 2012; ISBN 978-1-4377-3466-9. [Google Scholar]
- Auciello, O.; Sumant, A.V. Status Review of the Science and Technology of Ultrananocrystalline Diamond (UNCDTM) Films and Application to Multifunctional Devices. Diam. Relat. Mater. 2010, 19, 699–718. [Google Scholar] [CrossRef]
- Auciello, O.; Gurman, P.; Guglielmotti, M.B.; Olmedo, D.G.; Berra, A.; Saravia, M.J. Biocompatible ultrananocrystalline diamond coatings for implantable medical devices. MRS Bull. 2014, 39, 621–629. [Google Scholar] [CrossRef]
- Auciello, O.; Renou, S.; Kang, K.; Tasat, D.; Olmedo, D. A Biocompatible Ultrananocrystalline Diamond (UNCD) Coating for a New Generation of Dental Implants. Nanomaterials 2022, 12, 782. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.; Auciello, O.; Birrell, J.; Carlisle, J.A.; Curtiss, L.A.; Goyette, A.N.; Gruen, D.M.; Krauss, A.R.; Schlueter, J.A.; Sumant, A.V.; et al. Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films. Appl. Phys. Lett. 2001, 79, 1441–1443. [Google Scholar] [CrossRef]
- Ralchenko, V.; Pimenov, S.; Konov, V.; Khomich, A.; Saveliev, A.; Popovich, A.; Vlasov, I.; Zavedeev, E.; Bozhko, A.; Loubnin, E.; et al. Nitrogenated nanocrystalline diamond films: Thermal and optical properties. Diam. Relat. Mater. 2007, 16, 2067–2073. [Google Scholar] [CrossRef]
- Wanninayake, N.; Ai, Q.; Zhou, R.; Hoque, A.; Herrell, S.; Guzman, M.I.; Risko, C.; Kim, D.Y. Understanding the effect of host structure of nitrogen doped ultrananocrystalline diamond electrode on electrochemical carbon dioxide reduction. Carbon 2020, 157, 408–419. [Google Scholar] [CrossRef]
- Podgursky, V.; Bogatov, A.; Sedov, V.; Sildos, I.; Mere, A.; Viljus, M.; Buijnsters, J.; Ralchenko, V. Growth dynamics of nanocrystalline diamond films produced by microwave plasma enhanced chemical vapor deposition in methane/hydrogen/air mixture: Scaling analysis of surface morphology. Diam. Relat. Mater. 2015, 58, 172–179. [Google Scholar] [CrossRef]
- Mahoney, E.J.D.; Truscott, B.S.; Mushtaq, S.; Ashfold, M.N.R.; Mankelevich, Y.A. Spatially Resolved Optical Emission and Modeling Studies of Microwave-Activated Hydrogen Plasmas Operating under Conditions Relevant for Diamond Chemical Vapor Deposition. J. Phys. Chem. A 2018, 122, 8286–8300. [Google Scholar] [CrossRef] [Green Version]
- Tanei, H.; Nakamura, N.; Ogi, H.; Hirao, M.; Ikeda, R. Unusual Elastic Behavior of Nanocrystalline Diamond Thin Films. Phys. Rev. Lett. 2008, 100, 016804. [Google Scholar] [CrossRef] [PubMed]
- Sedov, V.; Martyanov, A.; Savin, S.; Zavedeev, E.; Kudryavtsev, O.; Bland, H.; Mandal, S.; Williams, O.; Ralchenko, V.; Konov, V. CVD synthesis of multi-layered polycrystalline diamond films with reduced roughness using time-limited injections of N2 gas. Diam. Relat. Mater. 2021, 114, 108333. [Google Scholar] [CrossRef]
- Erdemir, A.; Fenske, G.; Krauss, A.; Gruen, D.; McCauley, T.; Csencsits, R. Tribological properties of nanocrystalline diamond films. Surf. Coatings Technol. 1999, 120, 565–572. [Google Scholar] [CrossRef] [Green Version]
- Kulisch, W.; Popov, C. On the growth mechanisms of nanocrystalline diamond films. Phys. Status Solidi A 2006, 203, 203–219. [Google Scholar] [CrossRef]
- Bushuev, E.; Yurov, V.; Bolshakov, A.; Ralchenko, V.; Khomich, A.; Antonova, I.; Ashkinazi, E.; Shershulin, V.; Pashinin, V.; Konov, V. Express in situ measurement of epitaxial CVD diamond film growth kinetics. Diam. Relat. Mater. 2017, 72, 61–70. [Google Scholar] [CrossRef]
- Cuenca, J.A.; Sankaran, K.J.; Pobedinskas, P.; Panda, K.; Lin, I.-N.; Porch, A.; Haenen, K.; Williams, O.A. Microwave cavity perturbation of nitrogen doped nano-crystalline diamond films. Carbon 2019, 145, 740–750. [Google Scholar] [CrossRef]
- Sedov, V.; Popovich, A.; Linnik, S.; Martyanov, A.; Wei, J.; Zenkin, S.; Zavedeev, E.; Savin, S.; Gaydaychuk, A.; Li, C.; et al. Combined HF+MW CVD Approach for the Growth of Polycrystalline Diamond Films with Reduced Bow. Coatings 2023, 13, 380. [Google Scholar] [CrossRef]
- Song, X.; Lu, M.; Wang, H.; Wang, X.; Sun, F. Fracture mechanics of microcrystalline/nanocrystalline composited multilayer chemical vapor deposition self-standing diamond films. Ceram. Int. 2022, 48, 21909–21919. [Google Scholar] [CrossRef]
- Sedov, V.; Martyanov, A.; Khomich, A.; Savin, S.; Zavedeev, E.; Ralchenko, V. Deposition of diamond films on Si by microwave plasma CVD in varied CH4-H2 mixtures: Reverse nanocrystalline-to-microcrystalline structure transition at very high methane concentrations. Diam. Relat. Mater. 2020, 109, 108072. [Google Scholar] [CrossRef]
- Eto, H.; Tamou, Y.; Ohsawa, Y.; Kikuchi, N. TEM observations of diamond films prepared by microwave plasma CVD. Diam. Relat. Mater. 1992, 1, 373–379. [Google Scholar] [CrossRef]
- Wild, C.; Kohl, R.; Herres, N.; Müller-Sebert, W.; Koidl, P. Oriented CVD diamond films: Twin formation, structure and morphology. Diam. Relat. Mater. 1994, 3, 373–381. [Google Scholar] [CrossRef]
- Jeon, I.-D.; Park, C.J.; Kim, D.-Y.; Hwang, N.M. Effect of methane concentration on size of charged clusters in the hot filament diamond CVD process. J. Cryst. Growth 2001, 223, 6–14. [Google Scholar] [CrossRef]
- Gines, L.; Mandal, S.; Cheng, C.L.; Sow, M.; Williams, O.A. Positive zeta potential of nanodiamonds. Nanoscale 2017, 9, 12549–12555. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S. Nucleation of diamond films on heterogeneous substrates: A review. RSC Adv. 2021, 11, 10159–10182. [Google Scholar] [CrossRef]
- Nasser, S.A.; Afify, H.H.; El-Hakim, S.A.; Zayed, M.K. Structural and physical properties of sprayed copper–zinc oxide films. Thin Solid Films 1998, 315, 327–335. [Google Scholar] [CrossRef]
- Paprocki, K.; Fabisiak, K.; Łoś, S.; Winiecki, J.; Malinowski, P.; Fabisiak, R.; Franków, W. Morphological, cathodoluminescence and thermoluminescence studies of defects in diamond films grown by HF CVD technique. Opt. Mater. 2020, 99, 109506. [Google Scholar] [CrossRef]
- Ferreira, N.G.; Leite, N.F.; Corat, E.J.; Trava-Airoldi, V.J.; Abramof, E. Analysis of residual stress in diamond films by x-ray diffraction and micro-Raman spectroscopy. J. Appl. Phys. 2002, 91, 2466–2472. [Google Scholar] [CrossRef] [Green Version]
- Ballutaud, D.; Jomard, F.; Kociniewski, T.; Rzepka, E.; Girard, H.; Saada, S. Sp3/Sp2 Character of the Carbon and Hydrogen Configuration in Micro-and Nanocrystalline Diamond. Diam. Relat. Mater. 2008, 17, 451–456. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martyanov, A.; Tiazhelov, I.; Savin, S.; Voronov, V.; Konov, V.; Sedov, V. Synthesis of Polycrystalline Diamond Films in Microwave Plasma at Ultrahigh Concentrations of Methane. Coatings 2023, 13, 751. https://doi.org/10.3390/coatings13040751
Martyanov A, Tiazhelov I, Savin S, Voronov V, Konov V, Sedov V. Synthesis of Polycrystalline Diamond Films in Microwave Plasma at Ultrahigh Concentrations of Methane. Coatings. 2023; 13(4):751. https://doi.org/10.3390/coatings13040751
Chicago/Turabian StyleMartyanov, Artem, Ivan Tiazhelov, Sergey Savin, Valery Voronov, Vitaly Konov, and Vadim Sedov. 2023. "Synthesis of Polycrystalline Diamond Films in Microwave Plasma at Ultrahigh Concentrations of Methane" Coatings 13, no. 4: 751. https://doi.org/10.3390/coatings13040751
APA StyleMartyanov, A., Tiazhelov, I., Savin, S., Voronov, V., Konov, V., & Sedov, V. (2023). Synthesis of Polycrystalline Diamond Films in Microwave Plasma at Ultrahigh Concentrations of Methane. Coatings, 13(4), 751. https://doi.org/10.3390/coatings13040751