Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (326)

Search Parameters:
Keywords = pollination ecology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3231 KiB  
Article
Comparative Analyses Reveal Mitogenome Characteristics of Halictidae and Novel Rearrangement (Hymenoptera: Apoidea: Anthophila)
by Dan Zhang and Zeqing Niu
Animals 2025, 15(15), 2234; https://doi.org/10.3390/ani15152234 - 30 Jul 2025
Viewed by 230
Abstract
Halictidae, as a major pollinator family in bees, has significant ecological value. However, the insufficient molecular data for this group has limited our understanding of the evolutionary history of this group. Herein, we newly sequenced and assembled four mitogenomes of Halictidae, including three [...] Read more.
Halictidae, as a major pollinator family in bees, has significant ecological value. However, the insufficient molecular data for this group has limited our understanding of the evolutionary history of this group. Herein, we newly sequenced and assembled four mitogenomes of Halictidae, including three species of Nomiinae and one species of Rophitinae. We analyzed the characters of the newly obtained mitogenomes, including nucleotide composition, sequence length, and gene rearrangements. The length of the newly sequenced mitogenomes ranged from 16,492 to 21,192 bp, and all newly obtained mitogenomes contained 22 tRNAs, 13 protein-coding genes, two rRNAs, and one control region. Their AT content (%) ranged from 82.55 to 86.44. Relative synonymous codon usage analysis showed that UUU, UUA, and AUU were the preferred codons. The relative synonymous codon usage > 2 of mostly newly sequenced species was as follows: UUA > UCA > CGA. All newly obtained mitogenomes show gene rearrangement; we found five gene rearrangement patterns in total. Notably, ND4-trnP-ND4L-trnT was the first reported gene rearrangement pattern in bees. In addition, we reconstructed the phylogenetic relationships of Halictidae based on 10 species (eight ingroups and two outgroups), using Bayesian Inference and Maximum Likelihood approaches. Phylogenetic analysis showed that Rophitinae was the basal group within Halictidae. Full article
Show Figures

Figure 1

13 pages, 736 KiB  
Article
Birding via Facebook—Methodological Considerations When Crowdsourcing Observations of Bird Behavior via Social Media
by Dirk H. R. Spennemann
Birds 2025, 6(3), 39; https://doi.org/10.3390/birds6030039 - 28 Jul 2025
Viewed by 276
Abstract
This paper outlines a methodology to compile geo-referenced observational data of Australian birds acting as pollinators of Strelitzia sp. (Bird of Paradise) flowers and dispersers of their seeds. Given the absence of systematic published records, a crowdsourcing approach was employed, combining data from [...] Read more.
This paper outlines a methodology to compile geo-referenced observational data of Australian birds acting as pollinators of Strelitzia sp. (Bird of Paradise) flowers and dispersers of their seeds. Given the absence of systematic published records, a crowdsourcing approach was employed, combining data from natural history platforms (e.g., iNaturalist, eBird), image hosting websites (e.g., Flickr) and, in particular, social media. Facebook emerged as the most productive channel, with 61.4% of the 301 usable observations sourced from 43 ornithology-related groups. The strategy included direct solicitation of images and metadata via group posts and follow-up communication. The holistic, snowballing search strategy yielded a unique, behavior-focused dataset suitable for analysis. While the process exposed limitations due to user self-censorship on image quality and completeness, the approach demonstrates the viability of crowdsourced behavioral ecology data and contributes a replicable methodology for similar studies in under-documented ecological contexts. Full article
Show Figures

Figure 1

14 pages, 1829 KiB  
Article
Investigating the Spatial Biases and Temporal Trends in Insect Pollinator Occurrence Data on GBIF
by Ehsan Rahimi and Chuleui Jung
Insects 2025, 16(8), 769; https://doi.org/10.3390/insects16080769 - 26 Jul 2025
Viewed by 424
Abstract
Research in biogeography, ecology, and biodiversity hinges on the availability of comprehensive datasets that detail species distributions and environmental conditions. At the forefront of this endeavor is the Global Biodiversity Information Facility (GBIF). This study focuses on investigating spatial biases and temporal trends [...] Read more.
Research in biogeography, ecology, and biodiversity hinges on the availability of comprehensive datasets that detail species distributions and environmental conditions. At the forefront of this endeavor is the Global Biodiversity Information Facility (GBIF). This study focuses on investigating spatial biases and temporal trends in insect pollinator occurrence data within the GBIF dataset, specifically focusing on three pivotal pollinator groups: bees, hoverflies, and butterflies. Addressing these gaps in GBIF data is essential for comprehensive analyses and informed pollinator conservation efforts. We obtained occurrence data from GBIF for seven bee families, six butterfly families, and the Syrphidae family of hoverflies in 2024. Spatial biases were addressed by eliminating duplicate records with identical latitude and longitude coordinates. Species richness was assessed for each family and country. Temporal trends were examined by tallying annual occurrence records for each pollinator family, and the diversity of data sources within GBIF was evaluated by quantifying unique data publishers. We identified initial occurrence counts of 4,922,390 for bees, 1,703,131 for hoverflies, and 31,700,696 for butterflies, with a substantial portion containing duplicate records. On average, 81.4% of bee data, 77.2% of hoverfly data, and 65.4% of butterfly data were removed post-duplicate elimination for dataset refinement. Our dataset encompassed 9286 unique bee species, 2574 hoverfly species, and 17,895 butterfly species. Our temporal analysis revealed a notable trend in data recording, with 80% of bee and butterfly data collected after 2022, and a similar threshold for hoverflies reached after 2023. The United States, Germany, the United Kingdom, and Sweden consistently emerged as the top countries for occurrence data across all three groups. The analysis of data publishers highlighted iNaturalist.org as a top contributor to bee data. Overall, we uncovered significant biases in the occurrence data of pollinators from GBIF. These biases pose substantial challenges for future research on pollinator ecology and biodiversity conservation. Full article
(This article belongs to the Special Issue Insect Pollinators and Pollination Service Provision)
Show Figures

Figure 1

14 pages, 2497 KiB  
Article
Spatiotemporal Variations in Nectar Robbing and Its Effects on Reproduction in Salvia castanea Diels (Lamiaceae)
by Han-Wen Xiao and Yan-Bo Huang
Plants 2025, 14(15), 2266; https://doi.org/10.3390/plants14152266 - 23 Jul 2025
Viewed by 207
Abstract
Nectar robbing typically reduces nectar availability to pollinators, damages flower structure, and/or induces secondary robbing. Consequently, it may reduce pollen deposition and seed set, increase pollination efficiency and outcrossing, and/or not affect reproduction in some species. However, spatiotemporal variations in nectar robbing and [...] Read more.
Nectar robbing typically reduces nectar availability to pollinators, damages flower structure, and/or induces secondary robbing. Consequently, it may reduce pollen deposition and seed set, increase pollination efficiency and outcrossing, and/or not affect reproduction in some species. However, spatiotemporal variations in nectar robbing and their effects on plant reproduction have received little attention. In this study, we assessed the effects of nectar robbing on floral visits, seed set, nectar volume and concentration, and flower longevity in two populations of Salvia castanea Diels (Lamiaceae) in the Himalayan region of Southwestern China in 2014–2020. We also examined whether one or a few visits by pollinators can result in the stigma receiving sufficient pollen to fertilize all ovules of S. castanea. We found that significant differences in the nectar robbing rate did not affect seed set in any of the years for either population of S. castanea. In the robbed and unrobbed flowers, nectar was consistently replenished every night at higher concentrations. Bagging, nectar robbing, and sufficient pollination did not affect flower longevity. Salvia castanea required only 5–10 pollen grains to achieve the maximum seed set. However, pollinators depositing more than 10 pollen grains after a single visit ensured a high seed set of >80%. Our results suggest that nectar availability, floral longevity maintenance, and sufficient pollen deposition mitigate the effects of nectar robbing on the reproductive success of S. castanea. These results are expected to further our understanding of plant–animal interactions and the ecological consequences of nectar robbing. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

8 pages, 1244 KiB  
Protocol
A Simple Way to Quantify Plastic in Bats (Mammalia: Chiroptera) Using an Ultraviolet Flashlight
by Letícia Lima Correia, Ariane de Sousa Brasil, Thiago Bernardi Vieira, Magali Gonçalves Garcia, Daniela de Melo e Silva, Ana Beatriz Alencastre-Santos and Danielle Regina Gomes Ribeiro-Brasil
Methods Protoc. 2025, 8(4), 80; https://doi.org/10.3390/mps8040080 - 17 Jul 2025
Viewed by 324
Abstract
Bats, as key ecological players, interact with a diverse array of organisms and perform essential roles in ecosystems, including pollination, pest control, and seed dispersal. However, their populations face significant threats from habitat contamination, particularly from microplastics (MPs). This study introduces a novel, [...] Read more.
Bats, as key ecological players, interact with a diverse array of organisms and perform essential roles in ecosystems, including pollination, pest control, and seed dispersal. However, their populations face significant threats from habitat contamination, particularly from microplastics (MPs). This study introduces a novel, efficient, and cost-effective method for visualizing transparent microplastics using ultraviolet (UV) light. By employing handheld UV flashlights with a wavelength range of 312 to 400 nm, we enhance the detection of MPs that may otherwise go unnoticed due to color overlap with filtration membranes. All necessary precautions were taken during sampling and analysis to minimize the risk of contamination and ensure the reliability of the results. Our findings demonstrate that the application of UV light significantly improves the visualization and identification of MPs, particularly transparent fibers. This innovative approach contributes to our understanding of plastic contamination in bat habitats and underscores the importance of monitoring environmental pollutants to protect bat populations and maintain ecosystem health. Full article
(This article belongs to the Section Biochemical and Chemical Analysis & Synthesis)
Show Figures

Figure 1

22 pages, 6781 KiB  
Article
Seasonal Variation in Flower Traits, Visitor Traits, and Reproductive Success of Solanum sisymbriifolium Lamarck (Solanaceae) in the Rarh Region of West Bengal, India
by Ujjwal Layek, Pappu Majhi, Alokesh Das, Prakash Karmakar and Arijit Kundu
Biology 2025, 14(7), 865; https://doi.org/10.3390/biology14070865 - 16 Jul 2025
Viewed by 858
Abstract
The wild tomato (Solanum sisymbriifolium) is a globally distributed shrubby weed with both negative and positive impacts, including its invasive properties and the potential for pharmaceutical and traditional medicinal uses. Despite its ecological significance, the plant’s reproductive biology and pollination ecology [...] Read more.
The wild tomato (Solanum sisymbriifolium) is a globally distributed shrubby weed with both negative and positive impacts, including its invasive properties and the potential for pharmaceutical and traditional medicinal uses. Despite its ecological significance, the plant’s reproductive biology and pollination ecology remain poorly understood. This study aimed to investigate the floral biology, pollination ecology, and plant reproduction of the weed species. Some flower traits, such as flowering intensity, flower display size, and pollen and ovule production, peaked during spring, summer, and the monsoon, while flower longevity and stigmatic receptivity were the longest in winter. The plant species was self-compatible (ISI = 0.02), heavily depended on pollinators (IDP = 0.72), and experienced minimal pollination limitation (D = 0.10) under open-pollination conditions. Flower visitors’ traits (e.g., abundance, diversity, and richness) were higher in the spring, summer, and the monsoon, and these were lower in winter. The vital pollination service was provided by Amegilla zonata, Ceratina binghami, Lasioglossum cavernifrons, Nomia (Curvinomia) strigata, Tetragonula pagdeni, Xylocopa aestuans, Xylocopa amethystina, Xylocopa fenestrata, and Xylocopa latipes. Reproductive success, as indicated by fruit and seed set, varied seasonally, being higher during the spring–monsoon period and lower in winter. These findings support effective management of this weed species and help conserve the associated bee populations. Full article
(This article belongs to the Special Issue Pollination Biology)
Show Figures

Graphical abstract

21 pages, 15035 KiB  
Article
Birds, Bees, and Botany: Measuring Urban Biodiversity After Nature-Based Solutions Implementation
by Mónica Q. Pinto, Simone Varandas, Emmanuelle Cohen-Shacham and Edna Cabecinha
Diversity 2025, 17(7), 486; https://doi.org/10.3390/d17070486 - 16 Jul 2025
Viewed by 423
Abstract
Nature-based Solutions (NbS) are increasingly adopted in urban settings to restore ecological functions and enhance biodiversity. This study evaluates the effects of NbS interventions on bird, insect, and plant communities in the Cavalum Valley urban green area, Penafiel (northern Portugal). Over a three-year [...] Read more.
Nature-based Solutions (NbS) are increasingly adopted in urban settings to restore ecological functions and enhance biodiversity. This study evaluates the effects of NbS interventions on bird, insect, and plant communities in the Cavalum Valley urban green area, Penafiel (northern Portugal). Over a three-year period, systematic field surveys assessed changes in species richness, abundance, and ecological indicators following actions such as riparian restoration, afforestation, habitat diversification, and invasive species removal. Results revealed a marked increase in bird overall abundance from 538 to 941 individuals and in average pollinator population size from 9.25 to 12.20. Plant diversity also improved, with a rise in native and RELAPE-listed species (5.23%). Functional group analyses underscored the importance of vegetative structure in supporting varied foraging and nesting behaviours. These findings highlight the effectiveness of integrated NbS in enhancing biodiversity and ecological resilience in urban landscapes while reinforcing the need for long-term monitoring to guide adaptive management and conservation planning. Future work could evaluate ecological resilience thresholds and community participation in citizen science monitoring. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Graphical abstract

23 pages, 1480 KiB  
Article
Intercropping Enhances Arthropod Diversity and Ecological Balance in Cowpea, Hemp, and Watermelon Systems
by Ikponmwosa N. Egbon, Beatrice N. Dingha, Gilbert N. Mukoko and Louis E. Jackai
Insects 2025, 16(7), 724; https://doi.org/10.3390/insects16070724 - 16 Jul 2025
Viewed by 464
Abstract
This study investigates arthropod assemblage in cowpea, hemp, and watermelon grown both as monocrops and intercrops using three sampling techniques: direct visual counts, sticky cards, and pan traps. A total of 31,774 arthropods were collected, spanning two classes [Arachnida (0.07%) and Insecta (99.93%)], [...] Read more.
This study investigates arthropod assemblage in cowpea, hemp, and watermelon grown both as monocrops and intercrops using three sampling techniques: direct visual counts, sticky cards, and pan traps. A total of 31,774 arthropods were collected, spanning two classes [Arachnida (0.07%) and Insecta (99.93%)], 11 orders, and 82 families representing diverse functional groups. Arachnids were represented by a single family (Araneae). Among insects, the composition included Diptera (36.81%), Thysanoptera (24.64%), Hemiptera (19.43%), Hymenoptera (11.58%), Coleoptera (6.84%), Lepidoptera (0.076%) and Blattodea, Odonata, Orthoptera, Psocodea (≤0.005%). Roughly 10% of the total arthropods were pollinators, while the remainder were primarily herbivores and predators. Apidae were abundant in all treatments except for watermelon monocrops. Intercropping supported more pollinators, particularly Apidae, Halictidae, and Sarcophagidae. However, herbivores dominated (>50%) in each system, largely due to high presence of thrips and cicadellids. Predators accounted for approximately 30%, with dolichopodids (Diptera) being the most dominant. Watermelon yield increased by 30–60% in the intercrop systems. While intercropping increases overall arthropod abundance, it also creates a more balanced community where beneficial organisms are not heavily outnumbered by pests and contributes to enhanced ecological resilience and crop performance. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

20 pages, 3714 KiB  
Article
Seed Mixes in Landscape Design and Management: An Untapped Conservation Tool for Pollinators in Cities
by Cláudia Fernandes, Ana Medeiros, Catarina Teixeira, Miguel Porto, Mafalda Xavier, Sónia Ferreira and Ana Afonso
Land 2025, 14(7), 1477; https://doi.org/10.3390/land14071477 - 16 Jul 2025
Viewed by 1017
Abstract
Urban green spaces are increasingly recognized as important habitats for pollinators, and wildflower seed mixes marketed as pollinator-friendly are gaining popularity, though their actual conservation value remains poorly understood. This study provides the first systematic screening of commercially available seed mixes in Portugal, [...] Read more.
Urban green spaces are increasingly recognized as important habitats for pollinators, and wildflower seed mixes marketed as pollinator-friendly are gaining popularity, though their actual conservation value remains poorly understood. This study provides the first systematic screening of commercially available seed mixes in Portugal, evaluating their taxonomic composition, origin, life cycle traits, and potential to support pollinator communities. A total of 229 seed mixes were identified. Although these have a predominance of native species (median 86%), the taxonomic diversity was limited, with 91% of mixes comprising species from only one or two families, predominantly Poaceae and Fabaceae, potentially restricting the range of floral resources available to pollinators. Only 21 seed mixes met the criteria for being pollinator-friendly, based on a three-step decision tree prioritizing native species, extended flowering periods, and visual diversity. These showed the highest percentage of native species (median 87%) and a greater representation of flowering plants. However, 76% of all mixes still included at least one non-native species, although none is considered invasive. Perennial species dominated all seed mix types, indicating the potential for the long-term persistence of wildflower meadows in urban spaces. Despite their promise, the ecological quality and transparency of the seed mix composition remain inconsistent, with limited certification or information on species origin. This highlights the need for clearer labeling, regulatory guidance, and ecologically informed formulations. Seed mixes, if properly designed and implemented, represent a largely untapped yet cost-effective tool for enhancing the pollinator habitats and biodiversity within urban landscapes. Full article
Show Figures

Figure 1

22 pages, 1670 KiB  
Review
Molecular Control of Flower Colour Change in Angiosperms
by Fernanda M. Rezende, Magdalena Rossi and Cláudia M. Furlan
Plants 2025, 14(14), 2185; https://doi.org/10.3390/plants14142185 - 15 Jul 2025
Viewed by 827
Abstract
Floral pigmentation contributes directly to reproductive strategies and fitness by shaping pollinator behaviour, and its regulation therefore represents a critical aspect of flower development. Additionally, it is a major determinant of aesthetic and economic value in the ornamental plant industry. This review explores [...] Read more.
Floral pigmentation contributes directly to reproductive strategies and fitness by shaping pollinator behaviour, and its regulation therefore represents a critical aspect of flower development. Additionally, it is a major determinant of aesthetic and economic value in the ornamental plant industry. This review explores the genetic, biochemical, and ecological bases of floral colour change, focusing on the biosynthesis and regulation of the three major classes of plant pigments: carotenoids, flavonoids (particularly anthocyanins), and betalains. These pigments, derived from primary metabolism through distinct biosynthetic pathways, define the spatial and temporal variability of floral colouration. We discuss the molecular mechanisms underlying flower colour change from opening to senescence, highlighting pigment biosynthesis and degradation, pH shifts, metal complexation, and co-pigmentation. Additionally, we address the regulatory networks, including transcription factors (MYB, bHLH, and WDR) and post-transcriptional control, that influence pigment production. Finally, we provide a comprehensive survey of angiosperm species exhibiting dynamic petal colour changes, emphasizing how these mechanisms are regulated. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Flower Development and Plant Reproduction)
Show Figures

Figure 1

17 pages, 310 KiB  
Perspective
Honeybee Sentience: Scientific Evidence and Implications for EU Animal Welfare Policy
by Roberto Bava, Giovanni Formato, Giovanna Liguori and Fabio Castagna
Vet. Sci. 2025, 12(7), 661; https://doi.org/10.3390/vetsci12070661 - 12 Jul 2025
Viewed by 621
Abstract
The growing recognition of animal sentience has led to notable progress in European Union animal welfare legislation. However, a significant inconsistency remains: while mammals, birds, and cephalopods are legally protected as sentient beings, honeybees (Apis mellifera)—despite robust scientific evidence of their [...] Read more.
The growing recognition of animal sentience has led to notable progress in European Union animal welfare legislation. However, a significant inconsistency remains: while mammals, birds, and cephalopods are legally protected as sentient beings, honeybees (Apis mellifera)—despite robust scientific evidence of their cognitive, emotional, and sensory complexity—are excluded from such protections. This manuscript examines, from an interdisciplinary perspective, the divergence between emerging evidence on invertebrate sentience and current EU legal frameworks. Honeybees and cephalopods serve as comparative case studies to assess inconsistencies in the criteria for legal recognition of sentience. Findings increasingly confirm that honeybees exhibit advanced cognitive functions, emotional states, and behavioral flexibility comparable to those of legally protected vertebrates. Their omission from welfare legislation lacks scientific justification and raises ethical and ecological concerns, especially given their central role in pollination and ecosystem stability. In general, we advocate for the inclusion of Apis mellifera in EU animal welfare policy. However, we are aware that there are also critical views on their introduction, which we address in a dedicated paragraph of the manuscript. For this reason, we advocate a gradual and evidence-based approach, guided by a permanent observatory, which could ensure that legislation evolves in parallel with scientific understanding, promoting ethical consistency, sustainable agriculture, and integrated health under the One Health framework. This approach would meet the concerns of consumers who consider well-being and respect for the environment as essential principles of breeding, and who carefully choose products from animals raised with systems that respect welfare, with indisputable economic advantages for the beekeeper. Full article
11 pages, 6980 KiB  
Communication
Pollination and Essential Oil Production of Lavandula angustifolia Mill. (Lamiaceae)
by Riley B. Jackson, Tyler M. Wilson, Joseph S. Wilson, Zabrina Ruggles, Lindsey Topham Wilson, Chris Packer, Jacob G. Young, Christopher R. Bowerbank and Richard E. Carlson
Int. J. Plant Biol. 2025, 16(3), 72; https://doi.org/10.3390/ijpb16030072 - 1 Jul 2025
Viewed by 3166
Abstract
Lavandula angustifolia Mill., lavender, is an aromatic plant in the Lamiaceae family. Lavender, which is native to the Mediterranean region but cultivated throughout the world, is an important economic plant. Several studies have investigated two aspects of this aromatic plant: (1) which pollinators, [...] Read more.
Lavandula angustifolia Mill., lavender, is an aromatic plant in the Lamiaceae family. Lavender, which is native to the Mediterranean region but cultivated throughout the world, is an important economic plant. Several studies have investigated two aspects of this aromatic plant: (1) which pollinators, particularly bees, pollinate lavender, and (2) the composition of lavender essential oil. However, little research has been conducted to investigate how pollination affects either the yield or phytochemistry of lavender. The current study, which was conducted in North America, investigates which bee species visit lavender and how pollination affects plant chemistry, specifically the essential oil produced by lavender. Over the course of the 5-week observational period, a total of 12 species (across 10 genera) of bees were identified visiting lavender. Compared to previous studies on cultivated lavender at the same site (Mt. Nebo Botanical Farm, Mona, UT), four bee species not previously observed on lavender were identified. These included Hoplitis producta, Nomada sp., Osmia trevoris, and Megachile snowi. Pollinated lavender, compared to lavender excluded from pollinators, produced more essential oil (yield (w/w) = 1.49% vs. 1.07%), lower relative amounts of linalool (35.4% vs. 39.9%), and higher relative amounts of linalyl acetate (21.3% vs. 16.8%). The findings of this study demonstrate the ecological interactions between pollinators and lavender, and how those interactions impact phytochemistry. Full article
(This article belongs to the Special Issue Plant Resistance to Insects)
Show Figures

Figure 1

22 pages, 317 KiB  
Review
Glyphosate-Based Herbicides and Their Potential Impact on the Microbiota of Social Bees
by Juan P. Muñoz, Diego Soto-Jiménez, Anghel Brito and Claudio Quezada-Romegialli
Toxics 2025, 13(7), 551; https://doi.org/10.3390/toxics13070551 - 29 Jun 2025
Viewed by 561
Abstract
Bee pollination is essential for terrestrial ecosystems and crop production. However, the species richness of wild bees and other pollinators has declined over the past 50 years, with some species experiencing dramatic decreases. A key factor in maintaining bee health is their gut [...] Read more.
Bee pollination is essential for terrestrial ecosystems and crop production. However, the species richness of wild bees and other pollinators has declined over the past 50 years, with some species experiencing dramatic decreases. A key factor in maintaining bee health is their gut microbiota, which plays an essential role in digestion, nutrient absorption, immune function, and resistance to pathogens. Disruptions to this microbiota can severely impact bee health, rendering them more susceptible to diseases and environmental stressors. Glyphosate, one of the most widely used herbicides, has been extensively studied for its effects on various organisms, with increasing evidence indicating its potential to disrupt bee microbiota. This review explores recent research on the effects of glyphosate and its formulations on the gut microbiota of honeybees and bumblebees. It examines species-specific responses, methodological approaches, and broader ecological implications. While evidence indicates that glyphosate can alter the gut microbiome in some bee species, its effects vary depending on exposure conditions, species, and the composition of microbial communities. Additionally, glyphosate formulations containing surfactants may exacerbate these effects. Given the endocrine-disrupting properties of glyphosate, further research is needed to understand the long-term consequences of exposure, especially its impact on hormonal regulation and bee resilience to environmental stressors. Full article
Show Figures

Graphical abstract

14 pages, 2339 KiB  
Article
The Effects of Frost and Fire on the Traits, Resources, and Floral Visitors of a Cerrado Plant, and Their Impact on the Plant–Visitor Interaction Network and Fruit Formation
by Gabriela Fraga Porto, José Henrique Pezzonia, Ludimila Juliele Carvalho Leite, Jordanny Luiza Sousa Santos and Kleber Del-Claro
Plants 2025, 14(13), 1977; https://doi.org/10.3390/plants14131977 - 28 Jun 2025
Viewed by 1107
Abstract
The Cerrado, the world’s most diverse savanna, has several adaptations to fire. However, intense and frequent fires, especially after frosts, can severely impact this ecosystem. Despite this, few studies have evaluated the combined effects of frost followed by fire. We investigated how these [...] Read more.
The Cerrado, the world’s most diverse savanna, has several adaptations to fire. However, intense and frequent fires, especially after frosts, can severely impact this ecosystem. Despite this, few studies have evaluated the combined effects of frost followed by fire. We investigated how these disturbances affect plant traits, floral resources, floral visitor richness, and the structures of plant–pollinator interaction networks by using Byrsonima intermedia, a common Malpighiaceae shrub, as a model. We compared areas affected by frost alone and frost followed by fire and the same fire-affected area two years later. We examined pollen, oil volume, buds, and racemes and recorded floral visitors. Our main hypothesis was that fire-affected areas would exhibit higher floral visitor richness, more conspicuous plant traits, and greater fruit production than areas affected by frost only, which would show higher interaction generalization due to stronger negative impacts. The results confirmed that frost drastically reduced floral traits, visitor richness, and reproductive success. In contrast, fire facilitated faster recovery, triggering increased floral resource quantities, richer pollinator communities, more specialized interactions, and greater fruit production. Our findings highlight that fire, despite its impact, promotes faster ecosystem recovery compared to frost, reinforcing its ecological role in the Cerrado’s resilience. Full article
Show Figures

Figure 1

13 pages, 886 KiB  
Article
Production of Indole-3-Acetic Acid and Degradation of 2,4-D by Yeasts Isolated from Pollinating Insects
by Camila G. de Oliveira, Angela Alves dos Santos, Eduardo J. P. Pritsch, Stéfany K. Bressan, Anderson Giehl, Odinei Fogolari, Altemir J. Mossi, Helen Treichel and Sérgio L. Alves
Microorganisms 2025, 13(7), 1492; https://doi.org/10.3390/microorganisms13071492 - 26 Jun 2025
Viewed by 388
Abstract
Synthetic herbicides such as glyphosate and 2,4-D are widely used in agriculture but can negatively impact non-target organisms, including microorganisms essential for ecological balance. Yeasts associated with pollinating insects play crucial roles in plant–insect interactions, yet their responses to herbicides remain understudied. This [...] Read more.
Synthetic herbicides such as glyphosate and 2,4-D are widely used in agriculture but can negatively impact non-target organisms, including microorganisms essential for ecological balance. Yeasts associated with pollinating insects play crucial roles in plant–insect interactions, yet their responses to herbicides remain understudied. This study aimed to evaluate the capacity of yeasts isolated from bees and beetles to produce indole-3-acetic acid (IAA), a plant-growth-promoting hormone, as well as their ability to tolerate or degrade glyphosate (in the commercial herbicide Zapp QI 620®) and 2,4-D (in the commercial Aminol 806®). Seven yeast strains were isolated from insects, identified via ITS sequencing, and assessed for IAA production in YPD medium. Growth assays were conducted under varying herbicide concentrations, and 2,4-D degradation was analyzed using high-performance liquid chromatography. All strains produced IAA, with Papiliotrema siamensis CHAP-239 exhibiting the highest yield (4.17 mg/L). Glyphosate completely inhibited growth in all strains, while 2,4-D showed dose-dependent effects, with four strains tolerating lower concentrations. Notably, Meyerozyma caribbica CHAP-248 degraded up to 46% of 2,4-D at 6.045 g/L. These findings highlight the ecological risks herbicides pose to beneficial yeasts and suggest the potential of certain strains for bioremediation in herbicide-contaminated environments. Overall, the study underscores the importance of preserving microbial biodiversity in the context of sustainable agriculture. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

Back to TopTop