Intercropping Enhances Arthropod Diversity and Ecological Balance in Cowpea, Hemp, and Watermelon Systems
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Plants
2.2. Experimental Design
2.3. Sampling
2.4. Crop Yield
2.5. Data Analyses
3. Results
3.1. Pollinator Abundance and Diversity in Intercrop and Monocrop Systems
3.2. Total Pollinators
3.3. Total Predator and Herbivore Distributions
3.4. Total Arthropods
3.5. Crop Yield Among Treatments
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gebru, H. A review on the comparative advantages of intercropping to mono-cropping system. J. Biol. Agric. Healthc. 2015, 5, 1–13. [Google Scholar]
- Miller, G.; Greene, J. Intercropping seedless watermelon and cotton. Hortscience 2018, 53, 1799–1803. [Google Scholar] [CrossRef]
- Ju, Q.; Ouyang, F.; Gu, S.; Qiao, F.; Yang, Q.; Qu, M.; Ge, F. Strip intercropping peanut with maize for peanut aphid biological control and yield enhancement. Agric. Ecosyst. Environ. 2019, 286, 106682. [Google Scholar] [CrossRef]
- Ouyang, F.; Su, W.; Zhang, Y.; Liu, X.; Su, J.; Zhang, Q.; Men, X.; Ju, Q.; Ge, F. Ecological control service of the predatory natural enemy and its maintaining mechanism in rotation-intercropping ecosystem via wheat-maize-cotton. Agric. Ecosyst. Environ. 2020, 301, e107024. [Google Scholar] [CrossRef]
- Glaze-Corcoran, S.; Hashemi, M.; Sadeghpour, A.; Jahanzad, E.; Afshar, R.K.; Liu, X.; Herbert, S.J. Understanding intercropping to improve agricultural resiliency and environmental sustainability. Adv. Agron. 2020, 162, 199–256. [Google Scholar]
- Dingha, B.N.; Jackai, L.E.; Amoah, B.A.; Akotsen-Mensah, C. Pollinators on cowpea Vigna unguiculata: Implications for intercrop ping to enhance biodiversity. Insects 2021, 12, 54. [Google Scholar] [CrossRef] [PubMed]
- Dingha, B.N.; Omaliko, P.C.; Amoah, B.A.; Jackai, L.E.; Shrestha, D. Evaluation of cowpea (Vigna unguiculata) in an intercropping system as pollinator enhancer for increased crop yield. Sustainability 2021, 13, 9612. [Google Scholar] [CrossRef]
- Dingha, B.N.; Mukoko, G.N.; Egbon, I.N.; Jackai, L.E. Intercropping industrial hemp and cowpea enhances the yield of squash -a pollinator dependent crop. Agriculture 2024, 14, 636. [Google Scholar] [CrossRef]
- Katumo, D.M.; Liang, H.; Ochola, A.C.; Lv, M.; Wang, Q.; Yang, C. Pollinator diversity benefits natural and agricultural ecosystems, environmental health, and human welfare. Plant Divers. 2022, 44, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Corlett, R.T. Safeguarding our future by protecting biodiversity. Plant Divers. 2020, 42, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, F.; Men, X.; Yang, B.; Su, J.; Zhang, Y.; Zhao, Z.; Ge, F. Maize benefits the predatory beetle, Propylea japonica (Thunberg), to provide potential to enhance biological control for aphids in cotton. PLoS ONE 2012, 7, e44379. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Men, X.; Zhao, W.; Li, C.; Zhang, Q.; Cai, Z.; Ge, F.; Ouyang, F. Flower strips as a bridge habitat facilitate the movement of predatory beetles from wheat to maize crops. Pest Manag. Sci. 2021, 77, 1839–1850. [Google Scholar] [CrossRef] [PubMed]
- Dingha, B.N.; Jackai, L.E. Chemical composition of four industrial hemp (Cannabis sativa L.) pollen and bee preference. Insects 2023, 14, 668. [Google Scholar] [CrossRef] [PubMed]
- Dingha, B.N.; Jackai, L.E.N. The potential impact of flower characteristics and pollen viability of four industrial hemp (Cannabis sativa L.) grain varieties on cross-pollination. Agronomy 2025, 15, 515. [Google Scholar] [CrossRef]
- Bland, R.G.; Jaques, H.E. How to Know the Insects, 3rd ed.; Waveland Press, Inc.: Long Grove, IL, USA, 1978; pp. 1–408. [Google Scholar]
- Hölldobler, B.; Wilson, E.O. The Ants; Harvard University Press: Cambridge, MA, USA, 1990; pp. 1–752. [Google Scholar]
- Hammer, O. PAST: PAleontological Statistics, v. 3.13 Reference Manual; Natural History Museum University of Oslo: Oslo, Norway, 2016; pp. 1–250. [Google Scholar]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Magurran, A.E. Measuring Biological Diversity; Wiley-Blackwell: Malden, MA, USA, 2004; pp. 1–248. [Google Scholar]
- de Mendiburu, F. agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.3-7. 2023. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 1 March 2025).
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Maechler, M.; Bolker, B.M. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.10.4. 2024. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 1 March 2025).
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed]
- Ogle, D.H.; Doll, J.C.; Wheeler, A.P.; Dinno, A. FSA: Simple Fisheries Stock Assessment Methods. R Package Version 0.9.5. 2023. Available online: https://CRAN.R-project.org/package=FSA (accessed on 1 March 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 1 March 2025).
- Slowikowski, K. ggrepel: Automatically Position Non-Overlapping Text Labels with ‘ggplot2’. R Package Version 0.9.6. 2024. Available online: https://CRAN.R-project.org/package=ggrepel (accessed on 4 July 2025).
- Igbinosa, B.I.; Oigiangbe, N.O.; Egbon, N.I. Insect pests of rain-fed upland rice and their natural enemies in Ekpoma, Edo State, Nigeria. Int. J. Trop. Insect Sci. 2007, 27, 70–77. [Google Scholar] [CrossRef]
- Ajayi, O.S.; Samuel-Foo, M. Hemp pest spectrum and potential relationship between Helicoverpa zea infestation and hemp production in the United States in the face of climate change. Insects 2021, 12, 940. [Google Scholar] [CrossRef] [PubMed]
- Buss, E.A.; Skelley, P.E. An Initial List of Arthropods on Hemp (Cannabis sativa L.; Cannabaceae) in Florida; FDACS-P-02203; Florida Department Agriculture and Consumer Services, Division of Plant Industry: Miami, FL, USA, 2023. [Google Scholar]
- Ahmed, M.Z.; McKenzie1, C.L.; Osborne, L.S. Arthropod and mollusk pests of hemp, Cannabis sativa (Rosales: Cannabaceae), and their indoor management plan in Florida. J. Integr. Pest Manag. 2024, 15, 1–22. [Google Scholar] [CrossRef]
- O’Brien, C.; Arathi, H.S. Bee diversity and abundance on flowers of industrial hemp (Cannabis sativa L.). Biomass Bioenergy 2019, 122, 331–335. [Google Scholar] [CrossRef]
- Henne, C.S.; Rodriguez, E.; Adamczyk, J.J. A survey of bee species found pollinating watermelons in the Lower Rio Grande Valley of Texas. Psyche 2012, 2012, 357250. [Google Scholar] [CrossRef]
- Campbell, J.W.; Stanley-Stahra, C.; Bammera, M.; Daniels, J.C.; Ellis, J.D. Contribution of bees and other pollinators to watermelon (Citrullus lanatus Thunb.) pollination. J. Apic. Res. 2019, 58, 597–603. [Google Scholar] [CrossRef]
- Huey, S.; Nieh, J.C. Foraging at a safe distance: Crab spider effects on pollinators. Ecol. Entomol. 2017, 42, 469–476. [Google Scholar] [CrossRef]
- Pekár, S.; Šoltysová, V.; Booysen, R.; Arnedo, M. Evolution of spider- and ant-eating habits in crab spiders (Araneae: Thomisidae). Zool. J. Linn. Soc. 2025, 203, zlae068. [Google Scholar] [CrossRef]
- Gavini, S.S.; Quintero, C. Predation risk and floral rewards: How pollinators balance these conflicts and the consequences on plant fitness. Curr. Res. Insect Sci. 2024, 6, 100091. [Google Scholar] [CrossRef] [PubMed]
- Garantonakis, N.; Varikou, K.; Birouraki, A.; Edwards, M.; Kalliakaki, V.; Andrinopoulos, F. Comparing the pollination services of honey bees and wild bees in a water melon field. Sci. Hortic. 2016, 204, 138–144. [Google Scholar] [CrossRef]
- Adlerz, W.C. Honey bee visit numbers and water melon pollination. J. Econ. Entomol. 1966, 59, 28–30. [Google Scholar] [CrossRef]
- Moradeshaghi, M.J.; Bohart, G.E. The biology of Euphytomima nomiivora (Diptera: Sarcophagidae), a parasite of the Alkali Bee, Nomia melanderi (Hymenoptera: Halictidae). J. Kansas Entomol. Soc. 1968, 41, 456–473. [Google Scholar]
- Young, O.P.; Edward, G.B. Spiders in united states field crops and their potential effect on crop pests. J. Arachnol. 1990, 18, 1–27. [Google Scholar]
- Peterson, J.A.; Romero, S.A.; Harwood, J.D. Pollen interception by linyphiid spiders in a corn agroecosystem: Implications for dietary diversification and risk-assessment. Arthropod-Plant Interact. 2010, 4, 207–217. [Google Scholar] [CrossRef]
- Ulrich, H. Predation by adult Dolichopodidae (Diptera): A review of literature with an annotated prey-predator list. Studia Dipterol. 2004, 11, 369–403. [Google Scholar]
- Cicero, J.M.; Adair, M.M.; Adair, R.C.; Hunter, W.B.; Avery, P.B.; Mizell, R.F. Predatory behavior of long-legged flies (Diptera: Dolichopodidae) and their potential negative effects on the parasitoid biological control agent of the Asian citrus psyllid (Hemiptera: Liviidae). Fla. Entomol. 2017, 100, 485–487. [Google Scholar] [CrossRef]
- Arnold, S.E.J.; Elisante, F.; Mkenda, P.A.; Tembo, Y.L.B.; Ndakidemi, P.A.; Gurr, G.M.; Darbyshire, I.A.; Belmain, S.R.; Stevenson, P.C. Beneficial insects are associated with botanically rich margins with trees on small farms. Sci. Rep. 2021, 11, 15190. [Google Scholar] [CrossRef] [PubMed]
- Loughridge, A.H.; Luff, M.L. Aphid predation by Herpalus rufipes (Degeer) (Coleoptera: Carabidae) in the laboratory and field. J. Appl. Ecol. 1983, 20, 451–462. [Google Scholar] [CrossRef]
- Quellhorst, H.; Athanassiou, C.G.; Zhu, K.Y.; Morrison, W.R. The biology, ecology and management of the larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae). J. Stored Prod. Res. 2021, 94, 101860. [Google Scholar] [CrossRef]
- Losey, J.E.; Vaughan, M. The economic value of ecological services provided by insects. BioScience 2006, 56, 311–323. [Google Scholar] [CrossRef]
- Mdellel, L.; Zouari, S.; Jouini, J.G.; Adouani, R.; Halima, M.K.B. Checklist and distribution of coccinellid aphid predators in Tunisia. Jordan J. Nat. Hist. 2024, 11, 96–104. [Google Scholar]
- United States Sustainability Alliance (USSA). U.S. Sustainable Agriculture: Laws, Policies, and Programs; USSA: Tulsa, OK, USA, 2024; pp. 1–23. [Google Scholar]
- Ajayi, E.O.; Adeoye, I.B.; Shittu, O.A. Economic analysis of intercropping okra with legumes. J. Agric. Sci. 2017, 62, 193–202. [Google Scholar] [CrossRef]
- Legodi, K.D.; Ogola, J.B.O. Cassava-legume intercrop: I. Effects of relative planting dates of legumes on cassava productivity. Acta Agric. Scand. Sect. B Soil Plant Sci. 2020, 70, 150–157. [Google Scholar] [CrossRef]
- Fedeli, S.B.; Leibler, S. Toward systems agroecology: Design and control of intercropping. Proc. Natl. Acad. Sci. USA 2024, 121, e2415315121. [Google Scholar] [CrossRef] [PubMed]
- Ogola, J.B.O.; Mathews, C.; Magongwa, S.M. The productivity of cassava-legume intercropping system in a dry environment in Nelspruit, South Africa. Afr. Crop Sci. Conf. Proc. 2013, 11, 61–65. [Google Scholar]
- Taah, K.J.; Buah, J.N.; Ogyiri, A.E. Evaluation of spatial arrangement of legumes on weed suppression in cassava production. J. Agric. Biol. Sci. 2017, 12, 2–11. [Google Scholar]
- Landis, D.A.; Gardiner, M.M.; Van Der Werf, W.; Swinton, S.M. Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes. Proc. Natl. Acad. Sci. USA 2008, 105, 20552–20557. [Google Scholar] [CrossRef] [PubMed]
- Mattias, J.; Riccardo, B.; Barbara, E.; Henrik, G.S.; Jan, B.; Berta, C.L.; Camilla, W.; Ola, O. Ecological production functions for biological control services in agricultural landscapes. Methods Ecol. Evol. 2014, 5, 243–252. [Google Scholar] [CrossRef]
- Blackwell, B.F.; Klug, P.E.; Humberg, L.A.; Brym, Z.T.; Kluever, B.M.; Edwards, J. Cultivation of industrial hemp on and near airports: Implications for wildlife use and risk to aviation safety. Hum.-Wildl. Interact. 2022, 16, 373–383. [Google Scholar]
Family | Pollinator Types (Common Names) | Mean Pollinator Count ± SE (Total Count) * | Statistics | |||||
---|---|---|---|---|---|---|---|---|
Cowpea | Hemp | Watermelon | Hemp + Cowpea | Hemp + Watermelon | Watermelon + Cowpea | |||
Apidae | Honey bees | 3.67 ± 1.20 ab (11) | 4.33 ± 0.88 ab (13) | 0.33 ± 0.33 b (1) | 4.50 ± 2.63 ab (18) | 8.00 ± 1.47 a (32) | 7.50 ± 1.44 a (30) | χ2 = 13.58, p = 0.019 |
Bumble bees | 2.67 ± 0.33 b (8) | 2.67 ± 0.88 b (8) | 6.00 ± 2.65 b (18) | 21.50 ± 5.20 a (86) | 31.0 ± 3.72 a (124) | 26.25 ± 3.40 a (105) | χ2 = 61.85, p < 0.001 | |
Carpenter bees | 0.00 ± 0.00 b (0) | 0.00 ± 0.00 b (0) | 0.00 ± 0.00 b (0) | 2.25 ± 0.25 a (9) | 0.75 ± 0.25 ab (3) | 1.75 ± 0.85 ab (7) | H = 14.73, p = 0.012 | |
Halictidae | Sweat bees | 3.67 ± 2.3 (11) | 0.00 ± 0.00 (0) | 2.33 ± 1.33 (7) | 2.00 ± 1.08 (8) | 4.75 ± 1.11 (19) | 2.94 ± 1.47 (20) | H = 9.14, p = 0.104 |
Vespidae | Wasps | 12.00 ± 5.50 ab (36) | 1.00 ± 0.58 ab (3) | 0.00 ± 0.00 b (0) | 21.00 ± 5.9 a (84) | 2.00 ± 1.08 ab (8) | 10.28 ± 5.14 ab (66) | H = 16.04, p = 0.007 |
Taxa count | 4 | 3 | 3 | 5 | 5 | 5 | ||
Individuals | 66 | 24 | 26 | 205 | 186 | 228 | ||
Shannon (1D) | 1.18 (3.3) | 0.96 (2.6) | 0.73 (2.1) | 1.21 (3.4) | 1.01 (2.8) | 1.30 (3.7) | ||
Dominance (2D) | 0.37 (2.7) | 0.42 (2.4) | 0.55 (1.8) | 0.36 (2.8) | 0.47 (2.1) | 0.32 (3.1) | ||
Evenness | 0.82 | 0.87 | 0.69 | 0.67 | 0.55 | 0.74 | ||
Margalef | 0.72 | 0.63 | 0.61 | 0.75 | 0.77 | 0.74 |
Family | Species | Treatments | |||||
---|---|---|---|---|---|---|---|
Monocrops | Intercrops | ||||||
Cowpea | Hemp | Watermelon | Hemp + Cowpea | Hemp + Watermelon | Watermelon + Cowpea | ||
Cantharidae | Chauliognathus pensylvanicus | 0 | 0 | 0 | 1 | 0 | 0 |
Syrphidae | Toxomerus politus | 0 | 0 | 0 | 0 | 0 | 1 |
Andrenidae | Calliopsis species | 0 | 0 | 1 | 0 | 0 | 0 |
Apidae | Apis mellifera | 0 | 0 | 1 | 4 | 2 | 2 |
Bombus impatiens | 3 | 3 | 2 | 2 | 3 | 4 | |
Bombus pensylvanicus | 0 | 3 | 1 | 0 | 1 | 0 | |
Ceratina strenua | 1 | 0 | 0 | 0 | 2 | 1 | |
Melissodes bimaculatus | 1 | 1 | 0 | 0 | 1 | 0 | |
Ptilothrix bombiformis | 0 | 0 | 0 | 1 | 1 | 1 | |
Svastra obliqua | 0 | 0 | 0 | 0 | 0 | 1 | |
Crabronidae | Cerceris bicornuta | 0 | 0 | 0 | 0 | 0 | 3 |
Cerceris sp. 1 | 0 | 0 | 0 | 0 | 1 | 0 | |
Cerceris sp. 2 | 1 | 0 | 0 | 0 | 0 | 0 | |
Formicidae | * Ant | 0 | 0 | 0 | 0 | 1 | 0 |
Brachymyrmex patagonicus | 0 | 0 | 1 | 1 | 0 | 0 | |
Camponotus festinatus | 0 | 0 | 0 | 1 | 0 | 0 | |
Lasius neoniger | 0 | 0 | 0 | 0 | 0 | 3 | |
Linepithema humile | 2 | 0 | 0 | 0 | 0 | 0 | |
Monomorium sp. | 2 | 0 | 1 | 1 | 0 | 1 | |
Pheidole species | 0 | 0 | 0 | 0 | 1 | 0 | |
Plagiolepsis species | 0 | 0 | 0 | 0 | 0 | 1 | |
Solenopsis sp. | 2 | 0 | 0 | 0 | 0 | 1 | |
Halictidae | Agapostemon sericeus | 0 | 0 | 1 | 4 | 5 | 1 |
Agapostemon virescens | 0 | 4 | 4 | 11 | 7 | 9 | |
Augochlora pura | 3 | 4 | 2 | 7 | 6 | 12 | |
Halictus confusus | 1 | 0 | 0 | 6 | 2 | 1 | |
Halictus rubicundus | 3 | 1 | 7 | 9 | 2 | 3 | |
Halictus sp. | 3 | 0 | 0 | 0 | 0 | 2 | |
Lasioglossum sp. 1 | 1 | 5 | 4 | 1 | 1 | 1 | |
Lasioglossum sp. 2 | 19 | 5 | 5 | 11 | 3 | 6 | |
Lasioglossum sp. 3 | 1 | 0 | 0 | 0 | 0 | 0 | |
Lasioglossum viridatum | 7 | 9 | 10 | 21 | 18 | 29 | |
* Sweat bee | 0 | 0 | 0 | 1 | 0 | 0 | |
Megachilidae | Megachile rotundata | 0 | 0 | 0 | 0 | 0 | 1 |
Osmia sp. | 1 | 0 | 0 | 0 | 0 | 0 | |
Pompilidae | * Spider wasp | 1 | 0 | 0 | 0 | 0 | 0 |
Anoplius americanus | 1 | 0 | 0 | 0 | 0 | 0 | |
Anoplius moestus | 1 | 0 | 0 | 2 | 0 | 0 | |
Anoplius sp. 1 | 0 | 0 | 0 | 1 | 0 | 0 | |
Anoplius sp. 2 | 0 | 0 | 0 | 2 | 0 | 1 | |
Aporinellus sp. | 0 | 0 | 1 | 2 | 0 | 1 | |
Scoliidae | Scolia dubia | 0 | 0 | 0 | 0 | 1 | 0 |
Sphecidae | Chalybion sp. | 1 | 0 | 0 | 0 | 0 | 0 |
Sceliphron destillatorium | 0 | 0 | 0 | 0 | 1 | 0 | |
Tiphiidae | Tiphia sp. | 1 | 0 | 0 | 1 | 0 | 3 |
Vespidae | * Wasp1 | 0 | 0 | 0 | 0 | 0 | 1 |
* Wasp2 | 1 | 0 | 0 | 0 | 0 | 0 | |
Parancistrocerus fulvipes | 0 | 0 | 0 | 0 | 0 | 1 | |
Polistes fuscatus | 0 | 0 | 0 | 0 | 0 | 1 | |
Vespula squamosa | 0 | 0 | 2 | 1 | 1 | 2 | |
Noctuidae | * Moth | 3 | 0 | 3 | 1 | 0 | 2 |
Taxa count | 23 | 9 | 16 | 23 | 20 | 29 | |
Individuals | 60 | 35 | 46 | 92 | 60 | 96 | |
Shannon (1D) | 2.59 (13.3) | 2.03 (7.6) | 2.45 (11.6) | 2.59 (13.3) | 2.49 (12.1) | 2.67 (14.4) | |
Dominance (2D) | 0.13 (7.7) | 0.15 (6.7) | 0.11 (9.1) | 0.11 (9.1) | 0.13 (7.7) | 0.13 (7.7) | |
Evenness | 0.58 | 0.84 | 0.73 | 0.58 | 0.60 | 0.50 | |
Margalef | 5.37 | 2.25 | 3.92 | 4.87 | 4.64 | 6.14 |
Family | Treatments | |||||
---|---|---|---|---|---|---|
Monocrops | Intercrops | |||||
Cowpea | Hemp | Watermelon | Hemp + Cowpea | Hemp + Watermelon | Watermelon + Cowpea | |
Muscidae | 0 | 1 | 1 | 0 | 40 | 3 |
Sarcophagidae | 290 | 46 | 133 | 370 | 164 | 367 |
Syrphidae | 4 | 1 | 5 | 13 | 9 | 29 |
Calliphoridae | 0 | 0 | 0 | 0 | 3 | 3 |
Apidae | 3 | 0 | 0 | 0 | 2 | 3 |
Chrysididae | 0 | 0 | 0 | 5 | 0 | 0 |
Crabronidae | 7 | 0 | 5 | 7 | 5 | 8 |
Formicidae | 0 | 0 | 1 | 19 | 8 | 17 |
Halictidae | 68 | 35 | 47 | 78 | 88 | 110 |
Pompilidae | 17 | 0 | 1 | 18 | 1 | 10 |
Sphecidae | 3 | 1 | 0 | 11 | 1 | 12 |
Vespidae | 26 | 13 | 18 | 23 | 21 | 40 |
Noctuidae | 0 | 1 | 0 | 0 | 0 | 2 |
Nymphalidae | 0 | 1 | 0 | 0 | 0 | 0 |
Gelechiidae | 0 | 3 | 0 | 0 | 3 | 4 |
Pieridae | 0 | 1 | 0 | 0 | 0 | 0 |
Taxa count | 8 | 10 | 8 | 9 | 12 | 13 |
Individuals | 418 | 103 | 211 | 544 | 345 | 608 |
Shannon (1D) | 1.04 (2.9) | 1.36 (3.9) | 1.09 (3.0) | 1.17 (3.2) | 1.51 (4.5) | 1.37 (3.9) |
Dominance (2D) | 0.51 (2.0) | 0.33 (3.0) | 0.46 (2.2) | 0.49 (2.0) | 0.31 (3.2) | 0.41 (2.4) |
Evenness | 0.35 | 0.39 | 0.37 | 0.36 | 0.38 | 0.30 |
Margalef | 1.16 | 1.94 | 1.31 | 1.27 | 1.88 | 1.87 |
S/n | Class (%) | Order (%) | Family (%) | Functional Trait | Total Count (Proportion Across Systems) a | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Monocrop | Intercrop | ||||||||||
Cowpea | Hemp | Watermelon | Hemp + Cowpea | Hemp + Watermelon | Watermelon + Cowpea | Total | |||||
1 | Arachnida (0.07) 2 | Araneae (0.07) 8 | * Spider (60.9) | p | 2 (14.29) | 5 (35.71) | 1 (7.14) | 1 (7.14) | 2 (14.29) | 3 (21.43) | 14 |
2 | Salticidae (17.4) | p | 2 (50) | 0 (0) | 1 (25) | 0 (0) | 1 (25) | 0 (0) | 4 | ||
3 | Tetragnathidae (4.35) | p | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (100) | 0 (0) | 1 | ||
4 | Thomisidae (17.4) | p | 0 (0) | 0 (0) | 1 (25) | 3 (75) | 0 (0) | 0 (0) | 4 | ||
5 | Insecta (99.93) 1 | Blattodea (0.003) 11 | Kalotermitidae (100) | d | 0 (0) | 0 (0) | 0 (0) | 1 (100) | 0 (0) | 0 (0) | 1 |
6 | Coleoptera (6.8) 5 | Bostrichidae (0.05) | h | 0 (0) | 1 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 | |
7 | Cantharidae (0.05) | po, p, h | 0 (0) | 0 (0) | 0 (0) | 1 (100) | 0 (0) | 0 (0) | 1 | ||
8 | Carabidae (6.22) | p, h | 46 (34.07) | 3 (2.22) | 3 (2.22) | 36 (26.67) | 6 (4.44) | 41 (30.37) | 135 | ||
9 | Chrysomelidae (45.49) | h | 92 (9.31) | 80 (8.10) | 269 (27.23) | 136 (13.77) | 221 (22.37) | 190 (19.23) | 988 | ||
10 | Coccinellidae (22.97) | p | 84 (16.83) | 20 (4.01) | 72 (14.43) | 90 (18.04) | 91 (18.04) | 143 (28.66) | 499 | ||
11 | Curculionidae (14.69) | h | 61 (19.12) | 31 (9.72) | 80 (25.08) | 53 (16.61) | 35 (10.97) | 59 (18.50) | 319 | ||
12 | Elateridae (1.75) | h, p | 2 (5.26) | 4 (10.53) | 13 (34.21) | 5 (13.16) | 8 (21.05) | 6 (15.79) | 38 | ||
13 | Hydrophilidae (3.18) | h, p | 8 (11.59) | 24 (34.78) | 2 (2.90) | 17 (24.64) | 16 (23.19) | 2 (2.90) | 69 | ||
14 | Lampyridae (0.97) | p | 0 (0) | 3 (14.29) | 2 (9.52) | 4 (19.05) | 1 (4.76) | 11 (52.38) | 21 | ||
15 | Mordellidae (2.81) | h, p | 8 (13.12) | 0 (0) | 10 (16.39) | 14 (22.95) | 14 (22.95) | 15 (24.59) | 61 | ||
16 | Scarabaeidae (1.11) | d, h | 3 (12.50) | 1 (4.17) | 4 (16.67) | 8 (33.33) | 3 (12.50) | 5 (20.83) | 24 | ||
17 | Staphylinidae (0.74) | p | 7 (43.75) | 1 (6.25) | 0 (0) | 4 (25.0) | 2 (12.50) | 2 (12.50) | 16 | ||
18 | Diptera (36.81) 1 | Calliphoridae (0.05) | po | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 3 (50) | 3 (50) | 6 | |
19 | Ceratopogonidae (0.09) | pa, n, h | 2 (18.18) | 0 (0) | 1 (9.09) | 6 (54.55) | 2 (18.18) | 0 (0) | 11 | ||
20 | Chironomidae (0.02) | d | 0 (0) | 0 (0) | 0 (0) | 1 (50) | 0 (0) | 1 (50) | 2 | ||
21 | Chloropidae (25.23) | d, h | 456 (15.45) | 209 (7.08) | 176 (5.96) | 775 (26.26) | 353 (11.96) | 982 (33.28) | 2951 | ||
22 | Dolichopodidae (50.33) | p | 448 (7.61) | 670 (11.38) | 745(12.66) | 1109 (18.84) | 1264 (21.47) | 1651 (28.05) | 5887 | ||
23 | Drosophilidae (3.57) | d, s | 118 (28.30) | 51 (12.23) | 140(33.57) | 24 (5.76) | 32 (7.67) | 52 (12.47) | 417 | ||
24 | Muscidae (0.39) | po | 0 (0) | 1 (2.22) | 1 (2.22) | 0 (0) | 40 (88.89) | 3 (6.67) | 45 | ||
25 | Phoridae (6.75) | n, d, h | 105 (13.29) | 216 (27.34) | 94 (11.90) | 76 (9.86) | 66 (8.35) | 233 (29.50) | 790 | ||
26 | Sarcophagidae (12.2) | p, po | 294 (20.60) | 51 (3.57) | 138 (9.67) | 387 (27.12) | 171 (11.90) | 386 (27.05) | 1427 | ||
27 | Sciaridae (0.72) | d, f | 19 (22.61) | 6 (7.14) | 6 (7.14) | 23 (27.38) | 15 (17.86) | 15 (17.86) | 84 | ||
28 | Syrphidae (0.53) | po | 4 (6.65) | 1 (1.61) | 5 (8.07) | 13 (20.96) | 9 (14.52) | 30 (48.38) | 62 | ||
29 | Tephritidae (0.12) | h | 4 (28.57) | 0 (0) | 6 (42.86) | 2 (14.29) | 1 (7.14) | 1 (7.14) | 14 | ||
30 | Hemiptera (19.43) 3 | Acanaloniidae (0.02) | h | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (100) | 0 (0) | 1 | |
31 | Aleyrodidae (4.21) | h | 78 (30) | 8 (3.08) | 13 (5) | 69 (26.53) | 35 (13.46) | 57 (21.92) | 260 | ||
32 | Anthocoridae (5.59) | p | 66 (19.13) | 13 (3.77) | 50 (14.49) | 73 (21.16) | 52 (15.07) | 91 (26.38) | 345 | ||
33 | Aphididae (19.35) | h | 94 (7.87) | 148 (12.40) | 215 (18.01) | 170 (14.24) | 333 (27.89) | 234 (19.60) | 1194 | ||
34 | Berytidae (0.08) | p, h | 1 (20) | 0 (0) | 3 (60) | 0 (0) | 0 (0) | 1 (20) | 5 | ||
35 | Blissidae (0.02) | h | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (100) | 0 (0) | 1 | ||
36 | Cicadellidae (56.82) | h | 767 (21.87) | 435 (12.40) | 456 (13.00) | 740 (21.10) | 369 (10.52) | 740 (21.10) | 3507 | ||
37 | Coreidae (0.26) | h | 4 (25) | 2 (12.50) | 0 (0) | 5 (31.25) | 2 (12.50) | 3 (18.75) | 16 | ||
38 | Cydnidae (0.03) | h | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 2 (100) | 2 | ||
39 | Derbidae (1.04) | h | 15 (23.44) | 6 (9.38) | 8 (12.50) | 14 (21.88) | 6 (9.38) | 15 (23.44) | 64 | ||
40 | Geocoridae (1.39) | p | 11 (12.79) | 14 (16.28) | 12 (13.95) | 23 (26.74) | 18 (20.93) | 8 (9.30) | 86 | ||
41 | Lygaeidae (0.11) | p | 0 (0) | 0 (0) | 1 (14.29) | 0 (0) | 3 (42.86) | 3 (42.86) | 7 | ||
42 | Membracidae (3.78) | h | 45 (19.31) | 14 (6.01) | 18 (7.73) | 57 (24.46) | 37 (15.88) | 62 (26.61) | 233 | ||
43 | Miridae (6.12) | h, p | 33 (8.73) | 103 (27.25) | 44 (11.64) | 93 (24.60) | 52 (13.76) | 53 (14.02) | 378 | ||
44 | Pentatomidae (0.76) | h | 5 (10.64) | 3 (6.38) | 1 (2.13) | 8 (17.02) | 11 (23.40) | 19 (40.43) | 47 | ||
45 | Plataspidae (0.02) | h | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (100) | 0 (0) | 1 | ||
46 | Psyllidae (0.19) | h | 1 (8.33) | 4 (33.30) | 0 (0) | 2 (16.70) | 0 (0) | 5 (41.70) | 12 | ||
47 | Reduviidae (0.07) | p | 0 (0) | 0 (0) | 0 (0) | 1 (25) | 1 (25) | 2 (50) | 4 | ||
48 | Rhopalidae (0.07) | h | 1 (25) | 0 (0) | 2 (50) | 1 (25) | 0 (0) | 0 (0) | 4 | ||
49 | Thyreocoridae (0.05) | h | 0 (0) | 3 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 3 | ||
50 | Tingidae (0.03) | h | 0 (0) | 0 (0) | 1 (50) | 0 (0) | 0 (0) | 1 (50) | 2 | ||
51 | Hymenoptera (11.58) 4 | Andrenidae (0.03) | po | 0 (0) | 0 (0) | 1 (100) | 0 (0) | 0 (0) | 0 (0) | 1 | |
52 | Apidae (13.7) | po | 27 (5.35) | 28 (5.56) | 23 (4.56) | 111 (22.02) | 168 (33.30) | 147 (29.17) | 504 | ||
53 | Braconidae (16.4) | p | 100 (16.53) | 36 (5.95) | 72 (11.90) | 160 (26.50) | 113 (18.70) | 124 (20.50) | 605 | ||
54 | Chalcididae (0.27) | p | 0 (0) | 0 (0) | 0 (0) | 5 (50) | 2 (20) | 3 (30) | 10 | ||
55 | Chrysididae (0.22) | p, po | 1 (12.5) | 1 (12.50) | 0 (0) | 5 (62.50) | 0 (0) | 1 (12.50) | 8 | ||
56 | Crabronidae (1.01) | p, po | 8 (21.6) | 0 (0) | 5 (13.50) | 7 (18.90) | 6 (16.20) | 11 (29.70) | 37 | ||
57 | Cynipidae (2.23) | h | 19 (23.20) | 20 (20.40) | 5 (6.10) | 10 (12.20) | 13 (15.90) | 15 (18.30) | 82 | ||
58 | Encyrtidae (0.95) | p | 0 (0) | 22 (62.90) | 6 (17.10) | 4 (11.40) | 2 (5.70) | 1 (2.90) | 35 | ||
59 | Eurytomidae (0.05) | p | 0 (0) | 2 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 2 | ||
60 | Evaniidae (0.65) | p | 2 (8.3) | 1 (4.20) | 5 (20.80) | 4 (16.70) | 5 (20.80) | 7 (29.20) | 24 | ||
61 | Figitidae (0.73) | p | 5 (18.50) | 1 (3.7) | 0 (0) | 6 (22.20) | 8 (29.60) | 7 (25.90) | 27 | ||
62 | Formicidae (2.20) | p, po, d | 12 (14.80) | 0 (0) | 4 (5) | 25 (30.90) | 12 (14.80) | 28 (34.60) | 81 | ||
63 | Halictidae (20.90) | po | 117 (15.20) | 63 (8.20) | 87 (11.30) | 157 (20.40) | 151 (19.60) | 194 (25.20) | 769 | ||
64 | Ichneumonidae (0.11) | p | 1 (25) | 0 (0) | 1 (25) | 0 (0) | 0 (0) | 2 (50) | 4 | ||
65 | Megachilidae (0.05) | po | 1(50) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (50) | 2 | ||
66 | Pompilidae (1.63) | p, po | 20 (33.30) | 0 (0) | 2 (3.30) | 25 (41.70) | 1 (1.70) | 12 (20) | 60 | ||
67 | Pteromalidae (0.95) | p | 19 (54.30) | 0 (0) | 3 (8.60) | 6 (17.10) | 4 (11.40) | 3 (8.60) | 35 | ||
68 | Scelionidae (26.8) | p | 79 (7.80) | 50 (5.10) | 169 (17.10) | 236 (23.90) | 183 (18.50) | 271 (27.40) | 988 | ||
69 | Scoliidae (0.03) | p, po | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (100) | 0 (0) | 1 | ||
70 | Sphecidae (0.84) | p, po | 4 (12.90) | 1 (3.20) | 0 (0) | 11 (35.50) | 3 (9.70) | 12 (38.70) | 31 | ||
71 | Tiphiidae (0.71) | p, po | 9 (34.60) | 2 (7.70) | 2 (7.70) | 4 (15.40) | 3 (11.50) | 6 (23.10) | 26 | ||
72 | Vespidae (9.46) | p, po | 63 (18.10) | 16 (4.60) | 20 (5.80) | 108 (31) | 30 (8.60) | 111 (31.90) | 348 | ||
73 | Lepidoptera (0.076) 7 | Gelechiidae (41.67) | po, n | 0 (0) | 3 (30) | 0 (0) | 0 (0) | 3 (30) | 4 (40) | 10 | |
74 | Noctuidae (50) | h, po | 3 (25) | 1 (8.3) | 3 (25) | 1 (8.30) | 0 (0) | 4 (33.40) | 12 | ||
75 | Nymphalidae (4.17) | po | 0 (0) | 1 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 | ||
76 | Pieridae (4.17) | po | 0 (0) | 1 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 | ||
77 | Odonata (0.0095) 9 | * Dragonfly (33.33) | p | 0 (0) | 0 (0) | 0 (0) | 1 (100) | 0 (0) | 0 (0) | 1 | |
78 | Libellulidae (66.67) | p | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (50) | 1 (50) | 2 | ||
79 | Orthoptera (0.0063) 10 | Acrididae (50) | h | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (100) | 1 | |
80 | Gryllidae (50) | h | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (100) | 1 | ||
81 | Psocodea (0.55) 6 | Philotarsidae (100) | h, f | 14 (8.10) | 14 (8.10) | 22 (12.70) | 30 (17.30) | 42 (24.30) | 51 (29.50) | 173 | |
82 | Thysanoptera (24.64) 2 | Thripidae (100) | h | 601 (7.70) | 2035 (26) | 881 (11.30) | 1816 (24) | 1278 (16.30) | 1217 (15.60) | 7828 | |
Taxa count | 53 | 50 | 53 | 58 | 60 | 64 | Total | ||||
Individuals | 3991 | 4429 | 3905 | 6777 | 5307 | 7365 | 31,774 | ||||
Pollinator ᶧ (%) | 446 (11.2) | 104 (2.4) | 204 (5.2) | 698 (10.3) | 447 (8.4) | 755 (10.2) | |||||
Herbivore ᶧ (%) | 2468 (61.8) | 3365 (75.9) | 2330 (59.7) | 4145 (61.2) | 2906 (54.6) | 4015 (54.5) | |||||
Predator ᶧ (%) | 1337 (33.5) | 1043 (23.5) | 1388 (35.5) | 2474 (36.5) | 2078 (39.2) | 3018 (41.0) | |||||
Others ᶧ (%) | 727 (18.2) | 497 (11.2) | 446 (11.4) | 963 (14.2) | 523 (9.9) | 1367 (18.6) | |||||
Shannon (1D) | 2.79 (16.3) | 2.06 (7.8) | 2.60 (13.5) | 2.57 (13.0) | 2.56 (13.0) | 2.65 (14.2) | |||||
Dominance (2D) | 0.10 (10.0) | 0.25 (4.0) | 0.12 (8.3) | 0.13 (7.7) | 0.14 (7.1) | 0.12 (8.3) | |||||
Evenness | 0.31 | 0.16 | 0.26 | 0.23 | 0.22 | 0.22 | |||||
Margalef | 6.27 | 5.84 | 6.29 | 6.46 | 6.88 | 7.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egbon, I.N.; Dingha, B.N.; Mukoko, G.N.; Jackai, L.E. Intercropping Enhances Arthropod Diversity and Ecological Balance in Cowpea, Hemp, and Watermelon Systems. Insects 2025, 16, 724. https://doi.org/10.3390/insects16070724
Egbon IN, Dingha BN, Mukoko GN, Jackai LE. Intercropping Enhances Arthropod Diversity and Ecological Balance in Cowpea, Hemp, and Watermelon Systems. Insects. 2025; 16(7):724. https://doi.org/10.3390/insects16070724
Chicago/Turabian StyleEgbon, Ikponmwosa N., Beatrice N. Dingha, Gilbert N. Mukoko, and Louis E. Jackai. 2025. "Intercropping Enhances Arthropod Diversity and Ecological Balance in Cowpea, Hemp, and Watermelon Systems" Insects 16, no. 7: 724. https://doi.org/10.3390/insects16070724
APA StyleEgbon, I. N., Dingha, B. N., Mukoko, G. N., & Jackai, L. E. (2025). Intercropping Enhances Arthropod Diversity and Ecological Balance in Cowpea, Hemp, and Watermelon Systems. Insects, 16(7), 724. https://doi.org/10.3390/insects16070724