Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (546)

Search Parameters:
Keywords = polishing industry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 251 KiB  
Article
Proximate Composition, Physicochemical Properties and Concentration of Selected Minerals in Edible Giblets of Geese
by Dariusz Kokoszyński, Arkadiusz Nędzarek, Joanna Żochowska-Kujawska, Marek Kotowicz, Marcin Wegner, Karol Włodarczyk, Dorota Cygan-Szczegielniak, Barbara Biesiada-Drzazga and Marcin Witkowski
Foods 2025, 14(15), 2742; https://doi.org/10.3390/foods14152742 - 6 Aug 2025
Abstract
The purpose of this study was to determine the effect of breed and sex (3 × 2) on the basic chemical composition, concentration of some minerals, and physicochemical properties of edible giblets of farm geese. The study material consisted of edible giblets (livers, [...] Read more.
The purpose of this study was to determine the effect of breed and sex (3 × 2) on the basic chemical composition, concentration of some minerals, and physicochemical properties of edible giblets of farm geese. The study material consisted of edible giblets (livers, gizzards, hearts) obtained from 42 geese from three Polish native breeds (Rypin, Suwałki, Kartuzy) at 220 weeks of age. Edible giblets were obtained during goose evisceration from seven males and seven females of each breed. Each bird was an experimental unit. Goose breed and sex had a significant effect on the chemical composition and physicochemical properties of the edible giblets. Rypin geese had higher (p < 0.05) intramuscular fat content in the gizzard and heart, as well as higher protein content in the heart and lower water content in the gizzard, compared to Kartuzy and Suwałki geese. Kartuzy geese, in turn, had higher content of water in the heart, and higher concentrations of phosphorus, calcium, iron, manganese, sodium, and chromium in the liver, compared to Rypin and Suwałki geese. In turn, Suwałki geese had higher concentrations of phosphorus in the gizzard, and potassium, phosphorus, copper, and iron in the heart compared to the hearts of Rypin and Suwałki geese, while Kartuzy and Suwałki geese higher concentrations of sodium, magnesium, zinc, and manganese in hearts than the hearts of Rypin geese. In these studies, the highest lightness (L*) was observed in the liver and heart of Rypin geese, the lowest yellowness (b*) was observed in the gizzard of Suwałki geese, and the highest pH24 and EC24 were observed in the heart of Kartuzy geese. Regardless of breed, males had higher protein, collagen, and intramuscular fat contents in the heart, a higher water content in the gizzard, higher concentrations of potassium, and sodium in the liver and gizzard, copper in the heart and liver, and phosphorus in the gizzard, and less water in the heart and zinc in the liver, as well as higher (p < 0.05) concentrations of iron in the liver and heart compared with females. The breed by sex interaction was significant for intramuscular fat and water content in the gizzard and heart, and protein content in the heart. Significant differences were also noted for EC24 in the liver and heart, yellowness of the gizzard, and concentrations of most labeled minerals in edible giblets. The obtained results indicate that the nutritional value and suitability of edible goose giblets for the poultry industry vary depending on breed and sex. Due to the limited research on the chemical composition and physicochemical properties of goose giblets, further research in this area is necessary in the future. Full article
15 pages, 4855 KiB  
Article
An Investigation of the Surface-Regulating Mechanism of Tungsten Alloys Using the Electrochemical Polishing Process
by Yachun Mao, Yanqiu Xu, Shiru Le, Maozhong An, Zhijiang Wang and Yuhan Zhang
Solids 2025, 6(3), 39; https://doi.org/10.3390/solids6030039 - 24 Jul 2025
Viewed by 265
Abstract
Tungsten and tungsten alloys are widely used in important industrial fields due to their high density, hardness, melting point, and corrosion resistance. However, machining often leaves processing marks on their surface, significantly affecting the surface quality of precision components in industrial applications. Electrolytic [...] Read more.
Tungsten and tungsten alloys are widely used in important industrial fields due to their high density, hardness, melting point, and corrosion resistance. However, machining often leaves processing marks on their surface, significantly affecting the surface quality of precision components in industrial applications. Electrolytic polishing offers high efficiency, low workpiece wear, and simple processing. In this study, an electrolytic polishing method is adopted and a novel trisodium phosphate–sodium hydroxide electrolytic polishing electrolyte is developed to study the effects of temperature, voltage, polishing time, and solution composition on the surface roughness of a tungsten–nickel–iron alloy. The optimal voltage, temperature, and polishing time are determined to be 15 V, 55 °C, and 35 s, respectively, when the concentrations of trisodium phosphate and sodium hydroxide are 100 g·L−1 and 6 g·L−1. In addition, glycerol is introduced into the electrolyte as an additive. The calculated LUMO value of glycerol is −5.90 eV and the HOMO value is 0.40 eV. Moreover, electron enrichment in the hydroxyl region of glycerol can form an adsorption layer on the surface of the tungsten alloy, inhibit the formation of micro-pits, balance ion diffusion, and thus promote the formation of a smooth surface. At 100 mL·L−1 of glycerol, the roughness of the tungsten–nickel–iron alloy decreases significantly from 1.134 μm to 0.582 μm. The electrochemical polishing mechanism of the tungsten alloy in a trisodium phosphate electrolyte is further investigated and explained according to viscous film theory. This study demonstrates that the trisodium phosphate–sodium hydroxide–glycerol electrolyte is suitable for electropolishing tungsten–nickel–iron alloys. Overall, the results support the application of tungsten–nickel–iron alloy in the electronics, medical, and atomic energy industries. Full article
Show Figures

Graphical abstract

45 pages, 1648 KiB  
Review
Tribological Performance Enhancement in FDM and SLA Additive Manufacturing: Materials, Mechanisms, Surface Engineering, and Hybrid Strategies—A Holistic Review
by Raja Subramani, Ronit Rosario Leon, Rajeswari Nageswaren, Maher Ali Rusho and Karthik Venkitaraman Shankar
Lubricants 2025, 13(7), 298; https://doi.org/10.3390/lubricants13070298 - 7 Jul 2025
Viewed by 863
Abstract
Additive Manufacturing (AM) techniques, such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), are increasingly adopted in various high-demand sectors, including the aerospace, biomedical engineering, and automotive industries, due to their design flexibility and material adaptability. However, the tribological performance and surface integrity [...] Read more.
Additive Manufacturing (AM) techniques, such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), are increasingly adopted in various high-demand sectors, including the aerospace, biomedical engineering, and automotive industries, due to their design flexibility and material adaptability. However, the tribological performance and surface integrity of parts manufactured by AM are the biggest functional deployment challenges, especially in wear susceptibility or load-carrying applications. The current review provides a comprehensive overview of the tribological challenges and surface engineering solutions inherent in FDM and SLA processes. The overview begins with a comparative overview of material systems, process mechanics, and failure modes, highlighting prevalent wear mechanisms, such as abrasion, adhesion, fatigue, and delamination. The effect of influential factors (layer thickness, raster direction, infill density, resin curing) on wear behavior and surface integrity is critically evaluated. Novel post-processing techniques, such as vapor smoothing, thermal annealing, laser polishing, and thin-film coating, are discussed for their potential to endow surface durability and reduce friction coefficients. Hybrid manufacturing potential, where subtractive operations (e.g., rolling, peening) are integrated with AM, is highlighted as a path to functionally graded, high-performance surfaces. Further, the review highlights the growing use of finite element modeling, digital twins, and machine learning algorithms for predictive control of tribological performance at AM parts. Through material-level innovations, process optimization, and surface treatment techniques integration, the article provides actionable guidelines for researchers and engineers aiming at performance improvement of FDM and SLA-manufactured parts. Future directions, such as smart tribological, sustainable materials, and AI-based process design, are highlighted to drive the transition of AM from prototyping to end-use applications in high-demand industries. Full article
(This article belongs to the Special Issue Wear and Friction in Hybrid and Additive Manufacturing Processes)
Show Figures

Figure 1

21 pages, 3199 KiB  
Article
Sustainable Hydrochar from Orange Peel and Bagasse: A Wet Pyrolysis Approach for Efficient Fe2+ and Mn2+ Removal from Water Using a Factorial Design
by Karina Sampaio da Silva, Marcela de Oliveira Brahim Cortez, Luísa Faria Monteiro Mazzini, Ueslei G. Favero, Leonarde do Nascimento Rodrigues, Renê Chagas da Silva, Maria C. Hespanhol and Renata Pereira Lopes Moreira
Processes 2025, 13(7), 2040; https://doi.org/10.3390/pr13072040 - 27 Jun 2025
Viewed by 408
Abstract
Water pollution is a global concern, especially due to iron and manganese, which, at high concentrations, affect water quality by altering taste, odor, and color. This work explores the sustainable synthesis of hydrochar from orange peel and bagasse using hydrothermal carbonization (HTC) and [...] Read more.
Water pollution is a global concern, especially due to iron and manganese, which, at high concentrations, affect water quality by altering taste, odor, and color. This work explores the sustainable synthesis of hydrochar from orange peel and bagasse using hydrothermal carbonization (HTC) and a 23 factorial design to optimize Fe2+ and Mn2+ removal for water treatment polishing. HTC was performed by varying (1) temperature (100–200 °C), (2) residence time (8–14 h), and (3) activation agent (H3PO4 or NaOH), with a central point at 150 °C for 11 h without activation. Characterization was performed using FTIR, TGA, SEM, nitrogen adsorption (BET) for surface area determination, elemental analysis, Brønsted acidity measurements, and zeta potential analysis. The hydrochar synthesized at 100 °C for 14 h with NaOH (HC6) showed the best Fe2+ and Mn2+ removal performance. The equilibrium time was 400 min, with pseudo-first-order kinetics best fitting the Fe2+ adsorption data, while pseudo-second-order kinetics provided the best fit for Mn2+ adsorption. The adsorption process was best described by the Freundlich and Langmuir isotherms, with maximum adsorption capacities (qmax) of 21.44 and 33.67 mg g−1 for Fe2+ and Mn2+, respectively. It can be concluded that HTC-derived hydrochars offer a sustainable and efficient solution for Fe2+ and Mn2+ removal. This strategy presents a potentially valuable approach for sustainable water treatment, offering advantages for industrial application by operating at lower temperatures and eliminating the need for biomass drying, thereby reducing energy consumption and environmental impact. Full article
Show Figures

Figure 1

21 pages, 1721 KiB  
Article
Methodology for Identification of Occupational Hazards Using Their Characteristic Features in Hard Coal Mining
by Zbigniew Burtan, Dagmara Nowak-Senderowska and Paweł Szczepański
Appl. Sci. 2025, 15(13), 7079; https://doi.org/10.3390/app15137079 - 23 Jun 2025
Viewed by 265
Abstract
Ensuring employee safety is a top priority for every enterprise, and it is especially critical in high-risk industries like coal mining. To achieve this goal, it is essential to focus efforts on identifying existing hazards and thoroughly assessing the associated risks. Accurate identification [...] Read more.
Ensuring employee safety is a top priority for every enterprise, and it is especially critical in high-risk industries like coal mining. To achieve this goal, it is essential to focus efforts on identifying existing hazards and thoroughly assessing the associated risks. Accurate identification and detailed characterization of occupational hazards play a pivotal role in the occupational risk assessment process, providing the foundation for effective safety strategies. This article presents an analysis of the process of identifying occupational hazards in hard coal mining, based on applicable legal regulations and a review of the relevant literature. The analysis reveals, on the one hand, a diversity of approaches to hazard classification, and on the other, a limited use of the characteristic features of hazards in classification processes. The findings of this review form the basis for proposing a systematic classification of occupational hazards in hard coal mining, taking into account the specific features of hazards in relation to their sources and potential consequences. The proposed classification not only categorizes hazards but also describes the specifics of hazard sources, such as environmental conditions, machinery, chemicals, and human factors, as well as the possible outcomes of these hazards, including physical injury, health impacts, and even fatalities. The aim of this article is to present a proposed classification of occupational hazards in hard coal mining and to provide a detailed characterization of these hazards based on the description of their sources and potential consequences. The proposed approach, grounded in the identification of characteristic features of hazards, facilitates the effective selection of preventive measures that can be implemented to reduce risk and improve workplace safety. Due to the presence of the full spectrum of natural hazards in Polish hard coal mining, the analysis draws on available statistical data, focusing on those hazards that contribute most significantly to fatal accidents and serious injuries. In conclusion, the article emphasizes the importance of a structured and systematic approach to identifying and assessing occupational hazards in the coal mining industry. By drawing on legal and literature-based insights, it aims to contribute to the development of more effective safety practices that protect workers and minimize the occurrence of workplace accidents and illnesses. Full article
Show Figures

Figure 1

21 pages, 908 KiB  
Article
Sustainable Concentration in the Polish Food Industry in the Context of the EU-MERCOSUR Trade Agreement
by Piotr Szajner, Joanna Pawłowska-Tyszko, Wiesław Łopaciuk and Katarzyna Kosior
Sustainability 2025, 17(12), 5640; https://doi.org/10.3390/su17125640 - 19 Jun 2025
Viewed by 517
Abstract
Concentration within the food industry is a desirable process in the context of improving economic efficiency, which is the basis for building sustainable competitive advantages in internationalisation and globalisation. Excessive concentration of market structures can generate negative externalities that threaten sustainability in the [...] Read more.
Concentration within the food industry is a desirable process in the context of improving economic efficiency, which is the basis for building sustainable competitive advantages in internationalisation and globalisation. Excessive concentration of market structures can generate negative externalities that threaten sustainability in the long term. Maintaining a balance between the freedom of economic activities and the protection of consumers and environmental interests is fundamental to the stability of the entire economy and its position in the international market, which is a priority of the EU-MERCOSUR trade agreement. The aim of this article was to assess the process of concentration of the Polish food industry and its impact on factor efficiency in the context of changing external conditions. In order to do so, the Cobb–Douglas production function was used. The research results showed that there is a progressive concentration in the food industry. Changes in the entity structure are taking place in an evolutionary way, as illustrated by the still high fragmentation of companies. Large companies make good use of economies of scale, which is mirrored in their high efficiency. The structure of the Polish food industry makes it possible to realise the objectives of agricultural policy, including in terms of sustainable development and improvement of competitiveness on the global market. Taking into account the current entity structure of the Polish food industry, it will be crucial for the long-term sustainability to take into account contemporary economic, environmental and social issues in the EU-MERCOSUR trade agreement. Full article
(This article belongs to the Collection Sustainable Development of Rural Areas and Agriculture)
Show Figures

Figure 1

18 pages, 6546 KiB  
Article
Simulation Studies of Biomass Transport in a Power Plant with Regard to Environmental Constraints
by Andrzej Jastrząb, Witold Kawalec, Zbigniew Krysa and Paweł Szczeszek
Energies 2025, 18(12), 3190; https://doi.org/10.3390/en18123190 - 18 Jun 2025
Viewed by 402
Abstract
The “carbon neutral power generation” policy of the European Union requires the phasing out of fossil fuel power plants. These plants still play a crucial role in the energy mix in many countries; therefore, efforts are put forward to lower their CO2 [...] Read more.
The “carbon neutral power generation” policy of the European Union requires the phasing out of fossil fuel power plants. These plants still play a crucial role in the energy mix in many countries; therefore, efforts are put forward to lower their CO2 emissions. The available solution for an existing coal plant is the implementation of biomass co-firing, which allows it to reduce twice its carbon footprint in order to achieve the level of natural gas plants, which are preferable on the way to zero-emission power generation. However the side effect is a significant increase in the bulk fuel volumes that are acquired, handled, and finally supplied to the power plant units. A necessary extension of the complex logistic system for unloading, quality tagging, storing, and transporting biomass may increase the plant’s noise emissions beyond the allowed thresholds. For a comprehensive assessment of the concept of expanding the power plant’s biofuel supply system (BSS), a discrete simulation model was built to dimension system elements and verify the overall correctness of the proposed solutions. Then, a dedicated noise emission model was built for the purposes of mandatory environmental impact assessment procedures for the planned expansion of the BSS. The noise model showed the possibility of exceeding the permissible noise levels at night in selected locations. The new simulations of the BSS model were used to analyze various scenarios of biomass supply with regard to alternative switching off the selected branches of the whole BSS. The length of the queue of unloaded freight trains delivering an average quality biomass after a period of 2 weeks is used as a key performance parameter of the BSS. A queue shorter than 1 freight train is accepted. Assuming the rising share of RESS in the Polish energy mix, the thermal plant’s 2-week average power output shall not exceed 70% of its maximum capacity. The results of the simulations indicate that under these constraints, the biofuel supplies can be sufficient regardless of the nighttime stops, if 50% of the supplied biomass volumes are delivered by trucks. If the trucks’ share drops to 25%, the plant’s 2-week average power output is limited to 45% of its maximum power. The use of digital spatial simulation models for a complex, cyclical-continuous transport system to control its operation is an effective method of addressing environmental conflicts at the design stage of the extension of industrial installations in urbanized areas. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

21 pages, 4416 KiB  
Article
A Generic Modeling Method of Multi-Modal/Multi-Layer Digital Twins for the Remote Monitoring and Intelligent Maintenance of Industrial Equipment
by Maolin Yang, Yifan Cao, Siwei Shangguan, Xin Chen and Pingyu Jiang
Machines 2025, 13(6), 522; https://doi.org/10.3390/machines13060522 - 16 Jun 2025
Viewed by 443
Abstract
Digital twin (DT) is a useful tool for the remote monitoring, analyzing, controlling, etc. of industrial equipment in a harsh working environment unfriendly to human workers. Although much research has been devoted to DT modeling methods, there are still limitations. For example, (1) [...] Read more.
Digital twin (DT) is a useful tool for the remote monitoring, analyzing, controlling, etc. of industrial equipment in a harsh working environment unfriendly to human workers. Although much research has been devoted to DT modeling methods, there are still limitations. For example, (1) existing DT modeling methods are usually focused on specific types of equipment rather than being generally applicable to different types of equipment and requirements. (2) Existing DT models usually emphasize working condition monitoring and have relatively limited capability for modeling the operation and maintenance mechanism of the equipment for further decision making. (3) How to integrate artificial intelligence algorithms into DT models still requires further exploration. In this regard, a systematic and general DT modeling method is proposed for the remote monitoring and intelligent maintenance of industrial equipment. The DT model contains a multi-modal digital model, a multi-layer status model, and an intelligent interaction model driven by a kind of human-readable/computer-deployable event-state knowledge graph. Using the model, the dynamic workflows, working mechanisms, working status, workpiece logistics, monitoring data, and intelligent functions, etc., during the remote monitoring and maintenance of industrial equipment can be realized. The model was verified through three different DT modeling scenarios of a robot-based carbon block polishing processing line. Full article
Show Figures

Figure 1

19 pages, 12347 KiB  
Article
Long-Term Physical and Chemical Stability and Energy Recovery Potential Assessment of a New Chelating Resin Used in Brine Treatment for Chlor-Alkali Plants
by Liliana Lazar, Loredana-Vasilica Postolache, Valeria Danilova, Dumitru Coman, Adrian Bele, Daniela Rusu, Mirela-Fernanda Zaltariov and Gabriela Lisa
Polymers 2025, 17(11), 1575; https://doi.org/10.3390/polym17111575 - 5 Jun 2025
Viewed by 545
Abstract
Brine purification is an important process unit in chlor-alkali industrial plants for the production of sodium hydroxide, chlorine, and hydrogen. The membrane cell process requires ultrapure brine, which is obtained through mechanical filtration, chemical precipitation and fine polishing, and ion exchange using polymer [...] Read more.
Brine purification is an important process unit in chlor-alkali industrial plants for the production of sodium hydroxide, chlorine, and hydrogen. The membrane cell process requires ultrapure brine, which is obtained through mechanical filtration, chemical precipitation and fine polishing, and ion exchange using polymer resins. Temperature variations can lead to the degradation of the exchange properties of these resins, primarily causing a decrease in their exchange capacity, which negatively impacts the efficiency of the brine purification. After multiple ion exchange regeneration cycles, significant quantities of spent resins may be generated. These must be managed in accordance with resource efficiency and hazardous waste management to ensure the sustainability of the industrial process. In this paper, a comparative study is conducted to characterize the long-term stability of a new commercial chelating resin used in the industrial electrolysis process. The spectroscopic methods of physicochemical characterization included: scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR). The thermal behavior of the polymer resins was evaluated using the following thermogravimetric methods: thermogravimetry (TG), derivative thermogravimetry (DTG), and differential thermal analysis (DTA), while the moisture behavior was studied using dynamic vapor sorption (DVS) analysis. To assess the energy potential, the polymer resins were analyzed to determine their calorific value and overall energy content. Full article
(This article belongs to the Special Issue Current and Future Trends in Thermosetting Resins)
Show Figures

Figure 1

23 pages, 5238 KiB  
Article
A Self-Consistent, High-Fidelity Adsorption Model for Chromatographic Process Predictions: Low-to-High Load Density and Charge Variants in a Preparative Cation Exchanger
by Gregor M. Essert, Marko Tesanovic, Sonja Berensmeier, Isabell Hagemann and Peter Schwan
Separations 2025, 12(6), 147; https://doi.org/10.3390/separations12060147 - 1 Jun 2025
Viewed by 560
Abstract
The development of ion exchange chromatography to polish biopharmaceuticals requires extensive experimental benchmarking. As part of the Design of Experiments (DoE), statistical models increased efficiency somewhat and are still state of the art; however, the capability to predict process conditions is limited due [...] Read more.
The development of ion exchange chromatography to polish biopharmaceuticals requires extensive experimental benchmarking. As part of the Design of Experiments (DoE), statistical models increased efficiency somewhat and are still state of the art; however, the capability to predict process conditions is limited due to their nature as interpolating models. Applying the DoE still requires numerous experiments and is constrained to the design space, posing a risk of missing the potential optimum. To make a leap in model-based process development, applying extrapolating models can tremendously extend the design space and also allow for process understanding and knowledge transfer. While existing chromatography modeling software explains experimental data, it often lacks predictive power for new conditions. In academic–industrial cooperation, we demonstrate a new high-fidelity model based on biophysics for developing ion-exchange chromatography in biomanufacturing, making it a general tool in rationalizing process development for the present demand of recombinant proteins and monoclonal antibodies and the emerging demand of new modalities. Using the new computational tool, we achieved predictability and attained high accuracy; with minimal experimental effort to calibrate the system, the mathematical model predicted sensitive process conditions, and even described product-related impurities, antibody charge variants. Thus, the computational tool can be deployed for process-by-design and material-by-design approaches. Full article
Show Figures

Figure 1

20 pages, 1190 KiB  
Article
Hop (Humulus lupulus L.) Phenolic Compounds Profile Depends on Cultivar and Plant Organ Maturity
by Jakub Piekara, Dorota Piasecka-Kwiatkowska, Hanna Hołaj, Małgorzata Jędryczka, Oluwafemi Daniel Daramola and Krzysztof Dwiecki
Molecules 2025, 30(11), 2365; https://doi.org/10.3390/molecules30112365 - 29 May 2025
Viewed by 515
Abstract
Hop by-products constitute a significant part of biomass in cones production for the brewing industry. The phenolic compounds (PCs) they contain can be used in the food and pharmaceutical industries but require qualitative and quantitative analysis. The aim of this study was to [...] Read more.
Hop by-products constitute a significant part of biomass in cones production for the brewing industry. The phenolic compounds (PCs) they contain can be used in the food and pharmaceutical industries but require qualitative and quantitative analysis. The aim of this study was to investigate the extent to which phenolic compounds profiles depend on cultivar, plant organ, and plant level. This paper shows for the first time that for hop, it is not only the plant organ that is important for PC content, but also the level from which it is obtained. Metabolites were investigated in cones, leaves, and stalks at three levels of the plant in Polish hop cultivars (Marynka, Lubelski, and Magnum). The PC content showed a differentiation due to the cultivar of hops, their anatomical part, and position in the plant (level), which reflects the degree of organ maturity. The total PC was the highest in leaves (up to 922 mg/100 g), while lower contents were found in cones (up to 421 mg/100 g) and stalks (up to 105 mg/100 g). The main PCs of leaves were kaempferol-3-glucoside (up to 328 mg/100 g) and rutin (up to 293 mg/100 g), while rutin dominated in cones (up to 209 mg/100 g). Full article
Show Figures

Graphical abstract

30 pages, 4701 KiB  
Article
Electrocoagulation with Fe-SS Electrodes as a Fourth Stage of Tequila Vinasses Treatment for COD and Color Removal
by Rafael González Pérez, Aída Lucía Fajardo Montiel, Edgardo Martínez Orozco, Norberto Santiago Olivares, Juan Nápoles Armenta and Celestino García Gómez
Processes 2025, 13(6), 1637; https://doi.org/10.3390/pr13061637 - 23 May 2025
Viewed by 532
Abstract
The tequila industry faces several environmental challenges due to its high yields of contaminants, especially tequila distillation stillage or tequila vinasses, with ten to twelve liters produced per liter of tequila. All treatments aim to shorten retention times to avoid the need for [...] Read more.
The tequila industry faces several environmental challenges due to its high yields of contaminants, especially tequila distillation stillage or tequila vinasses, with ten to twelve liters produced per liter of tequila. All treatments aim to shorten retention times to avoid the need for large equipment or new facilities and the saturation of residues within tequila distilleries. The complexity of tequila vinasses has led to treatments with several stages, whereby most of the organic matter content is reduced, but the treatment range results are insufficient. This study aimed to evaluate a fourth-stage tequila vinasse treatment using an electrocoagulation system that uses inexpensive electrodes (SS cathodes and iron anodes), has a low electrical consumption, and applies low voltages in order to meet safety, economic, and environmental criteria so as to comply with Mexican norm NOM-001-SEMARNAT-2021. Three sets of voltage–amperage controllable power source, a 4 mm cylindrical 304 stainless-steel cathode, and a 9 mm iron anode with 200 mL samples in 250 mL beakers were used; three replicas (R1, R2, and R3) underwent 2 h treatment at 1–6 volts to evaluate the voltage effect and 1–6 h of 5-volt treatment to assess the time effect. All samples were filtered with 8 μm and 0.25 μm meshes. Chemical oxygen demand, pH, electrical conductivity, turbidity, and color measurements (SAC for λ 436, 525, and 620 nm) were taken. The experiments determined the optimal voltage and time, considering a hydraulic retention time below 6 h. The results show that electrocoagulation of pretreated tequila vinasses effectively helps in the final removal of organic matter measured as COD, reaching values below 150 COD mg/L at 5–6 h with 5 V treatments and color reduction with 5 V, 1 h treatment. This leads to final polishing that complies with the Mexican wastewater discharge norm criteria. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

10 pages, 3522 KiB  
Communication
Mapping of Lapping-Induced Subsurface Damage in Planar Fused Silica Glass Based on Polarized Laser Scattering Method
by Mingchuan Gao, Yi Guo, Chenxi Liu, Chuanxin He and Qian Bai
Materials 2025, 18(11), 2417; https://doi.org/10.3390/ma18112417 - 22 May 2025
Viewed by 432
Abstract
Fused silica glass is a critical material in many industries due to its superior physicochemical properties. The detection of subsurface damage (SSD) poses fundamental challenges that directly affect the performance of fused silica glass. The polarized laser scattering (PLS) detection method has significant [...] Read more.
Fused silica glass is a critical material in many industries due to its superior physicochemical properties. The detection of subsurface damage (SSD) poses fundamental challenges that directly affect the performance of fused silica glass. The polarized laser scattering (PLS) detection method has significant advantages in SSD detection, but damage mapping has not yet been achieved. This paper proposes an SSD mapping method based on the PLS detection results. The relationship between the PLS detection signals and the SSD depths of fused silica glass is established, and an SSD mapping diagram is successfully generated. Unlike existing studies that only provide local quantitative SSD depth, SSD mapping achieves simultaneous visualization of SSD location, depth, and uniformity of SSD distribution across the entire region, which provides guidance to determine the lapping or polishing parameters in the subsequent processes. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

20 pages, 7633 KiB  
Article
Corrosion Performance of Chemically Passivated and Ion Beam-Treated Austenitic–Martensitic Steel in the Marine Environment
by Viktor Semin, Alexander Cherkasov, Konstantin Savkin, Maxim Shandrikov and Evgeniya Khabibova
J. Manuf. Mater. Process. 2025, 9(5), 167; https://doi.org/10.3390/jmmp9050167 - 20 May 2025
Viewed by 691
Abstract
In the present work, chemical and ion beam surface treatments were performed in order to modify the electrochemical behavior of industrial austenitic–martensitic steel VNS-5 in 3.5 wt. % NaCl. Immersion for 140 h in a solution containing 0.05 M potassium dichromate and 10% [...] Read more.
In the present work, chemical and ion beam surface treatments were performed in order to modify the electrochemical behavior of industrial austenitic–martensitic steel VNS-5 in 3.5 wt. % NaCl. Immersion for 140 h in a solution containing 0.05 M potassium dichromate and 10% phosphoric acid promotes formation of chromium hydroxides in the outer surface layer. By means of a new type of ion source, based on a high-current pulsed magnetron discharge with injection of electrons from vacuum arc plasma, ion implantation with Ar+ and Cr+ ions of the VNS-5 steel was performed. It has been found that the ion implantation leads to formation of an Fe- and Cr-bearing oxide layer with advanced passivation ability. Moreover, the ion beam-treated steel exhibits a lower corrosion rate (by ~7.8 times) and higher charge transfer resistance in comparison with an initial (mechanically polished) substrate. Comprehensive electrochemical and XPS analysis has shown that a Cr2O3-rich oxide film is able to provide an improved corrosion performance of the steel, while the chromium hydroxides may increase the specific conductivity of the surface layer. A scheme of a charge transfer between the microgalvanic elements was proposed. Full article
Show Figures

Figure 1

18 pages, 1451 KiB  
Article
Innovative System for Animal Waste Utilization Using Closed-Loop Material and Energy Cycles and Bioenergy: A Case Study
by Zygmunt Kowalski and Agnieszka Makara
Energies 2025, 18(10), 2579; https://doi.org/10.3390/en18102579 - 16 May 2025
Viewed by 429
Abstract
This study proposes an innovative model for animal waste utilization in the largest Polish meat utilization plant, which assumes an integrated system that processes one part of the meat waste by anaerobic digestion and the second part into meat and bone meal via [...] Read more.
This study proposes an innovative model for animal waste utilization in the largest Polish meat utilization plant, which assumes an integrated system that processes one part of the meat waste by anaerobic digestion and the second part into meat and bone meal via the hydrothermal method. The solution is based on implementing the concept of industrial symbiosis, using a purposefully directed flow of materials, waste, and energy to create a closed recycling cycle. This study analyzes the key strategic, organizational, and technical circular economy activities that enable the transformation of waste into valuable materials and energy, thanks to the use of closed-loop materials and energy cycles. It estimates the integrated system’s investment costs and economic and environmental outcomes. The presented method allows for biogas production from the bio-fermentation of 160,000 t/y of animal waste; this would more than cover the heat requirements for obtaining 110,000 t/y of meat and bone meal using the hydrothermal method. Full article
Show Figures

Figure 1

Back to TopTop