Innovative System for Animal Waste Utilization Using Closed-Loop Material and Energy Cycles and Bioenergy: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Analysis
- NAW1—Quantity of natural gas consumed when animal waste is processed with the hydrothermal method into MBM (as CH4 m3/t)
- NAW2—Quantity of natural gas consumed when animal waste is processed with the hydrothermal method into MBM (as CH4 m3)
- QAW—Quantity of animal waste processed (t/y)
- QAW1—Quantity of animal waste processed with the hydrothermal method into MBM (t/y)
- QAW2—Quantity of animal waste processed with the bio-fermentation method (t/y)
- BAW3—Biogas production when the integrated system is used (as CH4 m3/y)
- BY—Biogas yield from meat waste (as CH4 m3/t)
- WAW1—Quantity of wastewater from MBM (t/y)
- WAW3—Quantity of wastewater from MBM when the integrated system is used (t/y)
- OAW1—Quantity of odor emitted from MBM produced with the hydrothermal method (m3/y)
- OAW3—Quantity of odor emitted from MBM when the integrated system is used (m3/y)
- NAW3—Quantity of natural gas consumed when the integrated system is used (as CH4 m3/y)
2.1.1. Estimated Amounts of Biogas Obtainable from Meat Waste
2.1.2. Estimation of the Integrated System of Meat Waste Utilization in Terms of Used Circular Economy Strategic Data
2.2. Utilization of Meat Waste to Produce MBM
2.3. Bio-Fermentation of Agricultural and Animal Waste
2.4. The Developed Strategy for Waste Bio-Fermentation at Farmutil HS
3. Results and Discussion
3.1. Expected Volumes of Biogas Generated from Animal Waste
3.2. Obtaining Biogas from Meat Waste and Its Substitution for Natural Gas in MBM Production
Bio-Ferment Management
Specification | Units | Amount |
---|---|---|
Meat waste charge (~86% H2O) | (t/y) | 120,000 160,000 200,000 |
Bio-ferment (70% H2O) | (t/y) | 37,333 47,778 62,222 |
The surface fertilized fields, at a dose of 30 t/ha * | (ha) | 834 1112 1390 |
3.3. The Model of Processing Farmutil’s Meat Waste, with the Integrated System Using Jointly the Hydrothermal Method and Bio-Fermentation
3.4. Analysis of an Integrated Meat Waste Utilization System in the Context of Circular Economy Strategy Data
3.5. The Economic and Environmental Effects of the Implementation of the Integrated System for Meat Waste Utilization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, H.; Rosando, P.; Roser, M. Our World in Data. Meat and Dairy Production. 2023. Available online: https://ourworldindata.org/meat-production (accessed on 10 January 2024).
- Sakadevan, K.; Nguyen, M.L. Chapter four-Livestock production and its impact on nutrient pollution and greenhouse gas emissions. In Advances in Agronomy, 1st ed.; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 141, pp. 147–184. [Google Scholar] [CrossRef]
- Makara, A.; Kowalski, Z.; Lelek, Ł.; Kulczycka, J. Comparative analyses of pig farming management systems using the Life Cycle Assessment method. J. Clean. Prod. 2019, 241, 118305. [Google Scholar] [CrossRef]
- Ockerman, H.W.; Basu, L. By-Products, Edible, for Human Consumption. Reference Module in Food Science. Encyclopedia of Meat Sciences, 2nd ed.; Academic Press: Oxford, UK, 2014; pp. 125–136. [Google Scholar] [CrossRef]
- Nweze, J.A.; Gupta, S.; Akor, J.; Nwuche, C.O.; Nweze, J.E.; Unah, V.U. Animal Waste: An Environmentally Sustainable Management Approach. In Climate Changes Mitigation and Sustainable Bioenergy Harvest Through Animal Waste; Arshad, M., Ed.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- European Food Safety Authority, Animal By-Products. Available online: https://www.efsa.europa.eu/en/topics/animal-by-products (accessed on 15 February 2025).
- Caldeira, C.; De Laurentiis, V.; Corrado, S.; van Holsteijn, F.; Sala, S. Quantification of food waste per product group along the food supply chain in the European Union: A mass flow analysis. Resour. Conserv. Recycl. 2019, 149, 479–488. [Google Scholar] [CrossRef]
- Pinto, J.; Boavida-Dias, R.; Matos, H.A.; Azevedo, J. Analysis of the food loss and waste valorisation of animal by-products from the retail sector. Sustainability 2022, 14, 2830. [Google Scholar] [CrossRef]
- Kantorek, M.; Jesionek, K.; Polesek-Karczewska, S.; Ziółkowski, P.; Badur, J. Thermal utilization of meat and bone meals. Performance analysis in terms of drying process, pyrolysis and kinetics of volatiles combustion. Fuel 2019, 254, 115548. [Google Scholar] [CrossRef]
- Kowalski, Z.; Kulczycka, J.; Makara, A.; Mondello, G.; Salomone, R. Industrial symbiosis for sustainable management of meat waste: The case of Śmiłowo Eco-Industrial Park, Poland. Int. J. Environ. Res. Public Health 2023, 20, 5162. [Google Scholar] [CrossRef]
- Jeng, A.S.; Haraldsen, T.K.; Grønlund, A.; Pedersen, P.A. Meat and bone meal as nitrogen and phosphorus fertilizer to cereals and rye grass. Nutr. Cycl. Agroecosyst. 2006, 76, 183–191. [Google Scholar] [CrossRef]
- Sacha, M. Meat and Bone Meal. Natural Multi-Component Fertilizer. Farmer.pl. 2023. Available online: https://www.farmer.pl/produkcja-roslinna/nawozy/maczka-miesno-kostna-naturalny-nawoz-wieloskladnikowy,131476.html (accessed on 12 October 2024).
- Nogalska, A.; Załuszniewska, A. The effect of meat and bone meal applied without or with mineral nitrogen on macronutrient content and uptake by winter oilseed rape. J. Elem. 2020, 25, 905–915. [Google Scholar] [CrossRef]
- Silvasy, T.; Ahmad, A.A.; Wang, K.H.; Radovich, T.J.K. Rate and timing of meat and bone meal applications influence growth, yield, and soil water nitrate concentrations in sweet corn production. Agronomy 2021, 11, 1945. [Google Scholar] [CrossRef]
- Cascarosa, E.; Boldrin, A.; Astrup, T. Pyrolysis and gasification of meat-and-bone-meal: Energy balance and GHG accounting. Waste Manag. 2013, 33, 2501–2508. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU) No 142/2011 of 25 February 2011 Implementing Regulation (EC) No 1069/2009 of the European Parliament and of the Council Laying Down Health Rules as Regards Animal By-Products and Derived Products Not Intended for Human Consumption and Implementing Council Directive 97/78/EC as Regards Certain Samples and Items Exempt from Veterinary Checks at the Border Under That Directive. Off. J. Eur. Union 2011, 54, 1–254. Available online: https://eur-lex.europa.eu/eli/reg/2011/142/oj/eng (accessed on 24 August 2024).
- Commission Regulation (EU) 2021/1372 of 17 August 2021 Amending Annex IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council as Regards the Prohibition to Feed Non-Ruminant Farmed Animals, Other Than Fur Animals, with Protein Derived from Animals. Off. J. Eur. Union 2021, 295, 1–17. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R1372 (accessed on 24 August 2024).
- Yanuartono; Nururrozi, A.; Soedarmanto, I.; Purnamaningsih, H.; Ramandani, D. Meat bone meal as an alternative animal feed: A brief review. J. Peternak. Sriwij. 2020, 9, 35–54. [Google Scholar] [CrossRef]
- Central Statistical Office of Poland. 2021. Available online: https://www.statista.com/statistics/1036706/poland-deliveries-of-meat-product/ (accessed on 5 February 2021).
- Kowalski, Z.; Makara, A. The circular economy model used in the polish agro-food consortium: A case study. J. Clean. Prod. 2021, 284, 124751. [Google Scholar] [CrossRef]
- Kowalski, Z.; Kulczycka, J.; Makara, A.; Harazin, P. Quantification of material recovery from meat waste incineration–An approach to an updated food waste hierarchy. J. Hazard. Mater. 2021, 416, 126021. [Google Scholar] [CrossRef]
- Tan, Z.; Lagerkvist, A. Phosphorus recovery from the biomass ash: A review. Renew. Sust. Energ. Rev. 2011, 15, 3588–3602. [Google Scholar] [CrossRef]
- Leng, L.; Zhang, J.; Xu, S.; Xiong, Q.; Xu, X.; Li, J.; Huang, H. Meat & bone meal (MBM) incineration ash for phosphate removal from wastewater and afterward phosphorus recovery. J. Clean. Prod. 2019, 238, 117960. [Google Scholar] [CrossRef]
- Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 Laying Down Health Rules as Regards Animal By-Products and Derived Products Not Intended for Human Consumption and Repealing Regulation (EC) No 1774/2002 (Animal By-Products Regulation). Off. J. Eur. Union 2009, 300, 1–33. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009R1069 (accessed on 24 August 2024).
- Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. Off. J. Eur. Union 2008, 312, 1–28. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098 (accessed on 24 August 2024).
- Gwyther, C.L.; Williams, A.P.; Golyshin, P.N.; Edward-Jones, G.; Jones, D.L. The environmental and biosecurity characteristics of livestock carcass disposal methods: A review. Waste Manag. 2011, 31, 767–778. [Google Scholar] [CrossRef]
- Gadirli, G.; Pilarska, A.A.; Dach, J.; Pilarski, K.; Kolasa-Więcek, A.; Borowiak, K. Fundamentals, operation and global prospects for the development of biogas plants-A review. Energies 2024, 17, 568. [Google Scholar] [CrossRef]
- Alengebawy, A.; Ran, Y.; Osman, A.I.; Jin, K.; Samer, M.; Ai, P. Anaerobic digestion of agricultural waste for biogas production and sustainable bioenergy recovery: A review. Environ. Chem. Lett. 2024, 22, 2641–2668. [Google Scholar] [CrossRef]
- Woon, S.; Maazuza, O. The feasibility of anaerobic digestion of meat rendering waste. Int. J. Environ. Cult. Econ. Soc. Sustain. Annu. Rev. 2011, 7, 213–223. [Google Scholar] [CrossRef]
- Handous, N.; Gannoun, H.; Hamdi, M.; Bouallagui, H. Two-stage anaerobic digestion of meat processing solid wastes: Methane potential improvement with wastewater addition and solid substrate fermentation. Waste Biomass Valor. 2019, 10, 131–142. [Google Scholar] [CrossRef]
- Czekała, W.; Jasiński, T.; Dach, J. Profitability of the agricultural biogas plant operation in Poland, depending on the substrate use model. Energy Rep. 2023, 9, 196–203. [Google Scholar] [CrossRef]
- Czekała, W.; Pulka, J.; Jasiński, T.; Szewczyk, P.; Bojarski, W.; Jasiński, J. Waste as substrates for agricultural biogas plants: A case study from Poland. J. Water Land Dev. 2023, 56, 45–50. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Neves, A.; Godina, R.; Azevedo, S.G.; Matias, J.C.O. A comprehensive review of industrial symbiosis. J. Clean. Prod. 2020, 247, 119113. [Google Scholar] [CrossRef]
- Liu, C.; Côté, R.P.; Zhang, K. Implementing a three-level approach in industrial symbiosis. J. Clean. Prod. 2015, 87, 318–327. [Google Scholar] [CrossRef]
- Asif, F.M.A.; Lieder, M.; Rashid, A. Multi-method simulation based tool to evaluate economic and environmental performance of circular product systems. J. Clean. Prod. 2016, 139, 1261–1281. [Google Scholar] [CrossRef]
- Shi, L. Industrial symbiosis: Context and relevance to the sustainable development goals (SDGs). In Responsible Consumption and Production. Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–12. [Google Scholar]
- Cecchin, A.; Salomone, R.; Deutz, P.; Raggi, A.; Cutaia, L. Relating industrial symbiosis and circular economy to the sustainable development debate. In Industrial Symbiosis for the Circular Economy. Strategies for Sustainability; Salomone, R., Cecchin, A., Deutz, P., Raggi, A., Cutaia, L., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–25. [Google Scholar]
- Sadeghpour, A.; Afshar, R.K. Livestock manure: From waste to resource in a circular economy. J. Agric. Food Res. 2024, 17, 101255. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Towards the Circular Economy, Vol. 3: Accelerating the Scale-Up Across Global Supply Chains; Ellen Macarthur Foundation: Cowes, UK, 2014; Available online: https://www.ellenmacarthurfoundation.org/towards-the-circular-economy-vol-3-accelerating-the-scale-up-across-global (accessed on 12 November 2023).
- Leiva, H.; Julian, I.; Ventura, L.; Wallin, E.; Vendt, M.; Fornell, R.; Paniagua, F.G.; Ascaso, S.; Gomez-Perez, M. Advancing Sustainability Through Industrial Symbiosis: A Technoeconomic Approach Using Material Flow Cost Accounting and Cost–Benefit Analysis. Sustainability 2025, 17, 2730. [Google Scholar] [CrossRef]
- Makara, A.; Kowalski, Z. Selection of pig manure management strategies: Case study of Polish farms. J. Clean. Prod. 2018, 172, 187–195. [Google Scholar] [CrossRef]
- BREF. European Commission, Integrated Pollution Prevention and Control, Reference Document on Best Available Techniques in the Slaughterhouses and Animal By-Products Industries. 2005. Available online: https://eippcb.jrc.ec.europa.eu/sites/default/files/2020-01/sa_bref_0505.pdf (accessed on 25 August 2024).
- Bocken, N.M.P.; de Pauw, I.; Bakker, C.; van der Grinten, B. Product design and business model strategies for a circular economy. J. Ind. Prod. Eng. 2016, 33, 308–320. [Google Scholar] [CrossRef]
- Kallipoliti, L. History of Ecological Design. Oxford Research Encyclopedias. Environ. Sci. 2018, 1–59. [Google Scholar] [CrossRef]
- Lieder, M.; Rashid, A. Towards circular economy implementation: A comprehensive review in context of manufacturing industry. J. Clean. Prod. 2016, 115, 36–51. [Google Scholar] [CrossRef]
- DIN 38 414-8; German Standard Methods for the Examination of Water, Waste Water and Sludge; Sludge and Sediments (Group S); Determination of the Amenability to Anaerobic Digestion (S 8). DIN–German Institute for Standarization e. V.: Berlin, Germany, 1985.
- VDI 4630; Fermentation of Organic Materials Characterisation of the Substrate, Sampling, Collection of Material Data, Fermentation Tests. The Association of German Engineers: Düsseldorf, Germany, 2016.
- Drosg, B.; Braun, R.; Bochmann, G.; Al Saedi, T. 3-Analysis and characterization of biogas feedstocks. In The Biogas Handbook. Science, Production and Applications; Wellinger, A., Murphy, J., Baxter, D., Eds.; Woodhead Publishing Series in Energy; Woodhead Publishing: Sawston, UK, 2013; pp. 52–84. [Google Scholar] [CrossRef]
- Hicks, T.M.; Verbeek, C.J.R. Chapter 3-Meat Industry Protein By-Products: Sources and Characteristics. In Protein Byproducts: Transformation from Environmental Burden into Value-Added Products; Dhillon, G.S., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 37–61. [Google Scholar] [CrossRef]
- Buckley, M.; Penkman, K.E.H.; Wess, T.J.; Reaney, S.; Collins, M.J. Protein and mineral characterization of rendered meat and bone meal. Food Chem. 2012, 134, 1267–1278. [Google Scholar] [CrossRef]
- PN-R-64801:1999; Animal Feeding Stuffs. Feed Meals of Animal Origin. Polish Standard: Warsaw, Poland, 2013. (In Polish)
- Kowalski, Z.; Makara, A. Sustainable systems for the production of district heating using meat-bone meal as biofuel: A Polish case study. Energies 2022, 15, 3615. [Google Scholar] [CrossRef]
- Kowalski, A.; Banach, M.; Makara, A. Optimization of the co-combustion of meat–bone meal and sewage sludge in terms of the quality produced ashes used as substitute of phosphorites. Environ. Sci. Pollut. Res. 2021, 28, 8205–8214. [Google Scholar] [CrossRef]
- Meeker, D.L. Essential Rendering, All About the Animal By-Products Industry; National Renderers Association: Alexandria, VA, USA, 2006. [Google Scholar]
- Campos, I.; Valente, L.M.P.; Matos, E.; Marques, P.; Freire, F. Life-cycle assessment of animal feed ingredients: Poultry fat, poultry by-product meal and hydrolyzed feather meal. J. Clean. Prod. 2020, 252, 119845. [Google Scholar] [CrossRef]
- Bustillo-Lecompte, C.F.; Mehrvar, M. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances. J. Environ. Manag. 2015, 161, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Y.; Jiao, P.; Zhang, M.; Deng, Y.; Jiang, C.; Liu, X.W.; Lou, L.; Li, Y.; Zhang, X.X.; et al. Microbiome-functionality in anaerobic digesters: A critical review. Water Res. 2024, 249, 120891. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.M.; Wright, M.M. Anaerobic digestion fundamentals, challenges, and technological advances. Phys. Sci. Rev. 2022, 8, 2819–2837. [Google Scholar] [CrossRef]
- Shin, S.G.; Yoo, S.; Hwang, K.; Song, M.; Kim, W.; Han, G.; Hwang, S. Dynamics of transitional acidogenic community along with methanogenic population during anaerobic digestion of swine wastewater. Process Biochem. 2011, 46, 1607–1613. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, B.; Wang, Y.; Jiang, Q.; Liu, H. Reactor performance and bacterial pathogen removal in response to sludge retention time in a mesophilic anaerobic digester treating sewage sludge. Bioresour. Technol. 2012, 106, 20–26. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, R.; El-Mashad, H.M.; Dong, R.; Liu, X. Biogasification of green and food wastes using anaerobic-phased solids digester system. Appl. Biochem. Biotechnol. 2012, 168, 78–90. [Google Scholar] [CrossRef]
- Bareha, Y.; Girault, R.; Guezel, S.; Chaker, J.; Trémier, A. Modeling the fate of organic nitrogen during anaerobic digestion: Development of a bioaccessibility based ADM1. Water Res. 2019, 154, 298–315. [Google Scholar] [CrossRef]
- De Baere, L. Will anaerobic digestion of solid waste survive in the future? Water Sci. Technol. 2006, 53, 187–194. [Google Scholar] [CrossRef]
- Węglarzy, K.; Skrzyżala, I.; Pellar, A. Agricultural biogas plant in Kostkowice. First experiences. J. Res. Appl. Agric. Eng. 2011, 56, 189–192. [Google Scholar]
- Kythreotou, N.; Florides, G.; Tassou, S.A. A review of simple to scientific models for anaerobic digestion. Renew. Energy 2014, 71, 701–714. [Google Scholar] [CrossRef]
- Cieślik, M.; Dach, J.; Lewicki, A.; Smurzyńska, A.; Janczak, D.; Pawlicka-Kaczorowska, J.; Boniecki, P.; Cyplik, P.; Czekała, W.; Jóźwiakowski, K. Methane fermentation of the maize straw silage under meso- and thermophilic conditions. Energy 2016, 115, 1495–1502. [Google Scholar] [CrossRef]
- Świątek, M.; Lewicki, A.; Szymanowska, D.; Kubiak, P. The effect of introduction of chicken manure on the biodiversity and performance of an anaerobic digester. Electron. J. Biotechnol. 2019, 37, 25–33. [Google Scholar] [CrossRef]
- Hakawati, R.; Smyth, B.M.; McCullough, G.; De Rosa, F.; Rooney, D. What is the most energy efficient route for biogas utilization: Heat, electricity or transport? Appl. Energy 2017, 206, 1076–1087. [Google Scholar] [CrossRef]
- Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. J. Food Sci. Technol. 2012, 49, 278–293. [Google Scholar] [CrossRef]
- Silva, V.D.M.; Silvestre, M.P.C. Functional properties of bovine blood plasma intended for use as a functional ingredient in human food. LWT Food Sci. Technol. 2003, 36, 709–718. [Google Scholar] [CrossRef]
- Wang, S.; Hawkins, G.L.; Kiepper, B.H.; Das, K.C. Treatment of slaughterhouse blood waste using pilot scale two-stage anaerobic digesters for biogas production. Renew. Energy 2018, 126, 552–562. [Google Scholar] [CrossRef]
- Kumar, D.J.P.; Mishra, R.K.; Chinnam, S.; Binnal, P.; Dwivedi, N. A comprehensive study on anaerobic digestion of organic solid waste: A review on configurations, operating parameters, techno-economic analysis and current trends. Biotechnol. Notes 2024, 5, 33–49. [Google Scholar] [CrossRef]
- Chojnacka, K.; Moustakas, K.; Witek-Krowiak, A. Bio-based fertilizers: A practical approach towards circular economy. Bioresour. Technol. 2020, 295, 122223. [Google Scholar] [CrossRef]
- Czekała, W.; Lewicki, A.; Pochwatka, P.; Czekała, A.; Wojcieszak, D.; Jóźwiakowski, K.; Waliszewska, H. Digestate management in Polish farms as an element of the nutrient cycle. J. Clean. Prod. 2020, 242, 118454. [Google Scholar] [CrossRef]
- Kowalczyk-Juśko, A.; Pochwatka, P.; Mazurkiewicz, J.; Pulka, J.; Kępowicz, B.; Janczak, D.; Dach, J. Reduction of greenhouse gas emissions by replacing fertilizers with digestate. J. Ecol. Eng. 2023, 24, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Makara, A.; Kowalski, Z.; Saeid, A. Treatment of wastewater from production of meat-bone meal. Open Chem. 2015, 13, 1275–1285. [Google Scholar] [CrossRef]
- Tridge, Meat and Bone Meal (MBM) Global Wholesale Market Price Today, Report Date December 8, 2023. Available online: https://www.tridge.com/intelligences/meat-and-bone-meal-mbm (accessed on 24 August 2024).
- Comparic, Gas for Companies in 2024–How Much Will You Pay? Available online: https://comparic.pl/gaz-dla-firm-w-2024-ile-zaplacisz/ (accessed on 24 August 2024). (In Polish).
Meat Waste Type | Content in Dry Matter | Biogas Yield from Meat Waste (m3/t) | ||||||
---|---|---|---|---|---|---|---|---|
Mass (%) | Organic Mass (%) | Raw Mass | Dry Mass | Dry Organic Mass | ||||
Biogas | Methane | Biogas | Methane | Biogas | Methane | |||
Mulch | 28.27 | 94.86 | 124.27 | 69.69 | 439.50 | 246.47 | 463.33 | 259.83 |
125.01 | 70.90 | 442.10 | 250.75 | 466.08 | 264.34 | |||
126.44 | 71.19 | 447.17 | 251.78 | 471.41 | 265.43 | |||
Average | 125.44 | 70.59 | 442.92 | 249.67 | 466.94 | 263.20 | ||
Animal excrement | 14.55 | 81.94 | 34.58 | 22.67 | 237.68 | 155.80 | 290.07 | 190.14 |
34.42 | 22.45 | 239.59 | 156.27 | 293.92 | 191.70 | |||
34.64 | 22.85 | 238.11 | 157.06 | 290.60 | 191.68 | |||
Average | 34.55 | 22.65 | 238.46 | 156.38 | 291.53 | 191.18 | ||
Sewage sludge | 14.55 | 81.94 | 359.19 | 254.69 | 1106.83 | 784.84 | 1131.12 | 802.06 |
366.58 | 258.75 | 1129.61 | 797.34 | 1154.40 | 814.84 | |||
392.02 | 227.01 | 1208.01 | 853.62 | 1234.52 | 872.35 | |||
Average | 372.59 | 263.49 | 1148.15 | 811.93 | 1173.35 | 829.75 | ||
Soft waste | 32.45 | 97.85 | 503.69 | 350.12 | 1162.97 | 808.40 | 1222.09 | 849.49 |
569.23 | 398.33 | 1314.33 | 919.71 | 1381.09 | 966.46 | |||
343.79 | 236.94 | 793.78 | 547.06 | 834.13 | 574.87 | |||
Average | 472.24 | 328.47 | 1090.36 | 758.39 | 1145.77 | 796.94 | ||
Bones | 43.31 | 95.16 | 228.99 | 157.41 | 399.23 | 274.42 | 591.75 | 406.76 |
324.59 | 226.67 | 565.89 | 395.17 | 838.79 | 585.73 | |||
398.19 | 275.80 | 694.20 | 480.84 | 1028.98 | 712.71 | |||
Average | 317.26 | 219.96 | 553.11 | 383.48 | 819.84 | 568.40 | ||
Hooves and horns | 57.36 | 67.47 | 2.66 | 1.79 | 212.51 | 142.82 | 305.83 | 205.54 |
2.57 | 1.68 | 209.94 | 137.56 | 302.13 | 197.97 | |||
2.68 | 1.83 | 211.19 | 144.54 | 303.93 | 208.01 | |||
Average | 264 | 1.77 | 211.21 | 141.64 | 303.96 | 203.84 |
Biogas Unit Capacity (MW) | Meat Waste Charge (t/r) | Biogas Yield from Meat Waste (m3/t) | Biogas Production (Million m3/y) * | Heat Produced (GJ/y) | Heat for an MBM Production Capacity of 150,000 (t/y) | ||
---|---|---|---|---|---|---|---|
60% CH4 | 100% CH4 | Heat Need (GJ/y) | (%) of Heat Needed Fulfilled (6/7) | ||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
0.5 | 20,000 | 200 | 4.0 | 2.4 | 86,400 | 1,081,400 | 8.0 |
300 | 6.0 | 3.6 | 129,600 | 12.0 | |||
400 | 8.0 | 4.8 | 172,800 | 16.0 | |||
1 | 40,000 | 200 | 8.0 | 4.8 | 172,800 | 16.0 | |
300 | 12.0 | 7.2 | 259,200 | 24.0 | |||
400 | 16.0 | 9.6 | 345,600 | 32.0 | |||
2 | 80,000 | 200 | 16.0 | 9.6 | 345,600 | 32.0 | |
300 | 24.0 | 14.4 | 518,400 | 47.9 | |||
400 | 32.0 | 19.2 | 691,200 | 63.9 | |||
3 | 120,000 | 200 | 24.0 | 14.4 | 518,400 | 47.9 | |
300 | 36.0 | 21.6 | 777,600 | 71.9 | |||
400 | 48.0 | 28.8 | 1,036,800 | 95.9 | |||
4 | 160,000 | 200 | 32.0 | 19.2 | 691,200 | 47.9 | |
300 | 48.0 | 28.8 | 1,036,800 | 95.9 | |||
400 | 64.0 | 38.4 | 1,382,400 | 127.8 | |||
5 | 200,000 | 200 | 40.0 | 24.0 | 864,000 | 79.9 | |
300 | 60.0 | 36.0 | 1,296,000 | 119.8 | |||
400 | 80.0 | 48.0 | 1,728,000 | 159.7 |
Capacity | Meat Waste Amount (t/y) | Production | Heat Needs for MBM (GJ/y) | ||||
---|---|---|---|---|---|---|---|
MBM (t/r) | Biogas (Million m3/y) | Methane (Million m3/y) | Bio-Ferment for Fertilization (t/y) | Heat (GJ/y) | |||
Raw Digestate | |||||||
MBM | 600,000 450,000 440,000 | 150,000 112,500 110,000 | 982,500 736,875 720,500 | ||||
I category MBM | 85,000 | 20,500 | 139,187 | ||||
Biogas from I category of meat waste | 27.2 | 16.32 | 94,250 | 587,520 | |||
Biogas plant power 4 MW | 150,000 * 160,000 * | 48.0 51.2 | 28.8 30.72 | 166,323 177,412 | 1,036,800 1,240,106 |
Animal Waste Management Method | CE, SD, and CP Activities Used for Estimating Animal Waste Management Systems | ||
---|---|---|---|
CE Activities | SD Goals | CP Methods | |
Both methods MBM production with hydrothermal method, and the integrated system of production of MBM with hydrothermal method and parallel bio-fermentation of animal waste. | Incentivized high-quality recycling. Transparent and scalable production technology that can be used at other places. Take-back systems and collection, ensuring a continuous flow of materials for remanufacture, reducing damage to the environment. Converting of waste into new materials of higher quality and increased functionality. Rewarding up-cycling of materials. Elimination of odor emission. CE value diversity. Technology innovation. | Sustainable economic growth; diversify, innovate, and upgrade for economic productivity. Build resilient infrastructure, promote inclusive and sustainable industrialization, and foster innovation. Responsible consumption and production. Support domestic technology development and industrial diversification. | Changes in technology, processes, resources, or practices to reduce waste, environmental, and health risks. Minimize environmental damage. Changes in technology, input materials, operating practices. Off-site recycling of all types of animal waste. On-site energy recycling. On-site recycling of wastewater from MBM production. |
Only The integrated system of production of MBM with hydrothermal method and parallel bio-fermentation of animal waste | Diversity as key driver of versatility and resilience. Product modularity composing products that can be upgraded with newer features and/or functionalities. Business opportunities, new products. Trade effects. Industrial symbiosis leads to new partnerships, cross-value chain cooperation, cost savings, and changes in the cost structure. Higher energy and material efficiency. Reduced material costs, and net employment. Effects due to technology innovations. Lower energy consumption. Conversion of waste materials into usable bioheat, including combustion, allows decreasing resource dependence and increases system resilience. Net profit impact, higher material productivity at the company level. The high economic value of produced renewable bioenergy. Higher productivity at the company level and reduced energy costs. Reduction of primary material consumption. | Promote sustainable agriculture, improving agricultural productivity Industry, innovation, and infrastructure. Ensure access to affordable, reliable, sustainable, and modern clean energy. Increase the global percentage of renewable energy. Double the improvement in energy efficiency. Improve resource efficiency in consumption and production. Action to combat climate change and its impacts by regulating emissions and promoting developments in renewable energy. Ensure sustainable consumption and production patterns. | Use energy and resources more efficiently. Increase business profitability and increase the efficiency of production processes. Changes in waste use. Waste reduction at the source. Energy recovery from waste and its reuse. Reduction of wastewater amount from MBM production. Production of biofertilizers substituted artificial fertilizers. Substitution of artificial fertilizers with recycled processed waste. Nutrient recovery. |
Specification | Hydrolysis Method | Integrated Animal Waste Processing System | |
---|---|---|---|
Amount of meat waste (t/y) | 600,000 | 600,000 | |
Amount of meat waste processed (t/y) | 600,000 1 | 440,000 1 | 160,000 2 |
MBM production capacity (t/y) | 150,000 | 110,000 | |
MBM price (EUR/t) | 563 | 563 | |
MBM production value (million EUR/y) | 84.45 | 61.93 | |
Biogas production capacity (million m3 CH4) | - | 28.8 2 | |
Biogas price (EUR/m3) | - | 0.78 | |
Biogas production value (EUR/y) | - | 22.46 | |
Estimated operating costs (million EUR/y) | 67.56 | 27.08 | −22.46 |
Gross profit 3 (million/y) of a 4 MW plant | 16.89 | 34.85 | |
Investment costs (million EUR) | 36.3 | ||
Return on investment costs with gross profit EB (y) | 1.04 | ||
Bio-ferment fertilizer amount (t/y) | 124,500 | ||
Including nitrogen, phosphorus, and potassium (t/y) | 1120 | ||
Bio-ferment fertilizer price (EUR/y) | 13.5 | ||
Bio-ferment production value (million EUR/y) | 1.68 | ||
Size of the fertilized area (ha) | 4150 | ||
Gross profit (million EUR/y) with bio-ferment value | 36.53 | ||
Pay-back with gross profit, with bio-ferment value (y) | 0.99 |
Specification | Hydrolysis Method | Symbiotic Method | Environmental Effects |
---|---|---|---|
Meat waste utilization into MBM (t/r) | 600,000 | 440,000 | |
Natural gas consumption (million m3/y) | 27.3 | 0 | Substitute 100% of natural gas with biofuel (biogas) |
Carbon dioxide emission (t/y) | 54,860 | - | Elimination of 100% of CO2 emission |
Meat waste utilization by anaerobic digestion (t/r) | 0 | 160,000 | Zero odor emission and waste release |
Biogas production (million m3 CH4) | - | 28.8 | Production and use of biofuel (biogas) for MBM production |
Wastewater treatment (m3/y) | 800,000 | 478,200 | 40.2% reduction in biologically treated wastewater 40% increased capacity of Farmutil’s biological wastewater treatment plant without additional investment costs |
Bio-ferment production (t/y) and use on 4150 ha | - | 124,500 | Substitute artificial fertilizer with bio-ferment fertilizer on 4150 ha of arable land |
Avoided greenhouse gas emission due to bio-ferment use (t/y CO2eq) * | - | 147,325 | Reduction of GHG emissions due to the use of bio-ferment instead of artificial fertilizer |
Sewage sludge (t/y) | 7000 | - | Elimination of sewage sludge used as feedstock for anaerobic digestion |
Odor emission from MBM production (million m3/y) | 200 ** | 146 | Reduction of 54 million m3/y of odor emission from MBM production (27%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalski, Z.; Makara, A. Innovative System for Animal Waste Utilization Using Closed-Loop Material and Energy Cycles and Bioenergy: A Case Study. Energies 2025, 18, 2579. https://doi.org/10.3390/en18102579
Kowalski Z, Makara A. Innovative System for Animal Waste Utilization Using Closed-Loop Material and Energy Cycles and Bioenergy: A Case Study. Energies. 2025; 18(10):2579. https://doi.org/10.3390/en18102579
Chicago/Turabian StyleKowalski, Zygmunt, and Agnieszka Makara. 2025. "Innovative System for Animal Waste Utilization Using Closed-Loop Material and Energy Cycles and Bioenergy: A Case Study" Energies 18, no. 10: 2579. https://doi.org/10.3390/en18102579
APA StyleKowalski, Z., & Makara, A. (2025). Innovative System for Animal Waste Utilization Using Closed-Loop Material and Energy Cycles and Bioenergy: A Case Study. Energies, 18(10), 2579. https://doi.org/10.3390/en18102579