Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (452)

Search Parameters:
Keywords = poling efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2203 KB  
Article
Design and Analysis of an IE6 Hyper-Efficiency Permanent Magnet Synchronous Motor for Electric Vehicle Applications
by Hayatullah Nory, Ahmet Yildiz, Serhat Aksun and Cansu Aksoy
Energies 2025, 18(17), 4684; https://doi.org/10.3390/en18174684 - 3 Sep 2025
Viewed by 616
Abstract
In this study, a high-efficiency permanent magnet synchronous motor (PMSM) was designed for a geared electric vehicle. The motor was developed for use in an L-category electric vehicle with four wheels and a two-passenger capacity. During the design process, application-specific dimensional constraints, electromagnetic [...] Read more.
In this study, a high-efficiency permanent magnet synchronous motor (PMSM) was designed for a geared electric vehicle. The motor was developed for use in an L-category electric vehicle with four wheels and a two-passenger capacity. During the design process, application-specific dimensional constraints, electromagnetic requirements, and material limitations were taken into consideration. A spoke-type rotor structure was adopted to achieve both mechanical robustness and high efficiency with minimized leakage flux. In addition, the combination of a 12-stator slot and a 10-rotor pole was selected to suppress low-order harmonic components and improve torque smoothness. The motor model was analyzed using Siemens Simcenter SPEED software (Product Version 2020.3.1), and an efficiency above 94% was achieved, meeting the IE6 efficiency class. Magnetic flux analysis results showed that the selected core material operated within the magnetic saturation limits. The findings demonstrate that a compact and high-efficiency PMSM design is feasible for electric vehicle applications. Full article
Show Figures

Figure 1

19 pages, 4736 KB  
Article
Optimal Design of a Coaxial Magnetic Gear Pole Combination Considering an Overhang
by Tae-Kyu Ji and Soo-Whang Baek
Appl. Sci. 2025, 15(17), 9625; https://doi.org/10.3390/app15179625 - 1 Sep 2025
Viewed by 345
Abstract
This paper presents a comprehensive design approach for optimizing the pole configuration of a coaxial magnetic gear (CMG) structure with an overhang to enhance torque characteristics. Five CMG models were designed, and their characteristics were analyzed. A three-dimensional finite element method analysis was [...] Read more.
This paper presents a comprehensive design approach for optimizing the pole configuration of a coaxial magnetic gear (CMG) structure with an overhang to enhance torque characteristics. Five CMG models were designed, and their characteristics were analyzed. A three-dimensional finite element method analysis was conducted to account for axial leakage flux. To efficiently explore the design space, we utilized an optimal Latin hypercube sampling method to generate experimental points and constructed a kriging-based metamodel owing to its low root-mean-square error. We analyzed torque characteristics across the design variables to identify characteristic trends and performed a parametric sensitivity analysis to evaluate the influence of each variable on the torque. We derived an optimal solution that satisfied the objective function and constraints using the design variables. The characteristics of the proposed model were validated through electromagnetic field analysis, fast Fourier transform analysis of the air-gap magnetic flux density, and structural analysis. The optimal model achieved an average torque of 61.75 Nm, representing a 21.15% improvement over the initial model, while simultaneously reducing the ripple factor by 0.41%. These findings indicate that the proposed CMG design with an overhang effectively enhances torque characteristics. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

17 pages, 3057 KB  
Article
Torque Capability Enhancement of Interior Permanent Magnet Motors Using Filleting and Notching Stator
by Supanat Chamchuen, Kantapat Tonchua, Kunasin Khonongbua, Jonggrist Jongudomkarn, Apirat Siritaratiwat, Pirat Khunkitti and Pattasad Seangwong
World Electr. Veh. J. 2025, 16(9), 488; https://doi.org/10.3390/wevj16090488 - 26 Aug 2025
Viewed by 425
Abstract
Interior permanent magnet (IPM) synchronous motors have gained widespread adoption in electric vehicles (EVs) owing to their durable rotor configurations, expansive operational speed range, and superior efficiency. Nonetheless, typical IPM motor designs frequently exhibit high torque ripple and constrained torque density. To address [...] Read more.
Interior permanent magnet (IPM) synchronous motors have gained widespread adoption in electric vehicles (EVs) owing to their durable rotor configurations, expansive operational speed range, and superior efficiency. Nonetheless, typical IPM motor designs frequently exhibit high torque ripple and constrained torque density. To address these issues, a torque enhancement method is introduced by applying both filleting and notching techniques to the stator core. These techniques help reshape the magnetic field directly at the stator, allowing for more precise control of torque production and torque ripple reduction while keeping the rotor structure unchanged. Design variables of the stator in a 12-slot/8-pole fractional-slot V-shaped IPM motor are optimized using a multi-objective genetic algorithm based on a sensitivity constraint for unidirectional operation. The electromagnetic performance of the motor is analyzed through 2D finite element simulations for both no-load and loaded scenarios. The proposed motor increases average torque by 2.45% and significantly reduces torque ripple by 47.73% compared to the conventional motor. These reflect a significant advancement in torque capability. Furthermore, the efficiency of the proposed motor reaches 93.8%. The findings suggest the potential of the proposed filleting and notching techniques for torque capability improvement in EV applications. Full article
Show Figures

Figure 1

9 pages, 2467 KB  
Article
Design and Simulation of an Electron Optical System for Terahertz Vacuum Devices
by Muhammad Haris Jamil, Zhiwei Lin, Hamid Sharif, Nazish Saleem Abbas and Wenlong He
Micromachines 2025, 16(8), 928; https://doi.org/10.3390/mi16080928 - 13 Aug 2025
Viewed by 485
Abstract
An electron optic system (EOS) consisting of a sheet electron beam gun (SEB) and a pole offset periodic cusped magnet (PO-PCM) is reported for 340-GHz frequency. A sheet electron beam with a voltage of 29 kV, beam compression ratio of 16, and a [...] Read more.
An electron optic system (EOS) consisting of a sheet electron beam gun (SEB) and a pole offset periodic cusped magnet (PO-PCM) is reported for 340-GHz frequency. A sheet electron beam with a voltage of 29 kV, beam compression ratio of 16, and a beam waist of size 0.17 mm × 0.044 mm was designed and optimized using computer simulation technology (CST). The EOS was capable of transmitting the beam with a current of 6.9 mA through a beam tunnel of size 0.516 mm × 0.091 mm, having a length of 60 mm with the help of a pole offset periodic cusped magnet. The axial magnetic field generated by the PCM was 0.32 T. The EOS was efficient enough to transmit the beam stably through the beam tunnel with a transmission rate of 100%. Full article
Show Figures

Figure 1

19 pages, 8749 KB  
Article
Applying Computer Vision for the Detection and Analysis of the Condition and Operation of Street Lighting
by Sunggat Aiymbay, Ainur Zhumadillayeva, Eric T. Matson, Bakhyt Matkarimov and Bigul Mukhametzhanova
Symmetry 2025, 17(8), 1294; https://doi.org/10.3390/sym17081294 - 11 Aug 2025
Viewed by 528
Abstract
Urban safety critically depends on effective street lighting systems; however, rapidly expanding cities, such as Astana, face considerable challenges in maintaining these systems due to the inefficiency, high labor intensity, and error-prone nature of conventional manual inspection methods. This necessitates an urgent shift [...] Read more.
Urban safety critically depends on effective street lighting systems; however, rapidly expanding cities, such as Astana, face considerable challenges in maintaining these systems due to the inefficiency, high labor intensity, and error-prone nature of conventional manual inspection methods. This necessitates an urgent shift toward automated, accurate, and scalable monitoring systems capable of quickly identifying malfunctioning streetlights. In response, this study introduces an advanced computer vision-based approach for automated detection and analysis of street lighting conditions. Leveraging high-resolution dashcam footage collected under diverse nighttime weather conditions, we constructed a robust dataset of 4260 carefully annotated frames highlighting streetlight poles and lamps. To significantly enhance detection accuracy, we propose the novel YOLO-CSE model, which integrates a Channel Squeeze-and-Excitation (CSE) module into the YOLO (You Only Look Once) detection architecture. The CSE module leverages the inherent symmetry of streetlight structures, such as the bilateral symmetry of poles and the radial symmetry of lamps, to dynamically recalibrate feature channels, emphasizing spatially repetitive and geometrically uniform patterns. By modifying the bottleneck layer through the addition of an extra convolutional layer and the SE block, the model learns richer, more discriminative feature representations, particularly for small or distant lamps under partial occlusion or low illumination. A comprehensive comparative analysis demonstrates that YOLO-CSE outperforms conventional YOLO variants and state-of-the-art models, achieving a mean average precision (mAP) of 0.798, recall of 0.794, precision of 0.824, and an F1 score of 0.808. The model’s symmetry-aware design enhances robustness to urban clutter (e.g., asymmetric noise from headlights or signage) while maintaining real-time efficiency. These results validate YOLO-CSE as a scalable solution for smart cities, where symmetry principles bridge geometric priors with computational efficiency in infrastructure monitoring. Full article
(This article belongs to the Special Issue Symmetry in Advancing Digital Signal and Image Processing)
Show Figures

Figure 1

16 pages, 4442 KB  
Article
Faulted-Pole Discrimination in Shipboard DC Microgrids Using S-Transformation and Convolutional Neural Networks
by Yayu Yang, Zhenxing Wang, Ning Gao, Kangan Wang, Binjie Jin, Hao Chen and Bo Li
J. Mar. Sci. Eng. 2025, 13(8), 1510; https://doi.org/10.3390/jmse13081510 - 5 Aug 2025
Viewed by 354
Abstract
The complex topology of shipboard DC microgrids and the strong coupling between positive and negative poles during faults pose significant challenges for faulted-pole identification, especially under high-resistance conditions. To address these issues, this paper proposes a novel faulted-pole identification method based on S-Transformation [...] Read more.
The complex topology of shipboard DC microgrids and the strong coupling between positive and negative poles during faults pose significant challenges for faulted-pole identification, especially under high-resistance conditions. To address these issues, this paper proposes a novel faulted-pole identification method based on S-Transformation and convolutional neural networks (CNNs). Single-ended voltage and current measurements from the generator side are used to generate time–frequency spectrograms via S-Transformation, which are then processed by a CNN trained to classify the faulted pole. This approach avoids reliance on complex threshold settings. Simulation results on a representative shipboard DC microgrid demonstrate that the proposed method achieves high accuracy, fast response, and strong robustness, even under high-resistance fault scenarios. The method significantly enhances the selectivity and reliability of fault protection, offering a promising solution for advanced marine DC power systems. Compared to conventional fault-diagnosis techniques, the proposed model achieves notable improvements in classification accuracy and computational efficiency for line-fault detection. Full article
Show Figures

Figure 1

29 pages, 3882 KB  
Article
Control Range and Power Efficiency of Multiphase Cage Induction Generators Operating Alone at a Varying Speed on a Direct Current Load
by Piotr Drozdowski
Energies 2025, 18(15), 4108; https://doi.org/10.3390/en18154108 - 2 Aug 2025
Viewed by 306
Abstract
The aim of the article is to determine the control range of a multiphase squirrel cage induction generator with more than three stator phases, operating in a wide range of driving speeds. The generator produces an output DC voltage using a multiphase converter [...] Read more.
The aim of the article is to determine the control range of a multiphase squirrel cage induction generator with more than three stator phases, operating in a wide range of driving speeds. The generator produces an output DC voltage using a multiphase converter operating as a PWM rectifier. The entire speed range is divided into intervals in which the sequence of stator phase voltages and, in effect, the number of pole pairs, is changed. In each interval, the output voltage is regulated by the frequency and amplitude of the stator voltages causing the highest possible power efficiency of the generator. The system can be scalar controlled or regulated using field orientation. Generator characteristics are calculated based on the set of steady-state equations derived from differential equations describing the multiphase induction machine. The calculation results are compared with simulations and with the steady-state measurement of the vector-controlled nine-phase generator. Recognizing the reliability of the obtained results, calculations are performed for a twelve-phase generator, obtaining satisfactory efficiency from 70% to 85% in the generator speed range from 0.2 to 1.0 of the assumed reference speed of 314 rad/s. The generator producing DC voltage can charge an electrical energy storage system or can be used directly to provide electrical power. This solution is not patented. Full article
(This article belongs to the Special Issue Advanced Technologies for Electrified Transportation and Robotics)
Show Figures

Figure 1

19 pages, 4344 KB  
Article
Modeling of a C-Frame Reluctance-Enhanced Shaded-Pole Induction Motor—Study of Shaded-Coil Design
by Selma Čorović and Damijan Miljavec
Actuators 2025, 14(8), 368; https://doi.org/10.3390/act14080368 - 24 Jul 2025
Viewed by 390
Abstract
Shaded-pole induction motors are the most frequently used single-phase electric motors in low power applications. Their main advantages are reliability, robustness, low level of noise and vibration, relatively simple manufacturing technology and cost effectiveness. These motors are the driving units of choice in [...] Read more.
Shaded-pole induction motors are the most frequently used single-phase electric motors in low power applications. Their main advantages are reliability, robustness, low level of noise and vibration, relatively simple manufacturing technology and cost effectiveness. These motors are the driving units of choice in the applications where the variable speed and high starting torque are not of utmost importance, in spite of the fact that they are characterized by inferior efficiency, power factor and starting torque compared to their single-phase counterparts. They are equipped with auxiliary massive copper coils at the stator side, which makes them self-starting, and strongly influence the motor characteristics. This study deals with the numerical modeling and analysis of a shaded-pole induction motor with a C-shaped stator frame. The analysis was performed using 2D finite element-based transient magnetic numerical modeling. The primary objective was to investigate the influence of the number and size of the auxiliary shaded coils on the output torque speed characteristic. We explored the possibility of reducing the amount of material used while preserving the crucial/nominal properties of the motor. Our results have important implications in manufacturing simplification, which may be important for the eco-design of small motors and actuators, including their recycling and/or reuse process. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

24 pages, 5578 KB  
Article
Simplified Frequency Estimation of Prefabricated Electric Poles Through Regression-Based Modal Analysis
by Hakan Erkek, Ibrahim Karataş, Doğucan Resuloğulları, Emriye Çınar Resuloğullari and Şahin Tolga Güvel
Appl. Sci. 2025, 15(15), 8179; https://doi.org/10.3390/app15158179 - 23 Jul 2025
Viewed by 378
Abstract
Prefabricated construction elements are widely used in both large- and small-scale projects, serving structural and infrastructural purposes. One notable application is in power transmission poles, which ensure the safe and efficient delivery of electricity. Despite their importance, limited research exists on the structural [...] Read more.
Prefabricated construction elements are widely used in both large- and small-scale projects, serving structural and infrastructural purposes. One notable application is in power transmission poles, which ensure the safe and efficient delivery of electricity. Despite their importance, limited research exists on the structural and modal behavior of reinforced concrete power poles. This study presents a comprehensive modal analysis of such poles, focusing on how factors like modulus of elasticity, height, and lower/upper inner and outer diameters influence dynamic performance. A total of 3240 finite element models were created, with reinforced concrete poles partially embedded in the ground. Modal analyses were performed to evaluate natural frequencies, mode shapes, and modal mass participation ratios. Results showed that increasing the modulus of elasticity raised frequency values, while greater pole height decreased them. Enlarging the lower inner and upper outer radii also led to higher frequencies. Regression analysis yielded high accuracy, with R2 values exceeding 90% and an average error rate of about 6%. The study provides empirical formulas that allow for quick frequency estimations without the need for detailed finite element modeling, as long as the material and geometric properties remain consistent. The approach can be extended to other prefabricated structural elements. Full article
Show Figures

Figure 1

24 pages, 5470 KB  
Article
Research on Improved Technology of Totem-Pole Bridgeless PFC Circuit Based on Triangular Current Mode
by Pingjuan Niu, Jingying Guo, Zhigang Gao, Jingwen Yan and Shengwei Gao
Energies 2025, 18(14), 3886; https://doi.org/10.3390/en18143886 - 21 Jul 2025
Viewed by 621
Abstract
The totem-pole bridgeless power factor correction (PFC) circuit based on the triangular current mode (TCM) in the front-end PFC of a switching power supply has the advantage of realizing zero-voltage switching (ZVS) in the full working range. However, the TCM control based on [...] Read more.
The totem-pole bridgeless power factor correction (PFC) circuit based on the triangular current mode (TCM) in the front-end PFC of a switching power supply has the advantage of realizing zero-voltage switching (ZVS) in the full working range. However, the TCM control based on the critical conduction mode (CRM) further increases the inductance current ripple, and the traditional input voltage AC sampling circuit increases the circuit complexity and device cost. Therefore, this paper studies the corresponding improvement technology from two dimensions. Firstly, the coordinated interleaved parallel technology is employed to design the system’s overall control-improvement strategy. This approach not only achieves full working-range ZVS but also reduces both the inductor current ripple and power device stress. Simultaneously, an optimized input voltage sampling circuit is designed to accommodate varying voltage requirements of control chip pins. This circuit demonstrates strong synchronization in both voltage and phase sampling, and the structural characteristics of the optocoupler can also suppress electrical signal interference. Finally, a 600 W totem-pole bridgeless PFC prototype is developed. The experimental results demonstrate the effectiveness of the proposed improved method. The prototype efficiency peak reaches 97.3%. Full article
Show Figures

Figure 1

15 pages, 5296 KB  
Article
Study on Multiple-Inverter-Drive Method for IPMSM to Improve the Motor Efficiency
by Koki Takeuchi and Kan Akatsu
World Electr. Veh. J. 2025, 16(7), 398; https://doi.org/10.3390/wevj16070398 - 15 Jul 2025
Viewed by 406
Abstract
In recent years, the rapid spread of electric vehicles (EVs) has intensified the competition to develop power units for EVs. In particular, improving the driving range of EVs has become a major topic, and in order to achieve this, many studies have been [...] Read more.
In recent years, the rapid spread of electric vehicles (EVs) has intensified the competition to develop power units for EVs. In particular, improving the driving range of EVs has become a major topic, and in order to achieve this, many studies have been conducted on improving the efficiency of EV power units. In this study, we propose a multiple-inverter-drive permanent magnet synchronous motor based on an 8-pole, 48-slot structure, which is commonly used as an EV motor. The proposed motor is composed of two completely independent parallel inverters and windings, and intermittent operation is possible; that is, only one inverter and one parallel winding is used depending on the situation. In the proposed motor, we compare losses including stator iron loss, rotor iron loss, and magnet eddy current loss by PWM voltage inputs for some stator winding topologies, we show that the one-side winding arrangement is the most efficient during intermittent operation, and that it is more efficient than normal operation especially in the low-speed, low-torque range. Finally, through a vehicle-driving simulation considering the efficiency map including motor loss and inverter loss, we show that the intentional use of intermittent operation can improve electrical energy consumption. Full article
Show Figures

Figure 1

17 pages, 1706 KB  
Article
Mid- to Long-Term Distribution System Planning Using Investment-Based Modeling
by Hosung Ryu, Wookyu Chae, Hongjoo Kim and Jintae Cho
Energies 2025, 18(14), 3702; https://doi.org/10.3390/en18143702 - 14 Jul 2025
Viewed by 315
Abstract
This study presents a practical and scalable framework for the mid- to long-term distribution network planning that reflects real-world infrastructure constraints and investment requirements. While traditional methods often rely on simplified network models or reactive reinforcement strategies, the proposed approach introduces an investment-oriented [...] Read more.
This study presents a practical and scalable framework for the mid- to long-term distribution network planning that reflects real-world infrastructure constraints and investment requirements. While traditional methods often rely on simplified network models or reactive reinforcement strategies, the proposed approach introduces an investment-oriented planning model that explicitly incorporates physical elements such as duct capacity, pole availability, and installation feasibility. A linear programming (LP) formulation is adopted to determine the optimal routing and sizing of new facilities under technical constraints including voltage regulation, power balance, and substation capacity limits. To validate the model’s effectiveness, actual infrastructure and load data were used. The results show that the model can derive cost-efficient expansion strategies over a five-year horizon by prioritizing existing infrastructure use and flexibly adapting to spatial limitations. The proposed approach enables utility planners to make realistic, data-driven decisions and supports diverse scenario analyses through a modular structure. By embedding investment logic directly into the network model, this framework bridges the gap between high-level planning strategies and the engineering realities of distribution system expansion. Full article
(This article belongs to the Section F2: Distributed Energy System)
Show Figures

Figure 1

17 pages, 1163 KB  
Article
Decoupled Reinforcement Hybrid PPO–Sliding Control for Underactuated Systems: Application to Cart–Pole and Acrobot
by Yi-Jen Mon
Machines 2025, 13(7), 601; https://doi.org/10.3390/machines13070601 - 11 Jul 2025
Viewed by 431
Abstract
Underactuated systems, such as the Cart–Pole and Acrobot, pose significant control challenges due to their inherent nonlinearity and limited actuation. Traditional control methods often struggle to achieve stable and optimal performance in these complex scenarios. This paper presents a novel stable reinforcement learning [...] Read more.
Underactuated systems, such as the Cart–Pole and Acrobot, pose significant control challenges due to their inherent nonlinearity and limited actuation. Traditional control methods often struggle to achieve stable and optimal performance in these complex scenarios. This paper presents a novel stable reinforcement learning (RL) approach for underactuated systems, integrating advanced exploration–exploitation mechanisms and a refined policy optimization framework to address instability issues in RL-based control. The proposed method is validated through extensive experiments on two benchmark underactuated systems: the Cart–Pole and Acrobot. In the Cart–Pole task, the method achieves long-term balance with high stability, outperforming traditional RL algorithms such as the Proximal Policy Optimization (PPO) in average episode length and robustness to environmental disturbances. For the Acrobot, the approach enables reliable swing-up and near-vertical stabilization but cannot achieve sustained balance control beyond short time intervals due to residual dynamics and control limitations. A key contribution is the development of a hybrid PPO–sliding mode control strategy that enhances learning efficiency and stabilities for underactuated systems. Full article
Show Figures

Figure 1

28 pages, 4234 KB  
Review
A Review on Laser-Induced Graphene-Based Electrocatalysts for the Oxygen Reduction Reaction in Electrochemical Energy Storage and Conversion
by Giulia Massaglia and Marzia Quaglio
Nanomaterials 2025, 15(14), 1070; https://doi.org/10.3390/nano15141070 - 10 Jul 2025
Viewed by 873
Abstract
The increasing demand for efficient and sustainable energy conversion technologies has driven extensive research into alternative electrocatalysts for the oxygen reduction reaction (ORR). Platinum-based catalysts, while highly efficient, suffer from high costs, scarcity, and long-term instability Laser-Induced Graphene (LIG) has recently attracted considerable [...] Read more.
The increasing demand for efficient and sustainable energy conversion technologies has driven extensive research into alternative electrocatalysts for the oxygen reduction reaction (ORR). Platinum-based catalysts, while highly efficient, suffer from high costs, scarcity, and long-term instability Laser-Induced Graphene (LIG) has recently attracted considerable interest as an effective metal-free electrocatalyst for oxygen reduction reaction (ORR), owing to its remarkable electrical conductivity, customizable surface functionalities, and multi-scale porous architecture. This review explores the synthesis strategies, physicochemical properties, and ORR catalytic performance of LIG. Additionally, this review offered a detailed overview regarding the effective pole of heteroatom doping (N, S, P, B) and functionalization techniques to enhance catalytic activity. Finally, we highlight the current challenges and future perspectives of LIG-based ORR catalysts for fuel cells and other electrochemical energy applications. Furthermore, laser-induced-graphene (LIG) has emerged as a highly attractive candidate for electrochemical energy conversion systems, due to its large specific surface area, tunable porosity, excellent electrical conductivity, and cost-effective fabrication process. This review discusses recent advancements in LIG synthesis, its structural and electrochemical properties, and its applications in supercapacitors, batteries, fuel cells, and electrocatalysis. Despite its advantages, challenges such as mechanical stability, electrochemical degradation, and large-scale production remain key areas for improvement. Additionally, this review explores future perspectives on optimizing LIG for next-generation energy storage and conversion technologies. Full article
(This article belongs to the Special Issue Nanomaterial-Based (Bio)Electrochemical Energy and Storage Systems)
Show Figures

Figure 1

16 pages, 4237 KB  
Article
Solid-State Circuit Breaker Topology Design Methodology for Smart DC Distribution Grids with Millisecond-Level Self-Healing Capability
by Baoquan Wei, Haoxiang Xiao, Hong Liu, Dongyu Li, Fangming Deng, Benren Pan and Zewen Li
Energies 2025, 18(14), 3613; https://doi.org/10.3390/en18143613 - 9 Jul 2025
Viewed by 510
Abstract
To address the challenges of prolonged current isolation times and high dependency on varistors in traditional flexible short-circuit fault isolation schemes for DC systems, this paper proposes a rapid fault isolation circuit design based on an adaptive solid-state circuit breaker (SSCB). By introducing [...] Read more.
To address the challenges of prolonged current isolation times and high dependency on varistors in traditional flexible short-circuit fault isolation schemes for DC systems, this paper proposes a rapid fault isolation circuit design based on an adaptive solid-state circuit breaker (SSCB). By introducing an adaptive current-limiting branch topology, the proposed solution reduces the risk of system oscillations induced by current-limiting inductors during normal operation and minimizes steady-state losses in the breaker. Upon fault occurrence, the current-limiting inductor is automatically activated to effectively suppress the transient current rise rate. An energy dissipation circuit (EDC) featuring a resistor as the primary energy absorber and an auxiliary varistor (MOV) for voltage clamping, alongside a snubber circuit, provides an independent path for inductor energy release after faults. This design significantly alleviates the impact of MOV capacity constraints on the fault isolation process compared to traditional schemes where the MOV is the primary energy sink. The proposed topology employs a symmetrical bridge structure compatible with both pole-to-pole and pole-to-ground fault scenarios. Parameter optimization ensures the IGBT voltage withstand capability and energy dissipation efficiency. Simulation and experimental results demonstrate that this scheme achieves fault isolation within 0.1 ms, reduces the maximum fault current-to-rated current ratio to 5.8, and exhibits significantly shorter isolation times compared to conventional approaches. This provides an effective solution for segment switches and tie switches in millisecond-level self-healing systems for both low-voltage (LVDC, e.g., 750 V/1500 V DC) and medium-voltage (MVDC, e.g., 10–35 kV DC) smart DC distribution grids, particularly in applications demanding ultra-fast fault isolation such as data centers, electric vehicle (EV) fast-charging parks, and shipboard power systems. Full article
(This article belongs to the Special Issue AI Solutions for Energy Management: Smart Grids and EV Charging)
Show Figures

Figure 1

Back to TopTop