Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,069)

Search Parameters:
Keywords = pleiotropic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 706 KB  
Article
Enlarged Perivascular Spaces (EPVS) and the Risk of Amyotrophic Lateral Sclerosis (ALS): Evidence for Overlapping Genetic Signals in White Matter Without Causal Links
by Xin Huang, Kailin Xia, Shan Ye, Qiong Yang and Dongsheng Fan
Brain Sci. 2026, 16(2), 144; https://doi.org/10.3390/brainsci16020144 - 28 Jan 2026
Abstract
Background/Objectives: Emerging evidence suggests that enlarged perivascular spaces (EPVS), which play a significant role in brain fluid exchange and waste removal, may be involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). In this study, we aimed to explore the shared genetic [...] Read more.
Background/Objectives: Emerging evidence suggests that enlarged perivascular spaces (EPVS), which play a significant role in brain fluid exchange and waste removal, may be involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). In this study, we aimed to explore the shared genetic link and causal effect between EPVS and ALS. Methods: This study used publicly available summary data from the largest and most recent genome-wide association studies (GWAS) on EPVS (n = 40,095) and ALS (n = 138,086) in European populations. EPVS were assessed in the hippocampus (EPVS-HIP), basal ganglia (EPVS-BG), and white matter (EPVS-WM). We used linkage disequilibrium score regression (LDSC) to investigate the genetic correlation. Multi-trait analysis of GWAS (MTAG), Cross-Phenotype Association (CPASSOC) analysis, and genetic colocalization analysis were performed to identify shared risk loci. Bidirectional Mendelian randomization analysis was used to investigate the causal relationship. Results: A negative genetic correlation was observed between EPVS-WM and ALS after Bonferroni correction (rg = −0.24, p < 0.01). No significant correlations were observed between ALS and EPVS-HIP (rg = −0.03, p = 0.79) or EPVS-BG (rg = 0.01, p = 0.91). Four significant loci including rs113247976 in KIF5A and rs118082508 in SDR9C7 were identified as potential pleiotropic loci of the relationship. None of these loci demonstrated evidence of genetic colocalization. Furthermore, Mendelian randomization analysis revealed no causative effect in either direction. Conclusions: EPVS-WM and ALS may share part of their genetic architecture, but no evidence for a causal relationship was observed. Future research is needed to further refine these relationships. Full article
Show Figures

Graphical abstract

15 pages, 881 KB  
Review
Beyond Neurotrophins: A Proposed Neurotrophic–Epigenetic Axis Mediated by Non-Coding RNA Networks for Hericium erinaceus Bioactives—A Hypothesis-Driven Review
by Giovanni Luca Cipriano, Ivana Raffaele, Alessia Floramo, Veronica Argento, Deborah Stefania Donato, Chiara Malatino, Serena Silvestro, Giovanni Schepici, Maria Francesca Astorino, Marco Calabrò and Ivan Anchesi
Int. J. Mol. Sci. 2026, 27(3), 1269; https://doi.org/10.3390/ijms27031269 - 27 Jan 2026
Abstract
Hericium erinaceus (H. erinaceus), a medicinal mushroom, is a source of bioactive compounds with demonstrated neuroprotective potential. This activity is primarily attributed to two distinct classes of compounds: erinacines from the mycelium, which potently induce the synthesis of neurotrophins, protein growth [...] Read more.
Hericium erinaceus (H. erinaceus), a medicinal mushroom, is a source of bioactive compounds with demonstrated neuroprotective potential. This activity is primarily attributed to two distinct classes of compounds: erinacines from the mycelium, which potently induce the synthesis of neurotrophins, protein growth factors essential for neuronal survival and health, and hericenones from the fruiting body, which subsequently appear to enhance or potentiate neurotrophin-activated signaling pathways. Preclinical evidence substantiates their ability to enhance neurotrophin levels, particularly Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF), and activate their cognate Trk receptors. Activation of these pathways, including PI3K/AKT/mTOR and MAPK/ERK, converges on transcription factors such as CREB, promoting neuronal survival, neurite outgrowth, and synaptic plasticity. However, the precise molecular mechanisms linking these small molecules to the complex orchestration of neurotrophic gene expression remain incompletely defined. This review synthesizes current knowledge of the neurotrophic pharmacology of H. erinaceus bioactives and proposes a novel framework suggesting that non-coding RNAs (ncRNAs) play a key regulatory role. We hypothesize that hericenones and erinacines modulate key transcriptional hubs, such as CREB, Nrf2, and NF-κB, which in turn regulate the expression of specific ncRNAs (e.g., miR-132, miR-146a) known to control neurogenesis, synaptogenesis, oxidative stress, and neuroinflammation. This ncRNA-mediated mechanism may represent an un-explored axis that explains the pleiotropic neuroprotective effects of these compounds. We critically appraise the existing preclinical evidence, identify significant methodological limitations and translational gaps, and propose a structured research roadmap to test these ncRNA-centric hypotheses, aiming to accelerate the rational development of H. erinaceus-derived compounds for neurodegenerative diseases. Full article
(This article belongs to the Special Issue Bioactive Natural Compounds in Neuroscience)
Show Figures

Figure 1

22 pages, 8016 KB  
Article
Genome-Wide Association Analysis and Candidate Gene Identification for Resistance to “Milky Disease” in the Chinese Mitten Crab (Eriocheir sinensis)
by Yilin Yu, Xiaochen Liang, Na Sun, Yan Zheng, Bingyu Li, Qingbiao Hu, Yingying Zhao, Yongan Bai and Xiaodong Li
Biology 2026, 15(3), 235; https://doi.org/10.3390/biology15030235 - 27 Jan 2026
Abstract
“Milky disease” of the Chinese mitten crab (Eriocheir sinensis), caused by Metschnikowia bicuspidata, leads to substantial economic losses. Despite extensive research on its pathogenesis, the genetic basis of host resistance and underlying regulatory mechanisms remain unclear, limiting the development of [...] Read more.
“Milky disease” of the Chinese mitten crab (Eriocheir sinensis), caused by Metschnikowia bicuspidata, leads to substantial economic losses. Despite extensive research on its pathogenesis, the genetic basis of host resistance and underlying regulatory mechanisms remain unclear, limiting the development of disease-resistant varieties. This study aimed to (1) evaluate resistance differences among 10 E. sinensis families (five highly resistant and five sensitive) via artificial challenge; (2) identify disease-resistance-associated genetic loci using genome-wide association analysis (GWAS). Our findings revealed that the F05 family exhibited the strongest resistance, with a mortality rate of only 3% and a molting rate of 73%, accompanied by superior growth performance. Whole-genome resequencing identified 10,161,545 high-quality SNPs, and GWAS detected 767 loci significantly associated with disease-resistance traits, among which two pleiotropic SNPs (Chr46:18395778 and Chr1:20680490) were simultaneously associated with both “dead or not” and “qPCR fixed amount of fungi”, reflecting their functional relevance in regulating survival and pathogen load. Notably, we propose for the first time that E. sinensis achieves resistance by inducing M. bicuspidata into a viable but nonculturable (VBNC) state, in which the fungal cells remain metabolically active but cannot form colonies on conventional culture media. This study establishes a multidimensional resistance evaluation system, clarifies the genetic basis and novel mechanism of resistance, and provides valuable molecular markers for marker-assisted breeding. The findings contribute to reducing disease-related losses and promoting sustainable development of the E. sinensis aquaculture industry. Full article
Show Figures

Figure 1

20 pages, 1522 KB  
Review
Semaglutide-Mediated Remodeling of Adipose Tissue in Type 2 Diabetes: Molecular Mechanisms Beyond Glycemic Control
by Tatjana Ábel and Éva Csobod Csajbókné
Int. J. Mol. Sci. 2026, 27(3), 1186; https://doi.org/10.3390/ijms27031186 - 24 Jan 2026
Viewed by 182
Abstract
Type 2 diabetes mellitus (T2DM) is characterized not only by chronic hyperglycemia but also by profound adipose tissue dysfunction, including impaired lipid handling, low-grade inflammation, mitochondrial dysfunction, and extracellular matrix (ECM) remodeling. These adipose tissue alterations play a central role in the development [...] Read more.
Type 2 diabetes mellitus (T2DM) is characterized not only by chronic hyperglycemia but also by profound adipose tissue dysfunction, including impaired lipid handling, low-grade inflammation, mitochondrial dysfunction, and extracellular matrix (ECM) remodeling. These adipose tissue alterations play a central role in the development of systemic insulin resistance, ectopic lipid accumulation, and cardiometabolic complications. Glucagon-like peptide-1 receptor agonists (GLP-1RAs), particularly semaglutide, have emerged as highly effective therapies for T2DM and obesity. While their glucose-lowering and appetite-suppressive effects are well established, accumulating evidence indicates that semaglutide exerts pleiotropic metabolic actions that extend beyond glycemic control, with adipose tissue representing a key target organ. This review synthesizes current preclinical and clinical evidence on the molecular and cellular mechanisms through which semaglutide modulates adipose tissue biology in T2DM. We discuss depot-specific effects on visceral and subcutaneous adipose tissue, regulation of adipocyte lipid metabolism and lipolysis, enhancement of mitochondrial biogenesis and oxidative capacity, induction of beige adipocyte programming, modulation of adipokine and cytokine secretion, immunometabolic remodeling, and attenuation of adipose tissue fibrosis and ECM stiffness. Collectively, available data indicate that semaglutide promotes a functional shift in adipose tissue from a pro-inflammatory, lipid-storing phenotype toward a more oxidative, insulin-sensitive, and metabolically flexible state. These adipose-centered adaptations likely contribute to improvements in systemic insulin sensitivity, reduction in ectopic fat deposition, and attenuation of cardiometabolic risk observed in patients with T2DM. Despite compelling mechanistic insights, much of the current evidence derives from animal models or in vitro systems. Human adipose tissue-focused studies integrating molecular profiling, advanced imaging, and longitudinal clinical data are therefore needed to fully elucidate the extra-glycemic actions of semaglutide and to translate these findings into adipose-targeted therapeutic strategies. Full article
(This article belongs to the Special Issue Molecular Insights in Diabetes)
Show Figures

Figure 1

21 pages, 1102 KB  
Review
The Lactate Nexus: A Molecular Bridge Linking Physical Activity, Sleep, and Cognitive Enhancement
by Alimjan Ablitip, Kefeng Zheng, Hao Ding, Yicong Cui, Xindong Ma and Yanwei You
Biomedicines 2026, 14(1), 253; https://doi.org/10.3390/biomedicines14010253 - 22 Jan 2026
Viewed by 239
Abstract
Physical activity (PA) and quality sleep are essential for cognitive health, providing synergistic protection against age-related cognitive decline. However, the shared molecular pathways that explain their combined and interactive benefits remain poorly understood. This review suggests that lactate, long dismissed as a metabolic [...] Read more.
Physical activity (PA) and quality sleep are essential for cognitive health, providing synergistic protection against age-related cognitive decline. However, the shared molecular pathways that explain their combined and interactive benefits remain poorly understood. This review suggests that lactate, long dismissed as a metabolic waste product, is a unifying mechanism. We introduce the “Lactate Nexus”, a conceptual framework that proposes lactate functions as a key signalling molecule, mechanistically linking the pro-cognitive effects of both daytime exercise and nighttime sleep. We begin by outlining lactate’s evolving role—from an energy substrate shuttled from astrocytes to neurons (the Astrocyte–Neuron Lactate Shuttle) to a pleiotropic signal. As a signal, lactate influences neuroplasticity via NMDA receptors, neuroinflammation via the HCAR1 receptor, and gene expression through the epigenetic modification of histone lactylation. We then compile evidence demonstrating how PA provides a substantial lactate signal that activates these pathways and primes the brain’s metabolic infrastructure. Crucially, we integrate this with proof that lactate levels naturally increase during slow-wave sleep to support memory consolidation and glymphatic clearance. The “Lactate Nexus” framework offers a comprehensive molecular explanation for the synergy between PA and sleep, positioning lactate as a key signalling mediator and a promising biomarker and therapeutic target for fostering lifelong cognitive resilience. Full article
Show Figures

Figure 1

30 pages, 552 KB  
Review
Overview of the Zinc Functional Interactome Through Health Hallmarks and Medical Conditions
by Mirela Pavić Vulinović, Vedran Micek, Davorka Breljak, Ivana Vrhovac Madunić, Josip Madunić and Marija Ljubojević
Nutrients 2026, 18(2), 336; https://doi.org/10.3390/nu18020336 - 21 Jan 2026
Viewed by 277
Abstract
Zinc is an essential micronutrient involved in structural, catalytic, and regulatory functions across all levels of biological organization. Despite substantial advances over the past two decades, the zinc literature remains highly fragmented, with mechanistic, nutritional, and clinical findings often reported in isolation. Additionally, [...] Read more.
Zinc is an essential micronutrient involved in structural, catalytic, and regulatory functions across all levels of biological organization. Despite substantial advances over the past two decades, the zinc literature remains highly fragmented, with mechanistic, nutritional, and clinical findings often reported in isolation. Additionally, the synergistic interactions between zinc and other micronutrients—particularly minerals and vitamins—are dispersed across multiple research domains, complicating efforts to understand their integrated roles in maintaining homeostasis. Recent developments in artificial intelligence (AI) present new opportunities to consolidate these data, enabling multi-scale analyses of zinc-dependent processes and the broader zinc interactome. Although a complete map of the zinc interactome is not yet feasible, an integrative perspective is needed to contextualize zinc’s contributions within the framework of the hallmarks of health. This narrative review highlights zinc’s involvement in cellular maintenance, metabolic regulation, stress response, and systemic physiological function. It further examines how disruptions in zinc status, alone or in combination with other nutrient imbalances, contribute to clinically relevant disorders. By combining current knowledge across molecular, cellular, and systems biology levels, this review illustrates zinc’s pleiotropic effects on physiological resilience and healthspan, with particular emphasis on its role in nutritional status, homeostatic regulation, and overall human health. Full article
Show Figures

Figure 1

33 pages, 798 KB  
Review
Gut Microbiota and Short-Chain Fatty Acids in Cardiometabolic HFpEF: Mechanistic Pathways and Nutritional Therapeutic Perspectives
by Antonio Vacca, Gabriele Brosolo, Stefano Marcante, Sabrina Della Mora, Luca Bulfone, Andrea Da Porto, Claudio Pagano, Cristiana Catena and Leonardo A. Sechi
Nutrients 2026, 18(2), 321; https://doi.org/10.3390/nu18020321 - 20 Jan 2026
Viewed by 167
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for more than half of the cases of HF worldwide. Among the different phenotypes, cardiometabolic HFpEF has the highest prevalence. Cumulative insults related to cardiometabolic comorbidities—obesity, hypertension and type 2 diabetes—create a milieu of metabolic [...] Read more.
Heart failure with preserved ejection fraction (HFpEF) accounts for more than half of the cases of HF worldwide. Among the different phenotypes, cardiometabolic HFpEF has the highest prevalence. Cumulative insults related to cardiometabolic comorbidities—obesity, hypertension and type 2 diabetes—create a milieu of metabolic derangements, low-grade systemic inflammation (i.e., metainflammation), endothelial dysfunction, and coronary microvascular disease. Emerging data indicate that the gut–heart axis is a potential amplifier of this process. Cardiometabolic comorbidities promote gut dysbiosis, loss of short-chain fatty acid (SCFA)-producing taxa, and disruption of the intestinal barrier, leading to endotoxemia and upregulation of pro-inflammatory pathways such as TLR4- and NLRP3-mediated signaling. Concomitantly, beneficial gut-derived metabolites (acetate, propionate, butyrate) decrease, while detrimental metabolites increase (e.g., TMAO), potentially fostering myocardial fibrosis, diastolic dysfunction, and adverse remodeling. SCFAs—acetate, propionate, and butyrate—may exert pleiotropic actions that directly target HFpEF pathophysiology: they may provide a CPT1-independent energy substrate to the failing myocardium, may improve lipid and glucose homeostasis via G protein-coupled receptors and AMPK activation, and may contribute to lower blood pressure and sympathetic tone, reinforce gut barrier integrity, and act as anti-inflammatory and epigenetic modulators through the inhibition of NF-κB, NLRP3, and histone deacetylases. This review summarizes current evidence linking gut microbiota dysfunction to cardiometabolic HFpEF, elucidates the mechanistic role of SCFAs, and discusses nutritional approaches aimed at enhancing their production and activity. Targeting gut–heart axis and SCFAs pathways may represent a biologically plausible and low-risk approach that could help attenuate inflammation and metabolic dysfunctions in patients with cardiometabolic HFpEF, offering novel potential therapeutic targets for their management. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

20 pages, 1726 KB  
Review
CILP2: From ECM Component to a Pleiotropic Modulator in Metabolic Dysfunction, Cancer, and Beyond
by Zheqiong Tan, Suotian Liu and Zhongxin Lu
Biomolecules 2026, 16(1), 167; https://doi.org/10.3390/biom16010167 - 19 Jan 2026
Viewed by 146
Abstract
Initially characterized as a component of the extracellular matrix (ECM) in cartilage, cartilage intermediate layer protein 2 (CILP2) is now recognized as a pleiotropic secretory protein with far-reaching roles in physiology and disease. This review synthesizes evidence establishing CILP2 as a key modulator [...] Read more.
Initially characterized as a component of the extracellular matrix (ECM) in cartilage, cartilage intermediate layer protein 2 (CILP2) is now recognized as a pleiotropic secretory protein with far-reaching roles in physiology and disease. This review synthesizes evidence establishing CILP2 as a key modulator at the nexus of metabolic dysfunction, cancer, and other pathologies. Genomic studies have firmly established the NCAN-CILP2 locus as a hotspot for genetic variants influencing dyslipidemia and cardiovascular risk. Functionally, CILP2 is upregulated by metabolic stress, including high glucose and oxidatively modified LDL (oxLDL), and actively contributes to pathologies such as dyslipidemia, diabetes, and sarcopenia by impairing glucose metabolism and mitochondrial function. Its role extends to fibrosis and neurodevelopment, promoting hypertrophic scar formation and neurogenesis through interactions with ATP citrate lyase (ACLY) and Wnt3a, respectively. More recently, CILP2 has emerged as an oncoprotein, overexpressed in multiple cancers, including pancreatic ductal adenocarcinoma and colorectal cancer. It drives tumor proliferation and metastasis and correlates with tumor microenvironment remodeling through mechanisms involving Akt/EMT signaling and immune infiltration. The dysregulation of CILP2 in patient serum and its correlation with disease severity and poor prognosis highlight it as a promising biomarker and a compelling therapeutic target across a spectrum of human diseases. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

32 pages, 1557 KB  
Review
Probiotic and Bioactive Compounds in Foods: From Antioxidant Properties to Gut Microbiota Modulation
by Berta Gonçalves, Alice Vilela, Alfredo Aires, Ivo Oliveira, Carla Gonçalves, Teresa Pinto and Fernanda Cosme
Molecules 2026, 31(2), 345; https://doi.org/10.3390/molecules31020345 - 19 Jan 2026
Viewed by 149
Abstract
Dietary bioactive compounds derived from plant-based and fermented foods act as plei-otropic modulators of human health, exerting antioxidant, anti-inflammatory, cardiopro-tective, neuroprotective, and metabolic effects beyond basic nutrition. Whole foods (fruits, vegetables, grains, nuts) provide synergistic mixtures of bioactives, whereas fermented foods generate a [...] Read more.
Dietary bioactive compounds derived from plant-based and fermented foods act as plei-otropic modulators of human health, exerting antioxidant, anti-inflammatory, cardiopro-tective, neuroprotective, and metabolic effects beyond basic nutrition. Whole foods (fruits, vegetables, grains, nuts) provide synergistic mixtures of bioactives, whereas fermented foods generate a wide range of microbial-derived metabolites (peptides, organic acids) as well as probiotics that enhance nutrient bioavailability and support gut health. The gut microbiota plays a central mediating role in the biological effects of dietary bioactives through a dynamic, bidirectional interaction: dietary compounds shape microbial composition by promoting beneficial taxa and suppressing pathogens, while microbial metabolism converts these compounds into bioactive metabolites, including short-chain fatty acids, that profoundly influence host health. Despite their demonstrated health potential, the clinical translation of many dietary bioactives is limited by low bioavailability, which is influenced by digestion processes, food matrix and processing conditions, host genetics, and individual microbiota profile. Overcoming these limitations requires a deeper understanding of the synergistic interactions among dietary bioactives, probiotics, microbial metabolites, and host signaling pathways. This review provides an integrated perspective of the sources, mechanisms of action, and health effects of food-derived bioactive compounds and probiotic mediated effects, while highlighting current translational challenges and future directions for the development of effective functional foods and personalized nutrition strategies. Full article
(This article belongs to the Special Issue Exploring Bioactive Compounds in Foods and Nutrients for Human Health)
Show Figures

Figure 1

22 pages, 435 KB  
Review
The Multidirectional Biological Activity of Resveratrol: Molecular Mechanisms, Systemic Effects and Therapeutic Potential—A Review
by Łukasz Kogut, Czesław Puchalski, Danuta Katryńska and Grzegorz Zaguła
Nutrients 2026, 18(2), 313; https://doi.org/10.3390/nu18020313 - 19 Jan 2026
Viewed by 366
Abstract
Background/Objectives: Resveratrol is a multi-target polyphenolic stilbene widely studied for its antioxidant, anti-inflammatory, cardioprotective, hepatoprotective, neuroprotective, immunomodulatory and anticancer properties. This review summarizes current evidence on its molecular mechanisms, therapeutic potential, metabolic interactions and biological implications, with particular emphasis on bioavailability, signaling pathways [...] Read more.
Background/Objectives: Resveratrol is a multi-target polyphenolic stilbene widely studied for its antioxidant, anti-inflammatory, cardioprotective, hepatoprotective, neuroprotective, immunomodulatory and anticancer properties. This review summarizes current evidence on its molecular mechanisms, therapeutic potential, metabolic interactions and biological implications, with particular emphasis on bioavailability, signaling pathways and organ-specific actions. Methods: A comprehensive literature review was conducted focusing on recent in vitro, in vivo and clinical studies evaluating resveratrol’s biochemical activity, molecular targets and physiological effects. Special attention was given to oxidative stress regulation, inflammatory signaling, mitochondrial function, metabolic pathways, gut microbiota interactions, and its influence on chronic diseases. Results: Resveratrol modulates several key signaling pathways including NF-κB, SIRT1, AMPK, MAPK, Nrf2 and PI3K/AKT/mTOR. It reduces oxidative stress, inhibits inflammatory cytokines, regulates apoptosis, improves mitochondrial performance, and activates endogenous antioxidant systems. The compound demonstrates protective effects in cardiovascular diseases, hepatic steatosis, neurodegenerative disorders, metabolic dysfunction, and various cancers through anti-inflammatory, anti-proliferative and anti-fibrotic mechanisms. Additionally, resveratrol beneficially alters gut microbiota composition and microbial metabolites, contributing to improved metabolic homeostasis. Despite high intestinal absorption, systemic bioavailability remains low; however, novel nanoformulations significantly enhance its stability and plasma concentrations. Conclusions: Resveratrol exhibits broad therapeutic potential driven by its capacity to regulate oxidative, inflammatory, metabolic and apoptotic pathways at multiple levels. Its pleiotropic activity makes it a promising candidate for prevention and complementary treatment of chronic diseases. Advances in delivery systems and microbiota-derived metabolites may further enhance its clinical applicability. Full article
(This article belongs to the Section Phytochemicals and Human Health)
14 pages, 3620 KB  
Opinion
Sulforaphane as a Multi-Scale Mechano-Modulator in Cancer: An Integrative Perspective
by Xin Zhang, Lili Cheng, Yifan Han, Tailin Chen and Xinbin Zhao
Biology 2026, 15(2), 167; https://doi.org/10.3390/biology15020167 - 17 Jan 2026
Viewed by 166
Abstract
Cancer progression is driven not only by biochemical signals but also by abnormal physical forces within a stiffened tumor microenvironment. This review re-examines the anticancer compound sulforaphane (SFN) through the integrative lens of tumor biomechanics. We propose SFN functions as a “mechano-modulator,” whose [...] Read more.
Cancer progression is driven not only by biochemical signals but also by abnormal physical forces within a stiffened tumor microenvironment. This review re-examines the anticancer compound sulforaphane (SFN) through the integrative lens of tumor biomechanics. We propose SFN functions as a “mechano-modulator,” whose pleiotropic effects converge to disrupt pro-invasive mechanotransduction. SFN targets key force-sensitive pathways (e.g., YAP/TEAD, Rho/ROCK), destabilizes invasion machinery (cytoskeleton, invadopodia), and promotes tissue-level changes such as extracellular matrix remodeling. While preclinical evidence for this mechano-modulatory role is compelling, this perspective also highlights the critical need for clinical validation and discusses the key translational challenges. By systematically linking SFN’s molecular actions to the biophysics of tumor progression, this synthesis provides a novel framework for understanding its efficacy and outlines a rational path for its future development as a mechano-inspired therapeutic. Full article
(This article belongs to the Special Issue Tumor Biomechanics and Mechanobiology)
Show Figures

Figure 1

12 pages, 1341 KB  
Article
Integrative Bioinformatics Analysis of hsa-miR-21 in Breast Cancer Reveals a Prognostic Hub-Gene Signature
by Maria Rosaria Tumolo, Luana Conte, Roberto Guarino, Ugo De Giorgi, Elisabetta De Matteis and Saverio Sabina
Int. J. Mol. Sci. 2026, 27(2), 865; https://doi.org/10.3390/ijms27020865 - 15 Jan 2026
Viewed by 122
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy in women and remains a leading cause of cancer-related mortality worldwide. Among the oncogenic microRNAs, hsa-miR-21 has been consistently implicated in tumorigenesis, yet a comprehensive network-level understanding of its regulatory landscape in BC is [...] Read more.
Breast cancer (BC) is the most frequently diagnosed malignancy in women and remains a leading cause of cancer-related mortality worldwide. Among the oncogenic microRNAs, hsa-miR-21 has been consistently implicated in tumorigenesis, yet a comprehensive network-level understanding of its regulatory landscape in BC is lacking. In this study, we performed an integrative bioinformatics analysis to characterize the molecular pathways and prognostic impact of hsa-miR-21. Experimentally validated mRNA targets were retrieved from miRTarBase and used to construct a high-confidence protein–protein interaction network via STRING, followed by hub-gene prioritization in Cytoscape. Functional enrichment analyses were conducted with DAVID to assess Gene Ontology (GO) categories and KEGG pathways. Survival analyses were performed in large BC cohorts from METABRIC and TCGA using the Kaplan–Meier Plotter. We identified 12 hub genes that are central regulators of apoptosis, proliferation, immune signaling, and transcriptional control. GO and KEGG analyses revealed enrichment in cancer-related, immune, and metabolic pathways, underscoring the pleiotropic role of miR-21. While miR-21 expression alone was not significantly associated with overall survival, a composite hub-gene signature demonstrated strong prognostic value. These findings highlight the importance of network-level biomarkers in BC and provide a reproducible framework for dissecting the clinical relevance of disease-associated miRNAs. Full article
Show Figures

Figure 1

23 pages, 2955 KB  
Review
Molecular Mechanisms and Therapeutic Potential of Baicalein in Acute Pancreatitis: A Comprehensive Review
by Linbo Yao, Shiyu Liu, Wei Huang and Xinmin Yang
Biomolecules 2026, 16(1), 151; https://doi.org/10.3390/biom16010151 - 14 Jan 2026
Viewed by 277
Abstract
Acute pancreatitis (AP) is a severe inflammatory disorder characterized by a complex molecular pathophysiology involving premature zymogen activation, organelle dysfunction, and systemic immune dysregulation. Current therapeutic strategies remain largely supportive, underscoring the critical need for specific molecular-targeted interventions. Baicalein, a bioactive flavonoid derived [...] Read more.
Acute pancreatitis (AP) is a severe inflammatory disorder characterized by a complex molecular pathophysiology involving premature zymogen activation, organelle dysfunction, and systemic immune dysregulation. Current therapeutic strategies remain largely supportive, underscoring the critical need for specific molecular-targeted interventions. Baicalein, a bioactive flavonoid derived from Scutellaria baicalensis Georgi, has emerged as a potent pleiotropic agent. This review comprehensively synthesizes the molecular mechanisms underlying baicalein’s therapeutic efficacy in AP. Its capacity to intercept the pathological cascade at multiple checkpoints is elucidated, from mitigating the initiating cytosolic calcium overload and preserving mitochondrial integrity to suppressing the cytokine storm via the TLR4/NF-κB/MAPK signaling axis. Crucially, baicalein modulates the pancreatic immune microenvironment by driving the phenotypic polarization of macrophages from pro-inflammatory M1 to reparative M2 states and regulating neutrophil dynamics, specifically by inhibiting infiltration and neutrophil extracellular trap formation. Furthermore, its role in orchestrating regulated cell death pathways is highlighted, specifically by blocking pyroptosis and ferroptosis while modulating apoptosis, and its function as a biophysical scavenger of circulating histones and pancreatic lipase to neutralize systemic toxins. Consequently, this review emphasizes the multi-target biological activities of baicalein, providing a mechanistic rationale for its development as a precision therapeutic candidate for AP. Full article
Show Figures

Figure 1

11 pages, 454 KB  
Review
Irisin as a Neuroprotective Agent in Parkinson’s Disease: The Role of Physical Exercise in Modulating Dopaminergic Neurons
by José Garcia de Brito-Neto, Paulo Leonardo de Góis Morais, José Rodolfo Lopes de Paiva Cavalcanti, Francisco Irochima Pinheiro, Fausto Pierdoná Guzen and Ricardo Ney Cobucci
Pharmacy 2026, 14(1), 9; https://doi.org/10.3390/pharmacy14010009 - 13 Jan 2026
Viewed by 213
Abstract
Exercise-induced myokines have emerged as crucial mediators of the beneficial effects of physical activity on neurodegenerative diseases through complex molecular mechanisms involving oxidative stress reduction, neuroinflammation suppression, and synaptic plasticity enhancement. Among these myokines, irisin, encoded by the FNDC5 gene, has gained significant [...] Read more.
Exercise-induced myokines have emerged as crucial mediators of the beneficial effects of physical activity on neurodegenerative diseases through complex molecular mechanisms involving oxidative stress reduction, neuroinflammation suppression, and synaptic plasticity enhancement. Among these myokines, irisin, encoded by the FNDC5 gene, has gained significant attention as a potential therapeutic target in neurodegenerative conditions due to its ability to cross the blood–brain barrier and exert pleiotropic neuroprotective effects. This review synthesizes current evidence from both preclinical and clinical studies examining the role of exercise-induced irisin in neurodegeneration, with particular emphasis on translational potential and therapeutic applications. A comprehensive search was conducted across PubMed, Web of Science, Scopus, and EMBASE databases (spanning January 2015 to December 2024) to identify peer-reviewed articles investigating irisin’s neuroprotective mechanisms in neurodegenerative diseases. Ten studies met the inclusion criteria (five rodent/primate model studies and five human clinical investigations), which were analyzed for methodological rigor, intervention protocols, biomarker quantification methods, and reported outcomes. Reviewed studies consistently demonstrated that exercise-induced endogenous irisin elevation correlates with improved cognitive function, reduced neuroinflammatory markers, enhanced synaptic plasticity, and modulation of neurodegenerative pathways, with exogenous irisin administration reproducing several neuroprotective benefits observed with exercise training in animal models. However, substantial heterogeneity exists regarding exercise prescription parameters (intensity, duration, frequency, modality), training-induced irisin quantification methodologies (ELISA versus mass spectrometry), and study designs (ranging from uncontrolled human observations to randomized controlled trials in animal models). Critical appraisal reveals that human studies lack adequate control for confounding variables including baseline physical fitness, comorbidities, concurrent medications, and potential sources of bias, while biochemical studies indicate distinct pharmacokinetics between endogenous training-induced irisin and exogenous bolus dosing, necessitating careful interpretation of therapeutic applicability. The translational potential of irisin as a therapeutic agent or drug target depends on resolving methodological standardization in biomarker measurement, conducting well-designed clinical trials with rigorous control for confounders, and integrating findings from molecular/biochemical studies to elucidate mechanisms linking irisin to disease modification. Future research should prioritize establishing clinical trial frameworks that harmonize exercise prescriptions, employ robust biomarker quantification (mass spectrometry), and stratify participants based on disease stage, comorbidities, and genetic predisposition to clarify irisin’s role as a potential therapeutic intervention in neurodegenerative disease management. Full article
Show Figures

Graphical abstract

21 pages, 2755 KB  
Article
Toll-like Receptor 7/8 Agonists Exert Antitumor Effect in a Mouse Melanoma Model
by Gheorghita Isvoranu, Mihaela Surcel, Ana-Maria Enciu, Adriana Narcisa Munteanu, Monica Neagu, Andrei Marian Niculae, Gabriela Chiritoiu, Cristian V. A. Munteanu and Marioara Chiritoiu-Butnaru
Medicina 2026, 62(1), 141; https://doi.org/10.3390/medicina62010141 - 9 Jan 2026
Viewed by 224
Abstract
Background and Objectives: Toll-like receptors (TLRs) are pattern recognition receptors with an essential role in regulating both the innate and adaptive immune response. Given their pleiotropic effects in mounting an immune response, previous studies have proposed targeting these TLRs might render alternative [...] Read more.
Background and Objectives: Toll-like receptors (TLRs) are pattern recognition receptors with an essential role in regulating both the innate and adaptive immune response. Given their pleiotropic effects in mounting an immune response, previous studies have proposed targeting these TLRs might render alternative strategies for cancer therapy. Synthetic immune response modifiers, such as imidazoquinolines, stimulate the immune cells by activating Toll-like receptors, particularly TLR7/8 receptors, consequently mounting an immune response. Agonists of this class activate, via TLR-mediated signaling, dendritic and B cells, as well as myeloid cells and T cells, thus exhibiting good prospects for cancer immunotherapy. In the present study, we sought to evaluate the effect of imiquimod and gardiquimod, two TLR 7 and 7/8 agonists, respectively, on tumor growth and phenotype of NK cells associated with melanoma. Materials and Methods: We generated a syngeneic model of melanoma in C57BL/6J mice by subcutaneously injecting murine melanoma cells and monitoring tumor growth. Starting on day 8 or 14, we applied TLR agonists either intratumorally or topically and followed the tumor dynamics and NK cell-associated pattern. Results: Our results suggest that both TLR agonists displayed an antitumor effect along with a phenotypically activated profile of NK cells. Both imiquimod and gardiquimod treatment inhibited tumor growth, with gardiquimod showing an increased potency compared to imiquimod. Conclusions: This implies that TLR agonists like imiquimod and gardiquimod could serve as neoadjuvant, adjuvant, or complementary immunotherapeutic agents in melanoma therapy. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

Back to TopTop