Integrative Bioinformatics Analysis of hsa-miR-21 in Breast Cancer Reveals a Prognostic Hub-Gene Signature
Abstract
1. Introduction
2. Results
2.1. Identification of miR-21 Targets and Functional Analysis
2.2. Survival Analysis of miR-21 and Composite Hub-Gene Signature
3. Discussion
4. Materials and Methods
4.1. PPI Network Analysis and Hub Gene Prioritization of miR-21 Targets
4.2. Functional Enrichment Analysis
4.3. Survival Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Breast Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (accessed on 1 October 2025).[Green Version]
- Fumagalli, C.; Barberis, M. Breast Cancer Heterogeneity. Diagnostics 2021, 11, 1555. [Google Scholar] [CrossRef]
- Kunze-Schumacher, H.; Krueger, A. The Role of MicroRNAs in Development and Function of Regulatory T Cells—Lessons for a Better Understanding of MicroRNA Biology. Front. Immunol. 2020, 11, 2185. [Google Scholar] [CrossRef]
- Pandey, S.; Yadav, P. Exploring the Therapeutic Potential of MicroRNAs: Targeted Gene Regulation Strategies for Enhanced Cancer Therapy. J. Genet. Eng. Biotechnol. 2025, 23, 100556. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Wu, Q.; Yu, J.; Rao, Y.; Kou, Z.; Fang, G.; Shi, X.; Liu, W.; Han, H. A Systematic Way to Infer the Regulation Relations of MiRNAs on Target Genes and Critical MiRNAs in Cancers. Front. Genet. 2020, 11, 278. [Google Scholar] [CrossRef] [PubMed]
- Vidigal, J.A.; Ventura, A. The Biological Functions of MiRNAs: Lessons from in Vivo Studies. Trends Cell Biol. 2014, 25, 137. [Google Scholar] [CrossRef]
- Bautista-Sánchez, D.; Arriaga-Canon, C.; Pedroza-Torres, A.; De La Rosa-Velázquez, I.A.; González-Barrios, R.; Contreras-Espinosa, L.; Montiel-Manríquez, R.; Castro-Hernández, C.; Fragoso-Ontiveros, V.; Álvarez-Gómez, R.M.; et al. The Promising Role of MiR-21 as a Cancer Biomarker and Its Importance in RNA-Based Therapeutics. Mol. Ther. Nucleic Acids 2020, 20, 409. [Google Scholar] [CrossRef]
- Rhim, J.; Baek, W.; Seo, Y.; Kim, J.H. From Molecular Mechanisms to Therapeutics: Understanding MicroRNA-21 in Cancer. Cells 2022, 11, 2791. [Google Scholar] [CrossRef]
- Chi, L.H.; Cross, R.S.N.; Redvers, R.P.; Davis, M.; Hediyeh-zadeh, S.; Mathivanan, S.; Samuel, M.; Lucas, E.C.; Mouchemore, K.; Gregory, P.A.; et al. MicroRNA-21 Is Immunosuppressive and pro-Metastatic via Separate Mechanisms. Oncogenesis 2022, 11, 38. [Google Scholar] [CrossRef]
- Wang, H.; Tan, Z.; Hu, H.; Liu, H.; Wu, T.; Zheng, C.; Wang, X.; Luo, Z.; Wang, J.; Liu, S.; et al. MicroRNA-21 Promotes Breast Cancer Proliferation and Metastasis by Targeting LZTFL1. BMC Cancer 2019, 19, 738. [Google Scholar] [CrossRef]
- Sun, L.H.; Tian, D.; Yang, Z.C.; Li, J.L. Exosomal MiR-21 Promotes Proliferation, Invasion and Therapy Resistance of Colon Adenocarcinoma Cells through Its Target PDCD4. Sci. Rep. 2020, 10, 8271. [Google Scholar] [CrossRef]
- Qi, L.; Bart, J.; Tan, L.P.; Platteel, I.; van der Sluis, T.; Huitema, S.; Harms, G.; Fu, L.; Hollema, H.; van den Berg, A. Expression of MiR-21 and Its Targets (PTEN, PDCD4, TM1) in Flat Epithelial Atypia of the Breast in Relation to Ductal Carcinoma in Situ and Invasive Carcinoma. BMC Cancer 2009, 9, 163. [Google Scholar] [CrossRef]
- Tošić, I.; Frank, D.A. STAT3 as a Mediator of Oncogenic Cellular Metabolism: Pathogenic and Therapeutic Implications. Neoplasia 2021, 23, 1167–1178. [Google Scholar] [CrossRef]
- Dhanasekaran, R.; Deutzmann, A.; Mahauad-Fernandez, W.D.; Hansen, A.S.; Gouw, A.M.; Felsher, D.W. The MYC Oncogene—The Grand Orchestrator of Cancer Growth and Immune Evasion. Nat. Rev. Clin. Oncol. 2021, 19, 23. [Google Scholar] [CrossRef] [PubMed]
- Lao, D.T.; Quang, M.T.; Le, T.A.H. The Role of Hsa-MiR-21 and Its Target Genes Involved in Nasopharyngeal Carcinoma. Asian Pac. J. Cancer Prev. 2021, 22, 4075. [Google Scholar] [CrossRef]
- Hashemi, M.; Mirdamadi, M.S.A.; Talebi, Y.; Khaniabad, N.; Banaei, G.; Daneii, P.; Gholami, S.; Ghorbani, A.; Tavakolpournegari, A.; Farsani, Z.M.; et al. Pre-Clinical and Clinical Importance of MiR-21 in Human Cancers: Tumorigenesis, Therapy Response, Delivery Approaches and Targeting Agents. Pharmacol. Res. 2023, 187, 106568. [Google Scholar] [CrossRef]
- Diener, C.; Keller, A.; Meese, E. The MiRNA–Target Interactions: An Underestimated Intricacy. Nucleic Acids Res. 2024, 52, 1544–1557. [Google Scholar] [CrossRef]
- Qiu, L.; Sheng, P.; Wang, X. Identification of Metabolic Syndrome-Related MiRNA–MRNA Regulatory Networks and Key Genes Based on Bioinformatics Analysis. Biochem. Genet. 2023, 61, 428–447. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Heikkinen, L.; Wang, C.; Yang, Y.; Sun, H.; Wong, G. Trends in the Development of MiRNA Bioinformatics Tools. Brief. Bioinform. 2019, 20, 1836–1852. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Zhou, C.; Zhuang, J.; Liu, L.; Liu, C.; Li, H.; Liu, G.; Wei, J.; Sun, C. MicroRNA Expression in Cervical Cancer: Novel Diagnostic and Prognostic Biomarkers. J. Cell Biochem. 2018, 119, 7080–7090. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef]
- Laganà, A. Computational Prediction of MicroRNA Targets. Adv. Exp. Med. Biol. 2015, 887, 231–252. [Google Scholar] [CrossRef]
- Voutsadakis, I.A. Breast Cancer Sub-Types Display Heterogeneity in Gene Amplification and MRNA Expression of the Anti-Apoptotic Members of BCL2 Family. Gene 2023, 857, 147179. [Google Scholar] [CrossRef] [PubMed]
- Temple, A.E.; Walker, S.R. The Roles of STAT3 and STAT5 in Breast Cancer. Cancers 2025, 17, 1781. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Gao, F.; Ma, Y.; Wei, D.; Lu, Z.; Chen, S.; Wang, M.; Wang, Y.; Xu, K.; et al. C-Myc-Targeting PROTAC Based on a TNA-DNA Bivalent Binder for Combination Therapy of Triple-Negative Breast Cancer. J. Am. Chem. Soc. 2023, 145, 9334–9342. [Google Scholar] [CrossRef]
- Sharma, S.; Patnaik, P.K.; Aronov, S.; Kulshreshtha, R. ApoptomiRs of Breast Cancer: Basics to Clinics. Front. Genet. 2016, 7, 219910. [Google Scholar] [CrossRef] [PubMed]
- Iliopoulos, D.; Jaeger, S.A.; Hirsch, H.A.; Bulyk, M.L.; Struhl, K. STAT3 Activation of MiR-21 and MiR-181b-1, via PTEN and CYLD, Are Part of the Epigenetic Switch Linking Inflammation to Cancer. Mol. Cell 2010, 39, 493. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Zhang, G.-D.; Bai, P.; Su, L.; Tian, H.; He, M. Eight Hub Genes as Potential Biomarkers for Breast Cancer Diagnosis and Prognosis: A TCGA-Based Study. World J. Clin. Oncol. 2022, 13, 675. [Google Scholar] [CrossRef]
- Dai, X.; Fang, M.; Li, S.; Yan, Y.; Zhong, Y.; Du, B. MiR-21 Is Involved in Transforming Growth Factor Β1-Induced Chemoresistance and Invasion by Targeting PTEN in Breast Cancer. Oncol. Lett. 2017, 14, 6929. [Google Scholar] [CrossRef][Green Version]
- Khameneh, S.C.; Razi, S.; Lashanizadegan, R.; Akbari, S.; Sayaf, M.; Haghani, K.; Bakhtiyari, S. MicroRNA-Mediated Metabolic Regulation of Immune Cells in Cancer: An Updated Review. Front. Immunol. 2024, 15, 1424909. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Kacimi, S.E.O.; Nguyen, T.L.; Suman, K.H.; Lemus-Martin, R.; Saleem, H.; Do, D.N. MiR-21 in the Cancers of the Digestive System and Its Potential Role as a Diagnostic, Predictive, and Therapeutic Biomarker. Biology 2021, 10, 417. [Google Scholar] [CrossRef]
- Kim, B.G.; Malek, E.; Choi, S.H.; Ignatz-Hoover, J.J.; Driscoll, J.J. Novel Therapies Emerging in Oncology to Target the TGF-β Pathway. J. Hematol. Oncol. 2021, 14, 55. [Google Scholar] [CrossRef]
- Hu, Y.; Dong, Z.; Liu, K. Unraveling the Complexity of STAT3 in Cancer: Molecular Understanding and Drug Discovery. J. Exp. Clin. Cancer Res. 2024, 43, 23. [Google Scholar] [CrossRef]
- Lee, H.; Jeong, A.J.; Ye, S.K. Highlighted STAT3 as a Potential Drug Target for Cancer Therapy. BMB Rep. 2019, 52, 415. [Google Scholar] [CrossRef] [PubMed]
- Wykosky, J.; Fenton, T.; Furnari, F.; Cavenee, W.K. Therapeutic Targeting of Epidermal Growth Factor Receptor in Human Cancer: Successes and Limitations. Chin. J. Cancer 2011, 30, 5. [Google Scholar] [CrossRef] [PubMed]
- Halder, S.; Basu, S.; Lall, S.P.; Ganti, A.K.; Batra, S.K.; Seshacharyulu, P. Targeting the EGFR Signaling Pathway in Cancer Therapy: What’s New in 2023? Expert Opin. Ther. Targets 2023, 27, 305–324. [Google Scholar] [CrossRef]
- Huang, H.Y.; Lin, Y.C.D.; Cui, S.; Huang, Y.; Tang, Y.; Xu, J.; Bao, J.; Li, Y.; Wen, J.; Zuo, H.; et al. MiRTarBase Update 2022: An Informative Resource for Experimentally Validated MiRNA-Target Interactions. Nucleic Acids Res. 2022, 50, D222–D230. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Su, G.; Morris, J.H.; Demchak, B.; Bader, G.D. Biological Network Exploration with Cytoscape 3. Curr. Protoc. Bioinform. 2014, 47, 8.13.1–8.13.24. [Google Scholar] [CrossRef]
- Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. CytoHubba: Identifying Hub Objects and Sub-Networks from Complex Interactome. BMC Syst. Biol. 2014, 8, S11. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Aleksander, S.A.; Balhoff, J.; Carbon, S.; Cherry, J.M.; Drabkin, H.J.; Ebert, D.; Feuermann, M.; Gaudet, P.; Harris, N.L.; Hill, D.P.; et al. The Gene Ontology Knowledgebase in 2023. Genetics 2023, 224, iyad031. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Győrffy, B. Transcriptome-Level Discovery of Survival-Associated Biomarkers and Therapy Targets in Non-Small-Cell Lung Cancer. Br. J. Pharmacol. 2024, 181, 362–374. [Google Scholar] [CrossRef]
- Győrffy, B. Integrated Analysis of Public Datasets for the Discovery and Validation of Survival-Associated Genes in Solid Tumors. Innovation 2024, 5, 100625. [Google Scholar] [CrossRef] [PubMed]





| Degree | Bottleneck | MCC | Stress | Closeness | EPC | MNC | Betweenness | Overlap |
|---|---|---|---|---|---|---|---|---|
| STAT3 | MYC | STAT3 | PTEN | MYC | STAT3 | STAT3 | MYC | STAT3 |
| MYC | EGFR | IL1B | TGFB1 | STAT3 | PTEN | MYC | PTEN | MYC |
| PTEN | TGFB1 | MMP9 | MYC | PTEN | IL1B | PTEN | MMP9 | PTEN |
| BCL2 | MMP9 | PTEN | STAT3 | EGFR | MMP9 | IL1B | TGFB1 | BCL2 |
| IL1B | STAT3 | BCL2 | MMP9 | IL1B | MYC | BCL2 | STAT3 | |
| MMP9 | PTEN | EGFR | EGFR | MMP9 | EGFR | MMP9 | EGFR | IL1B |
| EGFR | E2F1 | IL10 | BCL2 | BCL2 | BCL2 | EGFR | BCL2 | |
| TGFB1 | BCL2 | MYC | IL1B | TGFB1 | IL10 | IL10 | IL1B | MMP9 |
| IL10 | IL10 | ICAM1 | SOX2 | IL10 | TGFB1 | TGFB1 | SOX2 | |
| E2F1 | CASP8 | TGFB1 | IL10 | RHOA | MMP2 | E2F1 | RHOA | EGFR |
| MMP2 | SOX2 | MMP2 | AKT2 | MMP2 | ICAM1 | MMP2 | CASP8 | |
| ERBB2 | IL1B | E2F1 | RHOA | CASP8 | ERBB2 | ERBB2 | PDCD4 | TGFB1 |
| CASP8 | MYD88 | ERBB2 | MYD88 | ERBB2 | E2F1 | ICAM1 | RASA1 | |
| RHOA | RHOA | FOXO3 | CASP8 | E2F1 | CASP8 | CASP8 | AKT2 | IL10 |
| ICAM1 | PDCD4 | IGF1R | MMP2 | IGF1R | RHOA | RHOA | MYD88 | |
| FASLG | MAT2A | CASP8 | E2F1 | ICAM1 | FASLG | CXCL10 | IL10 | E2F1 |
| CXCL10 | TGFBR2 | CDK6 | RASA1 | FASLG | IGF1R | FASLG | E2F1 | |
| FOXO3 | RASA1 | CXCL10 | BMPR2 | SOX2 | CXCL10 | FOXO3 | ERBB2 | CASP8 |
| SOX2 | AKT2 | TLR2 | PDCD4 | FOXO3 | FOXO3 | IGF1R | MMP2 | |
| MYD88 | BMPR2 | RHOA | ERBB2 | CXCL10 | TLR2 | CDK6 | BMPR2 | RHOA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tumolo, M.R.; Conte, L.; Guarino, R.; De Giorgi, U.; De Matteis, E.; Sabina, S. Integrative Bioinformatics Analysis of hsa-miR-21 in Breast Cancer Reveals a Prognostic Hub-Gene Signature. Int. J. Mol. Sci. 2026, 27, 865. https://doi.org/10.3390/ijms27020865
Tumolo MR, Conte L, Guarino R, De Giorgi U, De Matteis E, Sabina S. Integrative Bioinformatics Analysis of hsa-miR-21 in Breast Cancer Reveals a Prognostic Hub-Gene Signature. International Journal of Molecular Sciences. 2026; 27(2):865. https://doi.org/10.3390/ijms27020865
Chicago/Turabian StyleTumolo, Maria Rosaria, Luana Conte, Roberto Guarino, Ugo De Giorgi, Elisabetta De Matteis, and Saverio Sabina. 2026. "Integrative Bioinformatics Analysis of hsa-miR-21 in Breast Cancer Reveals a Prognostic Hub-Gene Signature" International Journal of Molecular Sciences 27, no. 2: 865. https://doi.org/10.3390/ijms27020865
APA StyleTumolo, M. R., Conte, L., Guarino, R., De Giorgi, U., De Matteis, E., & Sabina, S. (2026). Integrative Bioinformatics Analysis of hsa-miR-21 in Breast Cancer Reveals a Prognostic Hub-Gene Signature. International Journal of Molecular Sciences, 27(2), 865. https://doi.org/10.3390/ijms27020865

