Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (412)

Search Parameters:
Keywords = plateau lake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8248 KiB  
Article
The Stabilization Mechanism of a Stable Landslide Dam on the Eastern Margin of the Tibetan Plateau, China: Insights from Field Investigation and Numerical Simulation
by Liang Song, Yanjun Shang, Yunsheng Wang, Tong Li, Zhuolin Xiao, Yuchao Zhao, Tao Tang and Shicheng Liu
Appl. Sci. 2025, 15(15), 8745; https://doi.org/10.3390/app15158745 - 7 Aug 2025
Abstract
As a globally renowned alpine gorge region and seismically active zone, the eastern margin of the Qinghai–Tibet Plateau (QTP) is highly prone to landslide dam formation. Considering unstable landslide dams often pose catastrophic risks to downstream areas, current research on landslide dams along [...] Read more.
As a globally renowned alpine gorge region and seismically active zone, the eastern margin of the Qinghai–Tibet Plateau (QTP) is highly prone to landslide dam formation. Considering unstable landslide dams often pose catastrophic risks to downstream areas, current research on landslide dams along QTP primarily focuses on the breach mechanisms of unstable dams, while studies on the formation mechanisms of stable landslide dams—which can provide multiple benefits to downstream regions—remain limited. This paper selected the Conaxue Co landslide dam on the eastern margin of the QTP as one case example. Field investigation, sampling, numerical simulation, and comprehensive analysis were carried out to disclose its formation mechanisms. Field investigation shows that the Conaxue Co landslide dam was formed by a high-speed long-runout landslide blocking the river, with its structure exhibiting a typical inverse grading pattern characterized by coarse-grained rock overlying fine-grained layers. The inverse grading structure plays a critical role in the stability of the Conaxue Co landslide dam. On one hand, the coarse, hard rock boulders in the upper dam mitigate fluvial erosion of the lower fine-grained sediments. On the other hand, the fine-grained layer in the lower dam acts as a relatively impermeable aquitard, preventing seepage of dammed lake water. Additionally, the step-pool system formed in the spillway of the Conaxue Co landslide dam contributes to the protection of the dam structure by dissipating 68% of the river’s energy (energy dissipation rate η = 0.68). Understanding the formation mechanisms of the Conaxue Co landslide dam can provide critical insights into managing future landslide dams that may form in the QTP, both in emergency response and long-term strategies. Full article
20 pages, 3673 KiB  
Article
Does Short-Distance Migration Facilitate the Recovery of Black-Necked Crane Populations?
by Le Yang, Lei Xu, Waner Liang, Jia Guo, Yongbing Yang, Cai Lyu, Shengling Zhou, Qing Zeng, Yifei Jia and Guangchun Lei
Animals 2025, 15(15), 2304; https://doi.org/10.3390/ani15152304 - 6 Aug 2025
Abstract
Understanding the migratory strategies of plateau-endemic species is essential for informing effective conservation, especially under climate change. The Black-necked Crane (Grus nigricollis), a high-altitude specialist, has shown notable population growth in recent years. We analysed satellite tracking data from 16 individuals [...] Read more.
Understanding the migratory strategies of plateau-endemic species is essential for informing effective conservation, especially under climate change. The Black-necked Crane (Grus nigricollis), a high-altitude specialist, has shown notable population growth in recent years. We analysed satellite tracking data from 16 individuals of a western subpopulation in the lake basin region of northern Tibet (2021–2024), focusing on migration patterns, stopover use, and habitat selection. This subpopulation exhibited short-distance (mean: 284.21 km), intra-Tibet migrations with low reliance on stopover sites. Autumn migration was shorter, more direct, higher in altitude, and slower in speed than spring migration. Juveniles used smaller, more fragmented habitats than subadults, and their spatial range expanded over time. Given these patterns, we infer that the short-distance migration strategy may reduce energetic demands and mortality risks while increasing route flexibility—characteristics that may benefit population growth. We refer to this as a low-energy, high-efficiency migration strategy, which we hypothesise could support faster population growth and enhance resilience to environmental change. We recommend prioritizing the conservation of short-distance migration corridors, such as the typical lake basin area in northern Tibet–Yarlung Tsangpo River system, which may help sustain plateau-endemic migratory populations under future climate scenarios. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

20 pages, 16378 KiB  
Article
Ice Avalanche-Triggered Glacier Lake Outburst Flood: Hazard Assessment at Jiongpuco, Southeastern Tibet
by Shuwu Li, Changhu Li, Zhengzheng Li, Lei Li and Wei Wang
Water 2025, 17(14), 2102; https://doi.org/10.3390/w17142102 - 15 Jul 2025
Viewed by 511
Abstract
With ongoing global warming, glacier lake outburst floods (GLOFs) and associated debris flows pose increasing threats to downstream communities and infrastructure. Glacial lakes differ in their triggering factors and breach mechanisms, necessitating event-specific analysis. This study investigates the GLOF risk of Jiongpuco Lake, [...] Read more.
With ongoing global warming, glacier lake outburst floods (GLOFs) and associated debris flows pose increasing threats to downstream communities and infrastructure. Glacial lakes differ in their triggering factors and breach mechanisms, necessitating event-specific analysis. This study investigates the GLOF risk of Jiongpuco Lake, located in the southeastern part of the Tibetan Plateau, using an integrated approach combining remote sensing, field surveys, and numerical modeling. Results show that the lake has expanded significantly—from 2.08 km2 in 1990 to 5.43 km2 in 2021—with the most rapid increase observed between 2015 and 2016. InSAR data and optical imagery indicate that surrounding moraine deposits remain generally stable. However, ice avalanches from the glacier terminus are identified as the primary trigger for lake outburst via wave-induced overtopping. Mechanical and geomorphological analyses suggest that the moraine dam is resistant to downcutting erosion, reinforcing overtopping as the dominant failure mode. To assess potential impacts, three numerical simulation scenarios were conducted based on different avalanche volumes. Under the extreme scenario involving a 5-million m3 ice avalanche, the modeled peak discharge at the dam site reaches approximately 19,000 m3/s. Despite the high flood magnitude, the broad and gently sloped downstream terrain facilitates rapid attenuation of flood peaks, resulting in limited impact on downstream settlements. These findings offer critical insights for GLOF hazard assessment, disaster preparedness, and risk mitigation under a changing climate. Full article
(This article belongs to the Special Issue Water-Related Landslide Hazard Process and Its Triggering Events)
Show Figures

Figure 1

17 pages, 4165 KiB  
Article
Assessing the Cooling Effects of Water Bodies Based on Urban Environments: Case Study of Dianchi Lake in Kunming, China
by Zhihao Wang, Ziyang Ma, Yifei Chen, Pengkun Zhu and Lu Wang
Atmosphere 2025, 16(7), 856; https://doi.org/10.3390/atmos16070856 - 14 Jul 2025
Viewed by 249
Abstract
This research addresses urban heat island intensification driven by urbanization using Dianchi Lake in Kunming, China, as a case study, aiming to quantitatively evaluate the spatial extent, intensity, and land cover sensitivity differences in the cooling effects of large urban water bodies across [...] Read more.
This research addresses urban heat island intensification driven by urbanization using Dianchi Lake in Kunming, China, as a case study, aiming to quantitatively evaluate the spatial extent, intensity, and land cover sensitivity differences in the cooling effects of large urban water bodies across dry/wet seasons and complex urban landscapes (forest, cropland, and impervious surfaces) to provide a scientific basis for optimizing thermal environments in low-latitude plateau cities. Based on Landsat 8/9 satellite data from dry (January) and wet (May) seasons in 2020 and 2023 used for land surface temperature (LST) retrieval combined with land use data, buffer zone gradient analysis was adopted to quantify the spatial heterogeneity of key cooling indicators within 0–1500 m lakeshore buffers. The results demonstrated significant seasonal differences. The wet season showed a greater cooling extent (600 m) and higher intensity (6.0–6.6 °C) compared with the dry season (400 m; 2.4–3.9 °C). The land cover responses varied substantially, with cropland having the largest influence (600 m), followed by impervious surfaces (400 m), while forest exhibited a minimal effective cooling range (100 m) but localized warming anomalies at 200–400 m. Sensitivity analysis confirmed that impervious surfaces were the most sensitive to water-cooling, followed by cropland, whereas forest showed the lowest sensitivity. Full article
(This article belongs to the Special Issue Urban Heat Islands, Global Warming and Effects)
Show Figures

Figure 1

19 pages, 2862 KiB  
Article
Characterization of Soil Bacterial Communities in Different Vegetation Types on the Lava Plateau of Jingpo Lake
by Yanli Zhang, Jiaxing Huang, Jiaxin Xue, Kaining Zhang, Xintong Chen, Jianhui Jia and Qingyang Huang
Microorganisms 2025, 13(7), 1648; https://doi.org/10.3390/microorganisms13071648 - 11 Jul 2025
Viewed by 388
Abstract
To explore the interactions within the vegetation–soil–microorganism continuum on the Jingpo Lake lava platform, five vegetation types—grassland (GL), shrubland (SL), deciduous broad-leaved forest (DB), coniferous and broad-leaved mixed forest (CB), and coniferous forest (CF)—were examined. Significant differences in the soil physical and chemical [...] Read more.
To explore the interactions within the vegetation–soil–microorganism continuum on the Jingpo Lake lava platform, five vegetation types—grassland (GL), shrubland (SL), deciduous broad-leaved forest (DB), coniferous and broad-leaved mixed forest (CB), and coniferous forest (CF)—were examined. Significant differences in the soil physical and chemical properties were identified among these types (p < 0.05). The soil bacterial community structures also varied significantly (p < 0.05), with Actinobacteriota, Proteobacteria, and Acidobacteria as the dominant phyla, exhibiting notable genus-level differences (p < 0.05). The soil organic matter (SOM), available nitrogen (AN), total nitrogen (TN), and soil water content (SWC) were significantly correlated with the bacterial community structure (p < 0.05 or p < 0.01), acting as key determinants of the microbial community structure and function. PICRUSt2 functional predictions revealed significant variations in the metabolic functions of the soil bacterial communities across vegetation types, indicating distinct functional specializations. In conclusion, the Jingpo Lake lava plateau harbors abundant bacterial resources. When devising vegetation adaptation strategies, it is essential to take into account variations in the rhizosphere soil bacteria across different vegetation types. Furthermore, prioritizing the implementation of forest vegetation is crucial in the adaptive management of the lava plateau. This approach holds significant implications for studying the bacterial diversity in the lava plateau and exploring the cultivation and application of functional bacteria in extreme environments. Full article
Show Figures

Figure 1

16 pages, 2685 KiB  
Article
Spatial–Seasonal Shifts in Phytoplankton and Zooplankton Community Structure Within a Subtropical Plateau Lake: Interplay with Environmental Drivers During Rainy and Dry Seasons
by Chengjie Yin, Li Gong, Jiaojiao Yang, Yalan Yang and Longgen Guo
Fishes 2025, 10(7), 343; https://doi.org/10.3390/fishes10070343 - 11 Jul 2025
Viewed by 265
Abstract
Subtropical plateau lakes, which are distinguished by their elevated altitudes and subtropical climates, display distinct ecological dynamics. Nevertheless, the spatial and seasonal variations in the plankton community structure, as well as their interactions with environmental factors, remain inadequately understood. This study investigated the [...] Read more.
Subtropical plateau lakes, which are distinguished by their elevated altitudes and subtropical climates, display distinct ecological dynamics. Nevertheless, the spatial and seasonal variations in the plankton community structure, as well as their interactions with environmental factors, remain inadequately understood. This study investigated the alterations in the phytoplankton and zooplankton community structure across different geographical regions (southern, central, and northern) and seasonal periods (rainy and dry) in Erhai lake, located in a subtropical plateau in China. The results indicated that the average values of total nitrogen (TN), total phosphorus (TP), chlorophyll-a (Chla), pH, and conductivity are significantly higher during the rainy season in comparison to the dry season. Furthermore, during the rainy season, there were significant differences in the concentrations of TN, TP, and Chla among the three designated water areas. Notable differences were also observed in the distribution of Microcystis, the density of Cladocera and copepods, and the biomass of copepods across the three regions during this season. Conversely, in the dry season, only the biomass of Cladocera exhibited significant variation among the three water areas. The redundancy analysis (RDA) and variance partitioning analysis demonstrated that the distribution of plankton groups (Cyanophyta, Cryptophyta, and Cladocera) is significantly associated with TN, Secchi depth (SD), and Chla during the rainy season, whereas it is significantly correlated with TP and SD during the dry season. These findings underscore the critical influence of environmental factors, shaped by rainfall patterns, in driving these ecological changes. In the context of the early stages of eutrophication in Lake Erhai, it is essential to ascertain the spatial distribution of water quality parameters, as well as phytoplankton and zooplankton density and biomass, during both the rainy and dry seasons. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

18 pages, 13604 KiB  
Essay
Scenario Simulation of Glacier Collapse in the Amnye Machen Mountains, Qinghai–Tibetan Plateau
by Jia Li, Junhui Wu, Xuyan Ma, Dongwei Zhou, Long Li, Le Lv, Lei Guo, Lingshuai Kong and Jiahao Dian
Geosciences 2025, 15(7), 254; https://doi.org/10.3390/geosciences15070254 - 3 Jul 2025
Viewed by 360
Abstract
Simulating potential glacier collapses can provide crucial support for local disaster prevention and mitigation efforts. The Xiaomagou Glacier in the Amnye Machen Mountains, Qinghai–Tibetan Plateau, has experienced five collapses in the past two decades. Field investigation and remote sensing observations indicate that the [...] Read more.
Simulating potential glacier collapses can provide crucial support for local disaster prevention and mitigation efforts. The Xiaomagou Glacier in the Amnye Machen Mountains, Qinghai–Tibetan Plateau, has experienced five collapses in the past two decades. Field investigation and remote sensing observations indicate that the topography and bedrock characteristics of the Qushi’an No. 22 Glacier, which is 3.5 km south of the Xiaomagou Glacier, are similar to those of the Xiaomagou Glacier. More importantly, the mass movement of the Qushi’an No. 22 Glacier since 2018 closely resembles that of the Xiaomagou Glacier exhibited before its previous collapses. Therefore, in the context of rising temperatures, it is possible that the Qushi’an No. 22 Glacier will collapse in the near future. Based on remote sensing imagery and the glacier’s surface elevation changes, we reconstructed the 2004 collapse process of the Xiaomagou Glacier via numerical simulation. The key parameters of the mass flow model were optimized based on the actual deposition area of the 2004 collapse. The model with optimized parameters was then used to simulate the potential Qushi’an No. 22 Glacier collapse. Two collapse scenarios were set for the Qushi’an No. 22 Glacier. In Scenario 1, the lower half of the tongue detaches; in Scenario 2, the whole tongue detaches. Simulation results show that, in Scenario 1, the maximum mass flow depth is 72 m, the maximum mass flow speed is 51.6 m/s, and the deposition area is 5.40 × 106 km2; in Scenario 2, the maximum mass flow depth is 75 m, the maximum mass flow speed is 59.7 m/s, and the deposition area is 6.32 × 106 km2. In both scenarios, the deposition area is much larger than that of the Xiaomagou Glacier 2004 collapse, which had a deposition area of 2.21 × 106 km2. The simulation results suggest that the Qushi’an No. 22 Glacier collapse could devastate the pastures and township roads lying in front of the glacier, seriously affecting local transportation and livestock farming; furthermore, it may deposit in the Qinglong River, forming a large, dammed lake. At present, the Qushi’an No. 22 Glacier remains in an unstable state. It is crucial to strengthen monitoring of its surface morphology, flow speed, and elevation. Full article
(This article belongs to the Section Cryosphere)
Show Figures

Figure 1

18 pages, 2348 KiB  
Article
Sedimentary Differentiation Characteristics of Organic Matter and Phosphorus in Eutrophic Lake Special Zones
by Ya-Ping Liu, Di Song, Li-Xin Jiao, Jin-Long Zheng, Miao Zhang, Bo Yao, Jing-Yi Yan, Jian-Xun Wu and Xin Wen
Water 2025, 17(13), 1899; https://doi.org/10.3390/w17131899 - 26 Jun 2025
Viewed by 362
Abstract
Lake eutrophication, often driving harmful algal blooms (HABs) and ecosystem degradation, involves complex biogeochemical shifts within sediments. Changes in the sedimentary dissolved organic matter (DOM) composition during transitions from macrophyte to algal dominance are thought to critically regulate internal phosphorus (P) loading, yet [...] Read more.
Lake eutrophication, often driving harmful algal blooms (HABs) and ecosystem degradation, involves complex biogeochemical shifts within sediments. Changes in the sedimentary dissolved organic matter (DOM) composition during transitions from macrophyte to algal dominance are thought to critically regulate internal phosphorus (P) loading, yet the underlying mechanisms, especially in vulnerable plateau lakes like Qilu Lake, require further elucidation. This study investigated the coupled cycling of carbon (C) and P in response to historical ecosystem succession and anthropogenic activities using a 0–24 cm sediment core from Qilu Lake. We analyzed the total organic carbon (TOC), total phosphorus (TP), sequential P fractions, and DOM fluorescence characteristics (EEM-PARAFAC), integrated with chronological series data. The results revealed an asynchronous vertical distribution of TOC and TP, reflecting the shift from a submerged macrophyte-dominated, oligotrophic state (pre-1980s; high TOC, low TP, stable Ca-P dominance) to an algae-dominated, eutrophic state. The eutrophication period (~1980s–2010s) showed high TP accumulation (Ca-P and NaOH85 °C-P enrichment), despite a relatively low TOC (due to rapid mineralization), while recent surface sediments (post-2010s) exhibited a high TOC, but a lower TP following input controls. Concurrently, the DOM composition shifted from microbial humic-like dominance (C1) in deeper sediments to protein-like dominance (C3) near the surface. This study demonstrates that the ecosystem shift significantly regulates P speciation and mobility by altering sedimentary DOM abundance and chemical characteristics (e.g., protein-like DOM correlating negatively with Ca-P), reinforcing a positive feedback mechanism that sustains internal P loading and potentially exacerbates HABs. DOM molecular characteristics emerged as a key factor controlling the internal P cycle in Qilu Lake, providing critical insights for managing eutrophication in plateau lakes. Full article
(This article belongs to the Special Issue Water Environment Pollution and Control, 4th Edition)
Show Figures

Graphical abstract

27 pages, 10572 KiB  
Article
Temporal Hydrological Responses to Progressive Land Cover Changes and Climate Trends in a Plateau Lake Basin in Southwest China
by Zhengduo Bao, Yuxuan Wu, Weining He, Nian She, Hua Shao and Chao Fan
Water 2025, 17(13), 1890; https://doi.org/10.3390/w17131890 - 25 Jun 2025
Viewed by 386
Abstract
The reducing streamflow is a major concern in the Yilong Lake Basin (YLB), which supplies water for agriculture and the growing population in the basin and to maintain the health of the regional ecosystem. The YLB has experienced remarkable land use/land cover change [...] Read more.
The reducing streamflow is a major concern in the Yilong Lake Basin (YLB), which supplies water for agriculture and the growing population in the basin and to maintain the health of the regional ecosystem. The YLB has experienced remarkable land use/land cover change (LUCC) and climate change (CC) in recent years. To understand the drivers of the streamflow change in this basin, the effects of the land use change and climate variation on the temporal flow variability were studied using the Soil and Water Assessment Tool (SWAT). The calibration and validation results indicated that the SWAT simulated the streamflow well. Then the streamflow responses to the land use change between 2010 and 2020 and climate change with future climate projections (SSP245, SSP370, and SSP585) were evaluated. Results showed that the LUCC in the YLB caused a marginal decline in the annual streamflow at the whole basin scale but significantly altered rainfall–runoff relationships and intra-annual discharge patterns; e.g., monthly streamflows decreased by up to 3% in the dry season under the surface modification, with subbasins of the YLB exhibiting divergent responses attributed to spatial heterogeneity in land surface transitions. Under future climate scenarios, streamflow projections revealed general declining trends with significant uncertainties, particularly under high-emission pathways, e.g., SSP370 and SSP585, in which the streamflow could be projected to reduce by up to 5.9% in the mid-future (2031–2045). In addition, droughts were expected to intensify, exacerbating seasonal water stress in the future. It suggests that integrated water governance should synergize climate-resilient land use policies with adaptive infrastructure to address regional water resources challenges. Full article
Show Figures

Figure 1

17 pages, 11703 KiB  
Article
Host-Determined Diversity and Environment-Shaped Community Assembly of Phyllosphere Microbiomes in Alpine Steppes Ecosystems
by Kaifu Zheng, Xin Jin, Jingjing Li and Guangxin Lu
Microorganisms 2025, 13(6), 1432; https://doi.org/10.3390/microorganisms13061432 - 19 Jun 2025
Viewed by 395
Abstract
The Qinghai–Tibet Plateau is a key region for biodiversity conservation, where alpine grasslands are ecologically important. While previous studies have mainly addressed vegetation, ecosystem processes, and soil microbes, phyllosphere microorganisms are essential for nutrient cycling, plant health, and stress tolerance. However, their communities [...] Read more.
The Qinghai–Tibet Plateau is a key region for biodiversity conservation, where alpine grasslands are ecologically important. While previous studies have mainly addressed vegetation, ecosystem processes, and soil microbes, phyllosphere microorganisms are essential for nutrient cycling, plant health, and stress tolerance. However, their communities remain poorly understood compared to those in soil. The relative influence of host identity and environmental conditions on shaping phyllosphere microbial diversity and community assembly remains uncertain. In this study, we characterized phyllosphere bacterial and fungal communities of the phyllosphere at two alpine steppe sites with similar vegetation but climatic conditions: the Qilian Mountains (QLM) and the Qinghai Lake region (LQS). At both sites, Cyanobacteriota and Ascomycota were the predominant bacterial and fungal taxa, respectively. Microbial α-diversity did not differ significantly between the two regions, implying that host-associated mechanisms may stabilize within-site diversity. In contrast, β-diversity exhibited clear spatial differentiation. In QLM, bacterial β-diversity was significantly correlated with mean annual precipitation, while fungal α- and β-diversity were associated with soil nutrient levels (including nitrate, ammonium, available potassium, and phosphorus) and vegetation coverage. At LQS, the β-diversity of both bacterial and fungal communities was strongly influenced by soil electrical conductivity, and fungal communities were further shaped by vegetation cover. Community assembly processes were predominantly stochastic at both sites, although deterministic patterns were more pronounced in QLM. Variability in moisture availability contributed to random bacterial assembly at LQS, while increased environmental heterogeneity promoted deterministic assembly in fungal communities. The elevated diversity of microbes and plants in QLM also reinforced deterministic processes. Overall, our findings support a host–environment interaction hypothesis, indicating that host factors primarily govern α-diversity, while climatic and soil-related variables have stronger effects on β-diversity and microbial assembly dynamics. These insights advance our understanding of how phyllosphere microbial communities may respond to environmental change in alpine ecosystems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

20 pages, 7909 KiB  
Article
Mechanisms of Nitrogen Cycling Driven by Salinity in Inland Plateau Lakes, Based on a Haline Gradient Experiment Using Pangong Tso Sediment
by Ruiting Chang, Liang Ao, Zhi Zhang, Qiaojing Qin, Xueli Hu, Guoliang Liao, Yuanhang Zhou, Yu He and Haoyu Xu
Water 2025, 17(12), 1797; https://doi.org/10.3390/w17121797 - 16 Jun 2025
Viewed by 349
Abstract
Pangong Tso, a typical plateau lake exhibiting an east-to-west gradient from freshwater to saline conditions, was used to simulate the migration and transformation of nitrogen compounds under different salinity conditions. This study systematically investigates the effects of salinity on nitrogen cycling and transformation [...] Read more.
Pangong Tso, a typical plateau lake exhibiting an east-to-west gradient from freshwater to saline conditions, was used to simulate the migration and transformation of nitrogen compounds under different salinity conditions. This study systematically investigates the effects of salinity on nitrogen cycling and transformation in Pangong Tso sediments from 12 sites through controlled laboratory experiments and field monitoring across 120 sites. The data analysis method includes correlation analysis, ANOVA, structural equation modeling (SEM), and mixed-effects modeling (MEM). The results demonstrate that salinity significantly affects nitrogen cycling in plateau lakes. Salinity inhibits nitrification, resulting in an accumulation of ammonium nitrogen (NH4+-N), while simultaneously suppressing gaseous nitrogen emissions through the inhibition of denitrification. Salinity has a significant negative effect on nitrite nitrogen (NO2-N), which is attributable to enhanced redox-driven transformations under hypersaline conditions. A salinity threshold of approximately 9‰ was identified, above which nitrite oxidation was strongly inhibited, consistent with the known high salinity sensitivity of nitrite-oxidizing bacteria (NOB). Higher salinity levels correlated positively with increased NH4+-N and total nitrogen (TN) concentrations in overlying water (p < 0.01), and were further supported by observed increases in dissolved organic nitrogen (DON) and dissolved total nitrogen (DTN) along with rising salinity, and vice versa. Full article
Show Figures

Figure 1

21 pages, 6509 KiB  
Article
Assessing Increased Glacier Ablation Sensitivity to Climate Warming Using Degree-Day Method in the West Nyainqentanglha Range, Qinghai–Tibet Plateau
by Shuhong Wang, Jintao Liu, Hamish D. Pritchard, Xiao Qiao, Jie Zhang, Xuhui Shen and Wenyan Qi
Sustainability 2025, 17(11), 5143; https://doi.org/10.3390/su17115143 - 3 Jun 2025
Viewed by 445
Abstract
Limited surface energy and mass flux data hinder the understanding of glacier retreat mechanisms on the Qinghai–Tibet Plateau (QTP). Glaciers in the west Nyainqentanglha Range (WNR) supply meltwater to the densely populated Lhasa River basin (LRB) and Nam Co, the QTP’s second-largest endorheic [...] Read more.
Limited surface energy and mass flux data hinder the understanding of glacier retreat mechanisms on the Qinghai–Tibet Plateau (QTP). Glaciers in the west Nyainqentanglha Range (WNR) supply meltwater to the densely populated Lhasa River basin (LRB) and Nam Co, the QTP’s second-largest endorheic lake. In this study, we used a glacier mass balance model based on the degree-day method (GMB-DDM) to understand the response of glacier changes to climate warming. The spatiotemporal variation in degree-day factors for ice (DDFice; plural form: DDFsice) was assessed to characterize the sensitivity of glacier melt to warming over 44 years in the WNR. Our results demonstrate that the GMB_DDM effectively captured the accelerated mass loss and regional heterogeneity of WNR glaciers from 2000 to 2020, particularly the intensified negative balance after 2014. Moreover, glacier ablation was more sensitive to warming in the WNR during 2000–2020 than 1976–2000, with DDFice increases of 21% ± 8% in the LRB and 31% ± 10% in the Nam Co basin (NCB). Increased precipitation during the ablation season and reduced glacier surface albedo can explain the increased sensitivity to warming during 2000–2020. These findings could support sustainable water resource management in the LRB, NCB, and the surrounding areas of the QTP. Full article
Show Figures

Graphical abstract

15 pages, 5913 KiB  
Article
Salinity Effect on Soil Bacterial and Archaeal Diversity and Assembly in Phragmites australis Salt Marshes in the Qaidam Basin, China
by Pengcheng Zhu, Yuhui Wang, Wenyi Sheng, Mingyang Yu, Wei Wei, Wenlong Sun, Jian Gao, Zhenwei Xu, Ming Cao, Yuzhi Wang, Lele Liu and Weihua Guo
Microorganisms 2025, 13(6), 1253; https://doi.org/10.3390/microorganisms13061253 - 29 May 2025
Viewed by 453
Abstract
Extreme environments foster phylogenetically diverse microorganisms and unique community assembly patterns. Plateau saline marsh lakes represent understudied extreme habitats characterized by dual stressors of high salinity and low temperature. Here, we analyzed the soil bacterial and archaeal diversity in three salt marshes of [...] Read more.
Extreme environments foster phylogenetically diverse microorganisms and unique community assembly patterns. Plateau saline marsh lakes represent understudied extreme habitats characterized by dual stressors of high salinity and low temperature. Here, we analyzed the soil bacterial and archaeal diversity in three salt marshes of the Qaidam Basin on the Qinghai-Tibetan Plateau, China. While the bacterial and archaeal alpha diversity showed no significant differences among the three salt marshes, the community composition varied significantly. Notably, soil salinity (indicated by electric conductivity, EC) exerted opposing effects on microbial diversity—suppressing bacterial while promoting archaeal communities. Stochastic processes were the predominant mechanism for both bacterial and archaeal community assembly, where the weights were, in descending order, drift, homogeneous selection, and dispersal limitation. Network analysis revealed predominantly positive co-occurrence patterns within both bacterial and archaeal communities. We did not find a direct relationship between any bacterial or archaeal co-occurrence network properties and soil EC, but there was a significant correlation of network complexity to microbial diversity, which was influenced by EC. Our findings indicate distinct responses of bacterial and archaeal diversity to varying salinity levels, while the underlying assembly processes appear to be conserved in driving shifts in community diversity in plateau salt marsh wetlands. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

20 pages, 3970 KiB  
Article
A Systematic Retrospection and Reflections on Main Glacial Hazards of the Tibetan Plateau
by Changjun Gu, Suju Li, Ming Liu, Bo Wei, Shengyue Jin, Xudong Guo and Ping Wang
Remote Sens. 2025, 17(11), 1862; https://doi.org/10.3390/rs17111862 - 27 May 2025
Viewed by 473
Abstract
Glacial hazards pose significant threats to millions globally, especially with rapid climate warming drawing increased attention. Understanding past glacial hazards on both global and regional scales is crucial for early warning systems. This study quantified glacier and glacial lake changes on the Tibetan [...] Read more.
Glacial hazards pose significant threats to millions globally, especially with rapid climate warming drawing increased attention. Understanding past glacial hazards on both global and regional scales is crucial for early warning systems. This study quantified glacier and glacial lake changes on the Tibetan Plateau (TP) over recent decades and analyzed the spatial and temporal distribution of major glacial hazards. It also focused on glacial lakes that have experienced outburst events by reconstructing long-term data for 48 lakes. Key findings include: (1) TP glaciers have generally shrunk, with glacier area decreasing from 57,100 km2 in the first inventory to 44,400 km2 in the second, primarily in the middle and eastern Himalayas between 5000 and 6000 m. Meanwhile, the number of glacial lakes increased from 14,487 in 1990 to 16,385 in 2020, expanding towards higher elevations and glacier melt zones. (2) Since 1900, 283 glacial hazards have occurred, including 97 glacier surges, 36 glacier-related slope failures, and 150 glacial lake outburst floods (GLOFs). Hazard frequency increased post-2000, especially in the Karakoram and eastern Himalayas, during June to September. (3) Changes in glacier numbers contribute most to hazard frequency (11.56%), followed by July’s temperature change (10.24%). Slope and June’s temperature changes combined have the highest interaction effect (37.59%). (4) Of the 48 lakes studied, four disappeared after outbursts, 38 remained stable, and six expanded. These insights aid in monitoring, early warnings, and disaster management. Full article
Show Figures

Figure 1

17 pages, 2554 KiB  
Article
Retrieval of Dissolved Organic Carbon Storage in Plateau Lakes Based on Remote Sensing and Analysis of Driving Factors: A Case Study of Lake Dianchi
by Yufeng Yang, Wei Gao and Yuan Zhang
Remote Sens. 2025, 17(10), 1791; https://doi.org/10.3390/rs17101791 - 21 May 2025
Viewed by 408
Abstract
Dissolved organic carbon (DOC) is an essential form of carbon in lakes and has significant impact on thermal structure and carbon source-supporting food webs. Current remote sensing studies on DOC mainly focus on the retrieval of surface concentration of lakes, with limited understanding [...] Read more.
Dissolved organic carbon (DOC) is an essential form of carbon in lakes and has significant impact on thermal structure and carbon source-supporting food webs. Current remote sensing studies on DOC mainly focus on the retrieval of surface concentration of lakes, with limited understanding of three-dimensional carbon storage. This study proposes a novel vertical retrieval methodology for plateau lakes by integrating remote sensing and vertical profile analysis. Specifically, a Gaussian function-based vertical fitting model was developed to characterize DOC concentration distribution along water columns, where parameters (μ and σ) were calibrated against surface DOC concentrations retrieved from MODIS reflectance. A result-oriented storage algorithm was established by linking surface DOC concentration to DOC storage through linear relationships (R2 > 0.9), with slope and intercept functions optimized as depth-dependent equations. The mixed-layer depth (2 m) was determined through error minimization analysis of 16 vertical profiles. Applied to the eutrophic Lake Dianchi, results show significant vertical DOC variations (CV up to 101.4%) but consistent distribution patterns across profiles. Spatially, higher DOC storage occurred in central regions (80–120 g·m−2) with seasonal peaks in summer and autumn. Interannual analysis reveals wind speed and forest coverage as dominant drivers, while monthly variations correlate strongly with water temperature. This methodology advances real-time monitoring of carbon storage in deep plateau lakes, providing critical insights into lacustrine carbon cycling. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

Back to TopTop