Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (185)

Search Parameters:
Keywords = plastic limit pressure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4522 KiB  
Article
A Two-Dimensional Position and Motion Monitoring System for Preterm Infants Using a Fiber-Optic Pressure-Sensitive Mattress
by Giulia Palladino, Zheng Peng, Deedee Kommers, Henrie van den Boom, Oded Raz, Xi Long, Peter Andriessen, Hendrik Niemarkt and Carola van Pul
Sensors 2025, 25(15), 4774; https://doi.org/10.3390/s25154774 - 3 Aug 2025
Viewed by 200
Abstract
Monitoring position and movements of preterm infants is important to ensure their well-being and optimal development. This study evaluates the feasibility of a pressure-sensitive fiber-optic mattress (FM), made entirely of plastic, for two-dimensional analysis of preterm infant movements and positioning. Before clinical use, [...] Read more.
Monitoring position and movements of preterm infants is important to ensure their well-being and optimal development. This study evaluates the feasibility of a pressure-sensitive fiber-optic mattress (FM), made entirely of plastic, for two-dimensional analysis of preterm infant movements and positioning. Before clinical use, we developed a simple, replicable, and cost-effective test protocol to simulate infant movements and positions, enabling early identification of technical limitations. Using data from 20 preterm infants, we assessed the FM’s potential to monitor posture and limb motion. FM-derived pressure patterns were compared with camera-based manual annotations to distinguish between different positions and out-of-bed moments, as well as limb-specific movements. Bench-test results demonstrated the FM’s sensitivity to motion and pressure changes, supporting its use in preclinical validation. Clinical data confirmed the FM’s reliability in identifying infant positions and movement patterns, showing an accuracy comparable to camera annotations. However, limitations such as calibration, sensitivity to ambient light, and edge-related artifacts were noted, indicating areas for improvement. In conclusion, the test protocol proved effective for early-stage evaluation of smart mattress technologies. The FM showed promising clinical feasibility for non-obtrusive monitoring of preterm infants, though further optimization is needed for robust performance in neonatal care. Full article
Show Figures

Figure 1

30 pages, 4113 KiB  
Article
Genetic Variation Associated with Leaf Phenology in Pedunculate Oak (Quercus robur L.) Implicates Pathogens, Herbivores, and Heat Stress as Selective Drivers
by Jonatan Isaksson, Marcus Hall, Iryna Rula, Markus Franzén, Anders Forsman and Johanna Sunde
Forests 2025, 16(8), 1233; https://doi.org/10.3390/f16081233 - 26 Jul 2025
Viewed by 383
Abstract
Leaf phenology of trees responds to temperature and photoperiod cues, mediated by underlying genes and plasticity. However, uncertainties remain regarding how smaller-scale phenological variation in cold-limited regions has been affected by modified selection pressures from herbivores, pathogens, and climate conditions, and whether this [...] Read more.
Leaf phenology of trees responds to temperature and photoperiod cues, mediated by underlying genes and plasticity. However, uncertainties remain regarding how smaller-scale phenological variation in cold-limited regions has been affected by modified selection pressures from herbivores, pathogens, and climate conditions, and whether this leaves genetic signatures allowing for projections of future responses. We investigated environmental correlates and genetic variation putatively associated with spring and autumn leaf phenology in northern range margin oak (Quercus robur L.) populations in Sweden (55.6° N–60.8° N). Results suggested that budburst occurred later at higher latitudes and in locations with colder spring (April) temperatures, whereas leaf senescence occurred earlier at higher latitudes. Several candidate loci associated with phenology were identified (n = 40 for budburst and 47 for leaf senescence), and significant associations between these loci and latitude were detected. Functions associated with some of the candidate loci, as identified in previous studies, included host defence and heat stress tolerance. The proportion of polymorphic candidate loci associated with budburst decreased with increasing latitude, towards the range margin. Overall, the Swedish oak population seems to comprise genetic diversity in phenology-related traits that may provide resilience to a rapidly changing climate. Full article
(This article belongs to the Special Issue Woody Plant Phenology in a Changing Climate, 2nd Edition)
Show Figures

Figure 1

22 pages, 4555 KiB  
Article
Elastic–Plastic Analysis of Asperity Based on Wave Function
by Zijian Xu, Min Zhu, Wenjuan Wang, Ming Guo, Shengao Wang, Xiaohan Lu and Ziwei Li
Materials 2025, 18(15), 3507; https://doi.org/10.3390/ma18153507 - 26 Jul 2025
Viewed by 228
Abstract
This paper proposes an improved wave function asperity elastic–plastic model. A cosine function that could better fit the geometric morphology was selected to construct the asperity, the elastic phase was controlled by the Hertz contact theory, the elastoplastic transition phase was corrected by [...] Read more.
This paper proposes an improved wave function asperity elastic–plastic model. A cosine function that could better fit the geometric morphology was selected to construct the asperity, the elastic phase was controlled by the Hertz contact theory, the elastoplastic transition phase was corrected by the hyperbolic tangent function, and the fully plastic phase was improved by the projected area theory. The model broke through the limitations of the spherical assumption and was able to capture the stress concentration and plastic flow phenomena. The results show that the contact pressure in the elastic phase was 22% higher than that of the spherical shape, the plastic strain in the elastoplastic phase was 52% lower than that of the spherical shape, and the fully plastic phase reduced the contact area error by 20%. The improved hyperbolic tangent function eliminated the unphysical oscillation phenomenon in the elastoplastic phase and ensured the continuity and monotonicity of the contact variables, with an error of <5% from the finite element analysis. Meanwhile, extending the proposed model, we developed a rough surface contact model, and it was verified that the wavy asperity could better match the mechanical properties of the real rough surface and exhibited progressive stiffness reduction during the plastic flow process. The model in this paper can provide a theoretical basis for predicting stress distribution, plastic evolution, and multi-scale mechanical behavior in the connection interface. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

18 pages, 2154 KiB  
Article
Performance Limits of Hydraulic-Binder Stabilization for Dredged Sediments: Comparative Case Studies
by Abdeljalil Zri, Nor-Edine Abriak, Amine el Mahdi Safhi, Shima Pilehvar and Mahdi Kioumarsi
Buildings 2025, 15(14), 2484; https://doi.org/10.3390/buildings15142484 - 15 Jul 2025
Viewed by 387
Abstract
Maintenance dredging produces large volumes of fine sediments that are commonly discarded, despite increasing pressure for beneficial reuse. Lime–cement stabilization offers one pathway, yet field performance is highly variable. This study juxtaposes two French marine dredged sediments—DS-F (low plasticity, organic matter (OM) ≈ [...] Read more.
Maintenance dredging produces large volumes of fine sediments that are commonly discarded, despite increasing pressure for beneficial reuse. Lime–cement stabilization offers one pathway, yet field performance is highly variable. This study juxtaposes two French marine dredged sediments—DS-F (low plasticity, organic matter (OM) ≈ 2 wt.%) and DS-M (high plasticity, OM ≈ 18 wt.%)—treated with practical hydraulic road binder (HRB) dosages. This is the first French study that directly contrasts two different DS types under identical HRB treatment and proposes practical boundary thresholds. Physical indexes (particle size, methylene-blue value, Atterberg limits, OM) were measured; mixtures were compacted (Modified Proctor) and tested for immediate bearing index (IBI). IBI, unconfined compressive strength, indirect tensile strength, and elastic modulus were determined. DS-F reached IBI ≈ 90–125%, UCS ≈ 4.7–5.9 MPa, and ITS ≈ 0.40–0.47 MPa with only 6–8 wt.% HRB, satisfying LCPC-SETRA class S2–S3 requirements for road subgrades. DS-M never exceeded IBI ≈ 8%, despite 3 wt.% lime + 6 wt.% cement. A decision matrix distilled from these cases and recent literature shows that successful stabilization requires MBV < 3 g/100 g, plastic index < 25%, OM < 7 wt.%, and fine particles < 35%. These thresholds permit rapid screening of dredged lots before costly treatment. Highlighting both positive and negative evidence clarifies the realistic performance envelope of soil–cement reuse and supports circular-economy management of DS. Full article
(This article belongs to the Collection Advanced Concrete Materials in Construction)
Show Figures

Figure 1

19 pages, 549 KiB  
Article
Evaluating Plastic Waste Management in EU Accession Countries: A Life Cycle Perspective from the Republic of Serbia with Microplastic Implications
by Dunja Prokić, Jasna Stepanov, Ljiljana Milošević, Biljana Panin, Nataša Stojić and Mira Pucarević
Sustainability 2025, 17(14), 6297; https://doi.org/10.3390/su17146297 - 9 Jul 2025
Viewed by 374
Abstract
EU accession countries, including the Republic of Serbia, are under growing pressure to align their plastic waste management systems with EU environmental directives. Despite this, significant challenges remain, including inadequate infrastructure, a limited recycling capacity, and weak enforcement mechanisms. This study employs life [...] Read more.
EU accession countries, including the Republic of Serbia, are under growing pressure to align their plastic waste management systems with EU environmental directives. Despite this, significant challenges remain, including inadequate infrastructure, a limited recycling capacity, and weak enforcement mechanisms. This study employs life cycle assessment (LCA) to evaluate the environmental impacts of polyethylene terephthalate (PET) packaging waste in Serbia, focusing on three end-of-life scenarios (EoL): landfilling, recycling, and incineration. Using GaBi Professional v6.0 software and the ReCiPe 2016 methodology, the results indicate that mismanaged PET waste contributes notably to terrestrial ecotoxicity (3.69 kg 1.4-DB eq.) and human toxicity (non-cancer) (2.36 kg 1.4-DB eq.). In 2023, 14,967.8 tons of PET were collected by authorized operators; however, unreported quantities likely end up in landfills or the natural environment. Beyond the quantified LCA results, this study highlights microplastic pollution as an emerging environmental concern. It advocates for the development of Serbia-specific characterization factors (CFs) for PET microplastics, incorporating localized fate, exposure, and effect data. Tailored CFs would enhance the precision of impact assessments for Serbian terrestrial ecosystems, contributing to more effective, evidence-based environmental policies. These insights are crucial for supporting Serbia’s transition to sustainable waste management and for meeting EU environmental standards. Full article
Show Figures

Figure 1

27 pages, 6478 KiB  
Article
Mechanism of Friction Reduction in Surface Micro-Textured Mandrels During Hole Cold Expansion
by Guangming Lv, Zhiyuan Wang, Ligang Qu, Jing Li and Chang Liu
Coatings 2025, 15(7), 789; https://doi.org/10.3390/coatings15070789 - 4 Jul 2025
Viewed by 360
Abstract
Aiming at the engineering problems of the severe wear and limited service life of mandrels during the hole extrusion strengthening of critical aerospace components, this study proposes a surface modification strategy for mandrels based on the anti-friction mechanism of micro-textures. Based on the [...] Read more.
Aiming at the engineering problems of the severe wear and limited service life of mandrels during the hole extrusion strengthening of critical aerospace components, this study proposes a surface modification strategy for mandrels based on the anti-friction mechanism of micro-textures. Based on the Lame stress equation and the Mises yield criterion, a plastic strengthening stress distribution model of the hole wall was developed. Integrating Bowden’s adhesive friction theory, a parameterized numerical model was constructed to investigate the influence of micro-texture morphology on interfacial friction and wear behavior. An elastic–plastic contact model for micro-textured mandrels during hole extrusion strengthening was established using ANSYS. The effects of key parameters such as the micro-texture depth and area ratio on the contact pressure field, friction stress distribution, and strengthening performance were quantitatively analyzed. The results show that a circular micro-texture with a depth of 50 μm and an area ratio of 20% can reduce the fluctuation and peak value of the contact pressure by 41.0% and 29.7%, respectively, and decrease the average friction stress by 8.1%. The interfacial wear resistance and the uniformity of the residual compressive stress distribution on the hole wall are significantly enhanced, providing tribological insight and surface optimization guidance for improving the anti-wear performance and extending the service life of mandrels. Full article
(This article belongs to the Section Tribology)
Show Figures

Figure 1

22 pages, 4441 KiB  
Article
Understanding Shock Response of Body-Centered Cubic Molybdenum from a Specific Embedded Atom Potential
by Yichen Jiang, Yanchun Leng, Xiaoli Chen and Chaoping Liang
Metals 2025, 15(6), 685; https://doi.org/10.3390/met15060685 - 19 Jun 2025
Viewed by 294
Abstract
Extreme conditions induced by shock exert unprecedented force on crystal lattice and push atoms away from their equilibrium positions. Nonequilibrium molecular dynamics (MD) simulations are one of the best ways to describe material behavior under shock but are limited by the availability and [...] Read more.
Extreme conditions induced by shock exert unprecedented force on crystal lattice and push atoms away from their equilibrium positions. Nonequilibrium molecular dynamics (MD) simulations are one of the best ways to describe material behavior under shock but are limited by the availability and reliability of potential functions. In this work, a specific embedded atom (EAM) potential of molybdenum (Mo) is built for shock and tested by quasi-isentropic and piston-driven shock simulations. Comparisons of the equation of state, lattice constants, elastic constants, phase transitions under pressure, and phonon dispersion with those in the existing literature validate the reliability of our EAM potential. Quasi-isentropic shock simulations reveal that critical stresses for the beginning of plastic deformation follow a [111] > [110] > [100] loading direction for single crystals, and then polycrystal samples. Phase transitions from BCC to FCC and BCC to HCP promote plastic deformation for single crystals loading along [100] and [110], respectively. Along [111], void directly nucleates at the stress concentration area. For polycrystals, voids always nucleate on the grain boundary and lead to early crack generation and propagation. Piston-driven shock loading confirms the plastic mechanisms observed from quasi-isentropic shock simulation and provides further information on the spall strength and spallation process. Full article
(This article belongs to the Special Issue Mechanical Structure Damage of Metallic Materials)
Show Figures

Graphical abstract

14 pages, 5286 KiB  
Article
A Performance Evaluation of Fly Ash–Plastic Aggregate in Hydraulic Backfilling: A Comparative Study
by Munipala Manohar, Bhanwar Singh Choudhary, Krzysztof Skrzypkowski, Krzysztof Zagórski and Anna Zagórska
Materials 2025, 18(12), 2751; https://doi.org/10.3390/ma18122751 - 12 Jun 2025
Viewed by 460
Abstract
Underground mining creates voids that require filling to prevent ground subsidence and mitigate post-mining issues. Traditionally, sand has been used as the primary backfilling material. However, the increasing demand from the construction sector and the slow natural replenishment of sand have necessitated the [...] Read more.
Underground mining creates voids that require filling to prevent ground subsidence and mitigate post-mining issues. Traditionally, sand has been used as the primary backfilling material. However, the increasing demand from the construction sector and the slow natural replenishment of sand have necessitated the search for alternative materials. Researchers have explored fly ash (FA) as a potential substitute; however, its slow settling rate and the development of hydrostatic pressure limit its effectiveness. To address these issues, this study investigated the development of fly ash–plastic aggregate (FPA) as a suitable material for hydraulic backfilling by mixing FA with high-density polyethylene (HDPE) plastic in an 80:20 ratio. Initial investigations revealed that adding plastic as a binder significantly improves the physical, mechanical, and morphological properties of FA. The results further demonstrate that FPA satisfies and exceeds the standard requirements for hydraulic backfilling, as outlined in previous studies and case reports. These findings suggest that FPA is a promising alternative to both sand and FA for hydraulic backfilling applications. Full article
Show Figures

Figure 1

28 pages, 1264 KiB  
Review
Metabolic Rewiring of Bacterial Pathogens in Response to Antibiotic Pressure—A Molecular Perspective
by Carlo Acierno, Fannia Barletta, Riccardo Nevola, Luca Rinaldi, Ferdinando Carlo Sasso, Luigi Elio Adinolfi and Alfredo Caturano
Int. J. Mol. Sci. 2025, 26(12), 5574; https://doi.org/10.3390/ijms26125574 - 11 Jun 2025
Viewed by 756
Abstract
Antibiotic pressure exerts profound effects on bacterial physiology, not limited to classical genetic resistance mechanisms. Increasing evidence highlights the ability of pathogens to undergo metabolic rewiring—an adaptive, reversible reorganization of core metabolic pathways that promotes survival under antimicrobial stress. This review provides a [...] Read more.
Antibiotic pressure exerts profound effects on bacterial physiology, not limited to classical genetic resistance mechanisms. Increasing evidence highlights the ability of pathogens to undergo metabolic rewiring—an adaptive, reversible reorganization of core metabolic pathways that promotes survival under antimicrobial stress. This review provides a comprehensive analysis of antibiotic-induced metabolic adaptations, encompassing glycolysis, the tricarboxylic acid cycle, fermentation, redox balance, amino acid catabolism, and membrane biosynthesis. We critically examine how diverse antibiotic classes—including β-lactams, aminoglycosides, quinolones, glycopeptides, polymyxins, and antimetabolites—interact with bacterial metabolism to induce tolerance and persistence, often preceding stable resistance mutations. In parallel, we explore the ecological and host-derived signals—such as immunometabolites and quorum sensing—that modulate these metabolic responses. Therapeutically, targeting metabolic pathways offers promising strategies to potentiate antibiotic efficacy, including enzyme inhibition, metabolic adjuvants, and precision-guided therapy based on pathogen metabolic profiling. By framing metabolic plasticity as a dynamic and evolutionarily relevant phenomenon, this review proposes a unifying model linking transient tolerance to stable resistance. Integrating metabolic rewiring into antimicrobial research, clinical diagnostics, and therapeutic design represents a necessary paradigm shift in combating bacterial persistence and resistance. Full article
Show Figures

Figure 1

29 pages, 21376 KiB  
Article
Numerical Simulation of Fracture Failure Propagation in Water-Saturated Sandstone with Pore Defects Under Non-Uniform Loading Effects
by Gang Liu, Yonglong Zan, Dongwei Wang, Shengxuan Wang, Zhitao Yang, Yao Zeng, Guoqing Wei and Xiang Shi
Water 2025, 17(12), 1725; https://doi.org/10.3390/w17121725 - 7 Jun 2025
Cited by 1 | Viewed by 525
Abstract
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the [...] Read more.
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the mechanical properties of the rock mass, while non-uniform loading leads to stress concentration. The combined effect facilitates the propagation of microcracks and the formation of shear zones, ultimately resulting in localized instability. This initial damage disrupts the mechanical equilibrium and can evolve into severe geohazards, including roof collapse, water inrush, and rockburst. Therefore, understanding the damage and failure mechanisms of mine roadways at the mesoscale, under the combined influence of stress heterogeneity and hydraulic weakening, is of critical importance based on laboratory experiments and numerical simulations. However, the large scale of in situ roadway structures imposes significant constraints on full-scale physical modeling due to limitations in laboratory space and loading capacity. To address these challenges, a straight-wall circular arch roadway was adopted as the geometric prototype, with a total height of 4 m (2 m for the straight wall and 2 m for the arch), a base width of 4 m, and an arch radius of 2 m. Scaled physical models were fabricated based on geometric similarity principles, using defect-bearing sandstone specimens with dimensions of 100 mm × 30 mm × 100 mm (length × width × height) and pore-type defects measuring 40 mm × 20 mm × 20 mm (base × wall height × arch radius), to replicate the stress distribution and deformation behavior of the prototype. Uniaxial compression tests on water-saturated sandstone specimens were performed using a TAW-2000 electro-hydraulic servo testing system. The failure process was continuously monitored through acoustic emission (AE) techniques and static strain acquisition systems. Concurrently, FLAC3D 6.0 numerical simulations were employed to analyze the evolution of internal stress fields and the spatial distribution of plastic zones in saturated sandstone containing pore defects. Experimental results indicate that under non-uniform loading, the stress–strain curves of saturated sandstone with pore-type defects typically exhibit four distinct deformation stages. The extent of crack initiation, propagation, and coalescence is strongly correlated with the magnitude and heterogeneity of localized stress concentrations. AE parameters, including ringing counts and peak frequencies, reveal pronounced spatial partitioning. The internal stress field exhibits an overall banded pattern, with localized variations induced by stress anisotropy. Numerical simulation results further show that shear failure zones tend to cluster regionally, while tensile failure zones are more evenly distributed. Additionally, the stress field configuration at the specimen crown significantly influences the dispersion characteristics of the stress–strain response. These findings offer valuable theoretical insights and practical guidance for surrounding rock control, early warning systems, and reinforcement strategies in water-infiltrated mine roadways subjected to non-uniform loading conditions. Full article
Show Figures

Figure 1

22 pages, 6256 KiB  
Article
Structural Design of Segmented Linings for High-Pressure CAES in Underground Workings: Method and Case Study
by Sheng Wang, Mengfan Gao and Caichu Xia
Appl. Sci. 2025, 15(10), 5782; https://doi.org/10.3390/app15105782 - 21 May 2025
Viewed by 526
Abstract
This study aims to ensure that the maximum crack width of underground working linings for compressed air energy storage (CAES) meets the allowable limit under high internal pressure conditions. Drawing on crack width calculation methods from hydraulic tunnels, this study proposes a design [...] Read more.
This study aims to ensure that the maximum crack width of underground working linings for compressed air energy storage (CAES) meets the allowable limit under high internal pressure conditions. Drawing on crack width calculation methods from hydraulic tunnels, this study proposes a design method for segmented linings with preset seams. The method accounts for the shear mechanical behavior of the sliding layer, with parameters determined through laboratory testing. A typical case study validates the reliability of the crack width calculation method that accounts for lining damage and plasticity. The study determined, from an engineering case, that six seams are optimal when the lateral pressure coefficient λ is below 1, while four seams are more suitable when λ > 1. Additionally, reinforcement ratios and retractable joints of the segmented lining were designed for the case. When the surrounding rock quality is lower than that of hard rock mass and gas pressure exceeds 12 MPa, monolithic cast-reinforced concrete linings often fail to meet the allowable crack width limits. However, segmented linings offer greater flexibility, as they can still meet the requirements even with fair-quality rock mass. These findings provide critical theoretical foundations for the design of CAES workings under high internal pressure. Full article
Show Figures

Figure 1

19 pages, 2123 KiB  
Article
Advancing Regional Adaptation and Nitrogen Stress Resilience Through Integrative Phenotyping of Watkins Wheat Landraces via Source–Sink Dynamics
by Abdul Waheed, Muhammad Shahid Iqbal, Zareen Sarfraz, Yanping Wei, Junliang Hou, Sixing Li, Bo Song and Shifeng Cheng
Diversity 2025, 17(5), 359; https://doi.org/10.3390/d17050359 - 19 May 2025
Viewed by 514
Abstract
Historical landrace collections, such as the Watkins Wheat Collection, harbor immense genetic diversity that holds the potential to transform our understanding of crop resilience and adaptation. This study employs a novel integrative phenotyping approach to dissect regional adaptation and nitrogen stress resilience in [...] Read more.
Historical landrace collections, such as the Watkins Wheat Collection, harbor immense genetic diversity that holds the potential to transform our understanding of crop resilience and adaptation. This study employs a novel integrative phenotyping approach to dissect regional adaptation and nitrogen stress resilience in Watkins wheat landraces under contrasting nitrogen regimes. By leveraging a multidimensional framework, including stress indices, geographic analyses, and multivariate clustering, this work identifies 48 landraces with contrasting responses to nitrogen limitation. High-performing genotypes, such as WATDE0013 and WATDE0020, exhibited superior biomass partitioning under stress, reflecting historical adaptation to low-input agroecosystems spanning Europe, Asia, and North Africa. These findings emphasize the value of phenotypic plasticity in nitrogen use efficiency (NUE) improvement. In contrast, low-performing accessions, such as WATDE1055, highlighted vulnerabilities to nitrogen limitation, illustrating the importance of comprehensive phenotypic screening for gene-bank prioritization. Regional adaptation patterns, elucidated through geographic analyses, uncovered stress-resilient genotypes clustered in historically marginal agricultural regions, revealing adaptive traits shaped by environmental selection pressures. Principal component analysis (PCA) and hierarchical clustering delineated five distinct phenotypic groups, enhancing our understanding of evolutionary trajectories within this collection. This integrative approach transcends traditional phenotyping methods by linking phenotype, genotype, and geographic context to uncover nuanced adaptive traits. By bridging gene bank conservation with a systems-level understanding of crop evolution, this study provides actionable insights and a robust framework for breeding climate-resilient wheat varieties. These findings underscore the critical role of preserving genetic diversity in landraces to address global challenges in nitrogen stress and climate resilience. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

20 pages, 11532 KiB  
Article
Experimental Study of Confining Pressure-Induced Fracture Network for Shale Gas Reservoir Under Triaxial Compression Conditions
by Jinxuan Han, Ming Gao, Yubo Wu, Ali Raza, Pei He, Jianhui Li, Yanjun Lu, Manping Yang and Hongjian Zhu
Fractal Fract. 2025, 9(5), 311; https://doi.org/10.3390/fractalfract9050311 - 13 May 2025
Viewed by 524
Abstract
The experimental study of shale fracture development is very important. As a channel of permeability, a fracture has a great influence on the development of shale gas. This study presents the results of a fracture evaluation in the Silurian Longmaxi Shale using the [...] Read more.
The experimental study of shale fracture development is very important. As a channel of permeability, a fracture has a great influence on the development of shale gas. This study presents the results of a fracture evaluation in the Silurian Longmaxi Shale using the laboratory triaxial compression experiments and CT reconstruction, considering both mechanical properties and fracture network multi-dimensional quantitative characterization. The results indicate that the plastic deformation stage of shale lasts longer under high confining pressure, whereas radial deformation is restricted. Confining pressure has a nice linear connection with both compressive strength and elastic modulus. The 2D fractal dimension of radial and vertical cracks is 1.09–1.28 when the confining pressure is between 5 and 25 MPa. The 3D fractal dimension of the fracture is 2.08–2.16. There is a linear negative correlation at high confining pressure (R2 > 0.80) and a weak linear association between the 3D fractal dimension of the fracture and confining pressure at low confining pressure. The fracture angle calculated by the volume weight of multiple main cracks has a linear relationship with the confining pressure (R2 > 0.89), and its value is 73.90°–52.76°. The fracture rupture rate and fracture complexity coefficient are linearly negatively correlated with confining pressure (R2 > 0.82). The Euler number can well characterize the connectivity of shale fractures, and the two show a strong linear positive correlation (R2 = 0.98). We suggest that the bedding plane gap compression, radial deformation limitation, and interlayer effect weakening are efficient mechanisms for the formation of shale fracture networks induced by confining pressure, and that confining pressure plays a significant role in limiting and weakening the development of shale fractures, based on the quantitative characterization results of fractures. Full article
(This article belongs to the Special Issue Flow and Transport in Fractal Models of Rock Mechanics)
Show Figures

Figure 1

15 pages, 10319 KiB  
Article
Residual Stresses of Small-Bore Butt-Welded Piping Measured by Quantum Beam Hybrid Method
by Kenji Suzuki, Yasufumi Miura, Hidenori Toyokawa, Ayumi Shiro, Takahisa Shobu, Satoshi Morooka and Yuki Shibayama
Quantum Beam Sci. 2025, 9(2), 15; https://doi.org/10.3390/qubs9020015 - 2 May 2025
Viewed by 1002
Abstract
Cracks due to stress corrosion cracking in stainless steels are becoming a problem not only in boiling water reactors but also in pressurized water reactor nuclear plants. Stress improvement measures have been implemented mainly for large-bore welded piping, but in the case of [...] Read more.
Cracks due to stress corrosion cracking in stainless steels are becoming a problem not only in boiling water reactors but also in pressurized water reactor nuclear plants. Stress improvement measures have been implemented mainly for large-bore welded piping, but in the case of small-bore welded piping, post-welding stress improvement measures are often not possible due to dimensional restrictions, etc. Therefore, knowing the actual welding residual stresses of small-bore welded piping regardless of reactor type is essential for the safe and stable operation of nuclear power stations, but there are only a limited number of examples of measuring the residual stresses. In this study, austenitic stainless steel pipes with an outer diameter of 100 mm and a wall thickness of 11.1 mm were butt-welded. The residual stresses were measured by the strain scanning method using neutrons. Furthermore, to obtain detailed residual stresses near the penetration bead where the maximum stress is generated, the residual stresses near the inner surface of the weld were measured using the double-exposure method (DEM) with hard X-rays of synchrotron radiation. A method using a cross-correlation algorithm was proposed to determine the accurate diffraction angle from the complex diffraction patterns from the coarse grains, dendritic structures, and plastic zones. A quantum beam hybrid method (QBHM) was proposed that uses the circumferential residual stresses obtained by neutrons and the residual stresses obtained by the double-exposure method in a complementary use. The residual stress map of welded piping measured using the QBHM showed an area where the axial tensile residual stress exists from the neighborhood of the penetration bead toward the inside of the welded metal. This result could explain the occurrence of stress corrosion cracking in the butt-welded piping. A finite element analysis of the same butt-welded piping was performed and its results were compared. There is also a difference between the simulation results of residual stress using the finite element method and the measurement results using the QBHM. This difference is because the measured residual stress map also includes the effect of the stress of each crystal grain based on elastic anisotropy, that is, residual micro-stress. Full article
(This article belongs to the Section Engineering and Structural Materials)
Show Figures

Figure 1

18 pages, 5067 KiB  
Article
Research on Seepage Field and Stress Field of Deep-Buried Subsea Tunnel with Anisotropic Permeability of the Surrounding Rock
by Yunlong Yu and Bo Jin
J. Mar. Sci. Eng. 2025, 13(5), 825; https://doi.org/10.3390/jmse13050825 - 22 Apr 2025
Viewed by 360
Abstract
Deep-buried subsea tunnels are often under high water pressure conditions, and the influence of the seepage field on the tunnel cannot be ignored. Existing studies generally assume that the surrounding rock exhibits permeability isotropy; this study developed a model of deep-buried subsea tunnel [...] Read more.
Deep-buried subsea tunnels are often under high water pressure conditions, and the influence of the seepage field on the tunnel cannot be ignored. Existing studies generally assume that the surrounding rock exhibits permeability isotropy; this study developed a model of deep-buried subsea tunnel that considers the permeability anisotropy of surrounding rock and investigated the effects of permeability differences between the surrounding rock and lining structure on tunnel seepage flow and plastic zone extent. By employing coordinate transformation and conformal mapping methods, the hydraulic head and the seepage discharge for each region are determined for each section of the tunnel. Based on the analytical solution of the seepage field, the seepage force is treated as a body force, and using the Mohr–Coulomb criterion, an elastoplastic analytical solution for the lining and surrounding rock under anisotropic seepage is derived. Using the Shenzhen MaWan Sea-Crossing Passage as a case study, numerical simulations are conducted using Abaqus2021, and the results are compared with the analytical solution to verify the accuracy of the study. The research shows that the permeability anisotropy of surrounding rock increases the seepage discharge, and this effect becomes more significant with increasing burial depth. If the anisotropy is 10 times greater than its previous value, the tunnel seepage volume will increase by 35.6%. When the surrounding rock permeability is sufficiently large, the impact of permeability anisotropy on the seepage discharge is relatively weak, with the seepage discharge primarily dominated by the permeability of the lining. In the tunnel stress field, due to the significant difference in stiffness between the lining and the surrounding rock, the hoop stress in the lining is much larger than that in the surrounding rock, and there is a stress discontinuity at their interface. When the permeability of the elastic zone of the surrounding rock is 100 times greater than that of the plastic zone, the plastic radius of the tunnel will increase by 2 to 3 times compared to the previous value. Reducing the permeability of the plastic zone in the surrounding rock effectively limits the seepage body force acting on the lining, thereby enhancing the stability of the lining structure and reducing the risk of damage to the tunnel. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop