Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (423)

Search Parameters:
Keywords = plasmid transfer genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3146 KiB  
Article
Quorum-Sensing C12-HSL Drives Antibiotic Resistance Plasmid Transfer via Membrane Remodeling, Oxidative Stress, and RpoS-RMF Crosstalk
by Yang Yang, Ziyan Wu, Li’e Zhu, Zixin Han, Junpeng Li, Qiaoqiao Fang and Guoqiang Zhu
Microorganisms 2025, 13(8), 1837; https://doi.org/10.3390/microorganisms13081837 - 6 Aug 2025
Abstract
Antibiotic misuse accelerates resistance dissemination via plasmid conjugation, but quorum sensing (QS) regulatory mechanisms remain undefined. Using Escherichia coli (E. coli) MG1655 conjugation models (RP4-7/EC600 plasmids), we demonstrate that long-chain acyl-homoserine lactones (C10/C12-HSL) enhance transfer frequency by up to 7.7-fold (200 [...] Read more.
Antibiotic misuse accelerates resistance dissemination via plasmid conjugation, but quorum sensing (QS) regulatory mechanisms remain undefined. Using Escherichia coli (E. coli) MG1655 conjugation models (RP4-7/EC600 plasmids), we demonstrate that long-chain acyl-homoserine lactones (C10/C12-HSL) enhance transfer frequency by up to 7.7-fold (200 μM C12-HSL; p < 0.001), while quorum-quenching by sub-inhibitory vanillin suppressed this effect by 95% (p < 0.0001). C12-HSL compromised membrane integrity via ompF upregulation (4-fold; p < 0.01) and conjugative pore assembly (trbBp upregulated by 1.38-fold; p < 0.05), coinciding with ROS accumulation (1.5-fold; p < 0.0001) and SOS response activation (recA upregulated by 1.68-fold; p < 0.001). Crucially, rpoS and rmf deletion mutants reduced conjugation by 65.5% and 55.8%, respectively (p < 0.001), exhibiting attenuated membrane permeability (≤65.5% reduced NPN influx; p < 0.0001), suppressed ROS (≤54% downregulated; p < 0.0001), and abolished transcriptional induction of conjugation/stress genes. Reciprocal RpoS–RMF (ribosomal hibernation factor) crosstalk was essential for AHL responsiveness, with deletions mutually suppressing expression (≤65.9% downregulated; p < 0.05). We establish a hierarchical mechanism wherein long-chain AHLs drive resistance dissemination through integrated membrane restructuring, stress adaptation, and RpoS–RMF-mediated genetic plasticity, positioning QS signaling as a viable target for curbing resistance spread. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

20 pages, 3136 KiB  
Review
The Role of Genomic Islands in the Pathogenicity and Evolution of Plant-Pathogenic Gammaproteobacteria
by Yuta Watanabe, Yasuhiro Ishiga and Nanami Sakata
Microorganisms 2025, 13(8), 1803; https://doi.org/10.3390/microorganisms13081803 - 1 Aug 2025
Viewed by 132
Abstract
Genomic islands (GIs) including integrative and conjugative elements (ICEs), prophages, and integrative plasmids are central drivers of horizontal gene transfer in bacterial plant pathogens. These elements often carry cargo genes encoding virulence factors, antibiotic and metal resistance determinants, and metabolic functions that enhance [...] Read more.
Genomic islands (GIs) including integrative and conjugative elements (ICEs), prophages, and integrative plasmids are central drivers of horizontal gene transfer in bacterial plant pathogens. These elements often carry cargo genes encoding virulence factors, antibiotic and metal resistance determinants, and metabolic functions that enhance environmental adaptability. In plant-pathogenic species such as Pseudomonas syringae, GIs contribute to host specificity, immune evasion, and the emergence of novel pathogenic variants. ICEclc and its homologs represent integrative and mobilizable elements whose tightly regulated excision and transfer are driven by a specialized transcriptional cascade, while ICEs in P. syringae highlight the ecological impact of cargo genes on pathogen virulence and fitness. Pathogenicity islands further modulate virulence gene expression in response to in planta stimuli. Beyond P. syringae, GIs in genera such as Erwinia, Pectobacterium, and Ralstonia underpin critical traits like toxin biosynthesis, secretion system acquisition, and topoisomerase-mediated stability. Leveraging high-throughput genomics and structural biology will be essential to dissect GI regulation and develop targeted interventions to curb disease spread. This review synthesizes the current understanding of GIs in plant-pathogenic gammaproteobacteria and outlines future research priorities for translating mechanistic insights into sustainable disease control strategies. Full article
Show Figures

Figure 1

19 pages, 9488 KiB  
Article
Proteus mirabilis from Captive Giant Pandas and Red Pandas Carries Diverse Antimicrobial Resistance Genes and Virulence Genes Associated with Mobile Genetic Elements
by Yizhou Yang, Yan Liu, Jiali Wang, Caiwu Li, Ruihu Wu, Jialiang Xin, Xue Yang, Haohong Zheng, Zhijun Zhong, Hualin Fu, Ziyao Zhou, Haifeng Liu and Guangneng Peng
Microorganisms 2025, 13(8), 1802; https://doi.org/10.3390/microorganisms13081802 - 1 Aug 2025
Viewed by 209
Abstract
Proteus mirabilis is a zoonotic pathogen that poses a growing threat to both animal and human health due to rising antimicrobial resistance (AMR). It is widely found in animals, including China’s nationally protected captive giant and red pandas. This study isolated Proteus mirabilis [...] Read more.
Proteus mirabilis is a zoonotic pathogen that poses a growing threat to both animal and human health due to rising antimicrobial resistance (AMR). It is widely found in animals, including China’s nationally protected captive giant and red pandas. This study isolated Proteus mirabilis from panda feces to assess AMR and virulence traits, and used whole-genome sequencing (WGS) to evaluate the spread of resistance genes (ARGs) and virulence genes (VAGs). In this study, 37 isolates were obtained, 20 from red pandas and 17 from giant pandas. Multidrug-resistant (MDR) strains were present in both hosts. Giant panda isolates showed the highest resistance to ampicillin and cefazolin (58.8%), while red panda isolates were most resistant to trimethoprim/sulfamethoxazole (65%) and imipenem (55%). Giant panda-derived strains also exhibited stronger biofilm formation and swarming motility. WGS identified 31 ARGs and 73 VAGs, many linked to mobile genetic elements (MGEs) such as plasmids, integrons, and ICEs. In addition, we found frequent co-localization of drug resistance genes/VAGs with MGEs, indicating a high possibility of horizontal gene transfer (HGT). This study provides crucial insights into AMR and virulence risks in P. mirabilis from captive pandas, supporting targeted surveillance and control strategies. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and the Use of Antibiotics in Animals)
Show Figures

Figure 1

37 pages, 1767 KiB  
Review
Antibiotics and Antibiotic Resistance Genes in the Environment: Dissemination, Ecological Risks, and Remediation Approaches
by Zhaomeng Wu, Xiaohou Shao and Qilin Wang
Microorganisms 2025, 13(8), 1763; https://doi.org/10.3390/microorganisms13081763 - 29 Jul 2025
Viewed by 438
Abstract
Global antibiotic use saturates ecosystems with selective pressure, driving mobile genetic element (MGE)-mediated antibiotic resistance gene (ARG) dissemination that destabilizes ecological integrity and breaches public health defenses. This review synthesizes the sources, environmental distribution, and ecological risks of antibiotics and ARGs, emphasizing the [...] Read more.
Global antibiotic use saturates ecosystems with selective pressure, driving mobile genetic element (MGE)-mediated antibiotic resistance gene (ARG) dissemination that destabilizes ecological integrity and breaches public health defenses. This review synthesizes the sources, environmental distribution, and ecological risks of antibiotics and ARGs, emphasizing the mechanisms of horizontal gene transfer (HGT) driven by MGEs such as plasmids, transposons, and integrons. We further conduct a comparative critical analysis of the effectiveness and limitations of antibiotics and ARGs remediation strategies for adsorption (biochar, activated carbon, carbon nanotubes), chemical degradation (advanced oxidation processes, Fenton-based systems), and biological treatment (microbial degradation, constructed wetlands). To effectively curb the spread of antimicrobial resistance and safeguard the sustainability of ecosystems, we propose an integrated “One Health” framework encompassing enhanced global surveillance (antibiotic residues and ARGs dissemination) as well as public education. Full article
(This article belongs to the Special Issue Antibiotic and Resistance Gene Pollution in the Environment)
Show Figures

Graphical abstract

23 pages, 6061 KiB  
Article
Genomic Insights into Emerging Multidrug-Resistant Chryseobacterium indologenes Strains: First Report from Thailand
by Orathai Yinsai, Sastra Yuantrakul, Punnaporn Srisithan, Wenting Zhou, Sorawit Chittaprapan, Natthawat Intajak, Thanakorn Kruayoo, Phadungkiat Khamnoi, Siripong Tongjai and Kwanjit Daungsonk
Antibiotics 2025, 14(8), 746; https://doi.org/10.3390/antibiotics14080746 - 24 Jul 2025
Viewed by 400
Abstract
Background: Chryseobacterium indologenes, an environmental bacterium, is increasingly recognized as an emerging nosocomial pathogen, particularly in Asia, and is often characterized by multidrug resistance. Objectives: This study aimed to investigate the genomic features of clinical C. indologenes isolates from Maharaj [...] Read more.
Background: Chryseobacterium indologenes, an environmental bacterium, is increasingly recognized as an emerging nosocomial pathogen, particularly in Asia, and is often characterized by multidrug resistance. Objectives: This study aimed to investigate the genomic features of clinical C. indologenes isolates from Maharaj Nakorn Chiang Mai Hospital, Thailand, to understand their mechanisms of multidrug resistance, virulence factors, and mobile genetic elements (MGEs). Methods: Twelve C. indologenes isolates were identified, and their antibiotic susceptibility profiles were determined. Whole genome sequencing (WGS) was performed using a hybrid approach combining Illumina short-reads and Oxford Nanopore long-reads to generate complete bacterial genomes. The hybrid assembled genomes were subsequently analyzed to detect antimicrobial resistance (AMR) genes, virulence factors, and MGEs. Results: C. indologenes isolates were primarily recovered from urine samples of hospitalized elderly male patients with underlying conditions. These isolates generally exhibited extensive drug resistance, which was subsequently explored and correlated with genomic determinants. With one exception, CMCI13 showed a lower resistance profile (Multidrug resistance, MDR). Genomic analysis revealed isolates with genome sizes of 4.83–5.00 Mb and GC content of 37.15–37.35%. Genomic characterization identified conserved resistance genes (blaIND-2, blaCIA-4, adeF, vanT, and qacG) and various virulence factors. Phylogenetic and pangenome analysis showed 11 isolates clustering closely with Chinese strain 3125, while one isolate (CMCI13) formed a distinct branch. Importantly, each isolate, except CMCI13, harbored a large genomic island (approximately 94–100 kb) carrying significant resistance genes (blaOXA-347, tetX, aadS, and ermF). The absence of this genomic island in CMCI13 correlated with its less resistant phenotype. No plasmids, integrons, or CRISPR-Cas systems were detected in any isolate. Conclusions: This study highlights the alarming emergence of multidrug-resistant C. indologenes in a hospital setting in Thailand. The genomic insights into specific resistance mechanisms, virulence factors, and potential horizontal gene transfer (HGT) events, particularly the association of a large genomic island with the XDR phenotype, underscore the critical need for continuous genomic surveillance to monitor transmission patterns and develop effective treatment strategies for this emerging pathogen. Full article
Show Figures

Figure 1

18 pages, 4199 KiB  
Article
Effects of Antibiotic Residues on Fecal Microbiota Composition and Antimicrobial Resistance Gene Profiles in Cattle from Northwestern China
by Wei He, Xiaoming Wang, Yuying Cao, Cong Liu, Zihui Qin, Yang Zuo, Yiming Li, Fang Tang, Jianjun Dai, Shaolin Wang and Feng Xue
Microorganisms 2025, 13(7), 1658; https://doi.org/10.3390/microorganisms13071658 - 14 Jul 2025
Viewed by 343
Abstract
Grazing is a free-range farming model commonly practiced in low-external-input agricultural systems. The widespread use of veterinary antibiotics in livestock farming has led to significant environmental accumulation of antibiotic residues and antibiotic resistance genes (ARGs), posing global health risks. This study investigated the [...] Read more.
Grazing is a free-range farming model commonly practiced in low-external-input agricultural systems. The widespread use of veterinary antibiotics in livestock farming has led to significant environmental accumulation of antibiotic residues and antibiotic resistance genes (ARGs), posing global health risks. This study investigated the antibiotic residues, bacterial community, ARG profiles, and mobile genetic elements (MGEs) in cattle feces from three provinces in western China (Ningxia, Xinjiang, and Inner Mongolia) under grazing modes. The HPLC-MS detection showed that the concentration of tetracycline antibiotics was the highest in all three provinces. Correlation analysis revealed a significant negative correlation between antibiotic residues and the diversity and population abundance of intestinal microbiota. However, the abundance of ARGs was directly proportional to antibiotic residues. Then, the Sankey analysis revealed that the ARGs in the cattle fecal samples were concentrated in 15 human pathogenic bacteria (HPB) species, with 9 of these species harboring multiple drug resistance genes. Metagenomic sequencing revealed that carbapenemase-resistant genes (blaKPC and blaVIM) were also present in considerable abundance, accounting for about 10% of the total ARGs detected in three provinces. Notably, Klebsiella pneumoniae strains carrying blaCTX-M-55 were detected, which had a possibility of IncFII plasmids harboring transposons and IS19, indicating the risk of horizontal transfer of ARGs. This study significantly advances the understanding of the impact of antibiotic residues on the fecal microbiota composition and ARG profiles in grazing cattle from northwestern China. Furthermore, it provides critical insights for the development of rational antibiotic usage strategies and comprehensive public health risk assessments. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

21 pages, 3463 KiB  
Article
Hybrid Genome and Clinical Impact of Emerging Extensively Drug-Resistant Priority Bacterial Pathogen Acinetobacter baumannii in Saudi Arabia
by J. Francis Borgio
Life 2025, 15(7), 1094; https://doi.org/10.3390/life15071094 - 12 Jul 2025
Viewed by 427
Abstract
Acinetobacter baumannii is listed by the World Health Organization as an emerging bacterial priority pathogen, the prevalence and multidrug resistance of which have been increasing. This functional genomics study aimed to understand the drug-resistance mechanisms of an extensively drug-resistant (XDR) A. baumannii strain [...] Read more.
Acinetobacter baumannii is listed by the World Health Organization as an emerging bacterial priority pathogen, the prevalence and multidrug resistance of which have been increasing. This functional genomics study aimed to understand the drug-resistance mechanisms of an extensively drug-resistant (XDR) A. baumannii strain (IRMCBCU95U) isolated from a transtracheal aspirate sample from a female patient with end-stage renal disease in Saudi Arabia. The whole genome of IRMCBCU95U (4.3 Mbp) was sequenced using Oxford Nanopore long-read sequencing to identify and compare the antibiotic-resistance profile and genomic features of A. baumannii IRMCBCU95U. The antibiogram of A. baumannii IRMCBCU95U revealed resistance to multiple antibiotics, including cefepime, ceftazidime, ciprofloxacin, imipenem, meropenem and piperacillin/tazobactam. A comparative genomic analysis between IRMCBCU95U and A. baumannii K09-14 and ATCC 19606 identified significant genetic heterogeneity and mosaicism among the strains. This analysis also demonstrated the hybrid nature of the genome of IRMCBCU95U and indicates that horizontal gene transfer may have occurred between these strains. The IRMCBCU95U genome has a diverse range of genes associated with antimicrobial resistance and mobile genetic elements (ISAba1 and IS26) associated with the spread of multidrug resistance. The presence of virulence-associated genes that are linked to iron acquisition, motility and transcriptional regulation confirmed that IRMCBCU95U is a priority human pathogen. The plasmid fragment IncFIB(pNDM-Mar) observed in the strain is homologous to the plasmid in Klebsiella pneumoniae (439 bp; similarity: 99.09%), which supports its antimicrobial resistance. From these observations, it can be concluded that the clinical A. baumannii IRMCBCU95U isolate is an emerging extensively drug-resistant human pathogen with a novel combination of resistance genes and a plasmid fragment. The complex resistome of IRMCBCU95U highlights the urgent need for genomic surveillance in hospital settings in Saudi Arabia to fight against the spread of extensively drug-resistant A. baumannii. Full article
Show Figures

Figure 1

26 pages, 888 KiB  
Review
Current Trends in Approaches to Prevent and Control Antimicrobial Resistance in Aquatic Veterinary Medicine
by Dongqing Zhao, Konrad Wojnarowski, Paulina Cholewińska and Dušan Palić
Pathogens 2025, 14(7), 681; https://doi.org/10.3390/pathogens14070681 - 10 Jul 2025
Viewed by 511
Abstract
The growth of aquaculture production in recent years has revealed multiple challenges, including the rise of antimicrobial resistance (AMR) in aquatic animal production, which is currently attracting significant attention from multiple one-health stakeholders. While antibiotics have played a major role in the treatment [...] Read more.
The growth of aquaculture production in recent years has revealed multiple challenges, including the rise of antimicrobial resistance (AMR) in aquatic animal production, which is currently attracting significant attention from multiple one-health stakeholders. While antibiotics have played a major role in the treatment of bacterial infections for almost a century, a major consequence of their use is the increase in AMR, including the emergence of AMR in aquaculture. The AMR phenomenon creates a situation where antibiotic use in one system (e.g., aquaculture) may impact another system (e.g., terrestrial–human). Non-prudent use of antibiotics in aquaculture and animal farming increases the risk of AMR emergence, since bacteria harboring antibiotic resistance genes can cross between compartments such as wastewater or other effluents to aquatic environments, including intensive aquaculture. Transferable antimicrobial resistance gene (AMG) elements (plasmids, transposons, integrons, etc.) have already been detected in varying degrees from pathogenic bacteria that are often causing infections in farmed fish (Aeromonas, Vibrio, Streptococcus, Pseudomonas, Edwardsiella, etc.). This review of current veterinary approaches for the prevention and control of AMR emergence in aquaculture focuses on the feasibility of alternatives to antimicrobials and supplemental treatment applications during on-farm bacterial disease control and prevention. The use of vaccines, bacteriophages, biosurfactants, probiotics, bacteriocins, and antimicrobial peptides is discussed. Full article
Show Figures

Figure 1

18 pages, 3219 KiB  
Article
Mobilome of Environmental Isolates of Clostridioides difficile
by Khald Blau and Claudia Gallert
Antibiotics 2025, 14(7), 678; https://doi.org/10.3390/antibiotics14070678 - 4 Jul 2025
Viewed by 439
Abstract
Background/Objectives: Clostridioides difficile is a “One Health” pathogen and a cause of antibiotics-associated diarrhea and pseudomembranous colitis. Mobile genetic elements (MGEs) have been documented in the genomes of clinical C. difficile strains; however, the presence of MGEs in environmental strains remains poorly characterized. [...] Read more.
Background/Objectives: Clostridioides difficile is a “One Health” pathogen and a cause of antibiotics-associated diarrhea and pseudomembranous colitis. Mobile genetic elements (MGEs) have been documented in the genomes of clinical C. difficile strains; however, the presence of MGEs in environmental strains remains poorly characterized. Thus, the present study was conducted with the objective of identifying the prevalence of MGEs, including mobilizable transposons (MTns), conjugative transposons (CTns), plasmids, and insertion sequences, in whole genome sequences (WGSs) of environmental C. difficile isolates. Methods: The analysis of MGEs was conducted using 166 WGSs obtained from C. difficile strains isolated from various environmental sources contaminated with feces. The MGEs were identified using bioinformatic tools. Results: A total of 48.2% (80/166) of the studied genomes were identified to harbor nine transposons, including Tn916, Tn6194-like, Tn5397, Tn6215, Tn4001, Tn6073, Tn6110, Tn6107, or Tn5801-like. The majority of MTns and CTns could be found within C. difficile sequence types ST11, ST3, and ST35. The results demonstrated close genetic relatedness among the studied genomes, the array of antimicrobial resistance (AMR) genes, such as tetM, ermB, and aac(6′)-aph(2″), and the presence of CTns. Furthermore, the analysis revealed that 24.7% (41/166) of the genome sequences of isolates were associated with various predominant plasmid groups, including pCD6, pCD-ECE4-6, pCD-WTSI1-4, pCDBI1, and pCd1_3, which belonged to 16 different sequence types. Furthermore, several plasmids were identified as harboring the prophage phiCDHM19. Conclusions: The results of the current study suggest that the identified plasmids are abundant and may encode functions that are relevant to C. difficile physiology. The genomes of C. difficile strains examined contain closely related CTns, suggesting that horizontal transfer of AMR is important in this species or other bacterial species. Further research is required to ascertain the effect of these genetic elements and their transferability on the biology of C. difficile. Full article
Show Figures

Figure 1

16 pages, 1933 KiB  
Article
Mapping Integron-Associated AMR Genes in Whole Genome Sequences of Salmonella Typhimurium from Dairy Cattle
by Sami Ullah Khan Bahadur, Nora Jean Nealon, Joshua B. Daniels, Muhammad Usman Zaheer, Mo Salman and Sangeeta Rao
Antibiotics 2025, 14(7), 633; https://doi.org/10.3390/antibiotics14070633 - 21 Jun 2025
Viewed by 618
Abstract
Background: Antimicrobial resistance (AMR) is a critical global health threat, with AMR Salmonella enterica serovar Typhimurium strains being a major foodborne pathogen. Integrons, a type of mobile genetic element, capture and transfer resistance genes, thereby playing a role in the spread of AMR. Objectives: [...] Read more.
Background: Antimicrobial resistance (AMR) is a critical global health threat, with AMR Salmonella enterica serovar Typhimurium strains being a major foodborne pathogen. Integrons, a type of mobile genetic element, capture and transfer resistance genes, thereby playing a role in the spread of AMR. Objectives: This study aimed to characterize the locations of integrons carrying AMR genes within the whole genomes of 32 Salmonella Typhimurium isolates collected from dairy cattle by two U.S. Veterinary Diagnostic Laboratories between 2009 and 2012. Methods: Class I integrons were sequenced from PCR-amplified products. DNA was extracted, quantified, barcoded, and sequenced on the Illumina MiSeq platform. Whole genome sequences were trimmed and assembled using the SPAdes assembler in Geneious Prime®, and plasmids were identified with the PlasmidFinder pipeline in Linux. Integron locations were determined by aligning their sequences with whole genome contigs and plasmids, while AMR genes were identified through BLAST with the MEGARes 3.0 database and confirmed by alignment with isolate, plasmid, and integron sequences. Statistical analysis was applied to compare the proportions of isolates harboring integrons on their chromosome versus plasmids and also to examine the associations between integron presence and AMR gene presence. Results: Seven plasmid types were identified from all isolates: IncFII(S) (n = 14), IncFIB(S) (n = 13), IncC (n = 7), Inc1-I(Alpha) (n = 3), and ColpVC, Col(pAHAD28), and Col8282 (1 isolate each). Of the 32 isolates, 16 (50%) carried at least one size of integron. Twelve of them carried both 1000 and 1200 bp; 3 carried only 1000 bp and 1 carried 1800 bp integrons. Of the 15 isolates that carried 1000 bp integron, 12 harbored it on IncFIB(S) plasmids, 2 on IncC plasmids, and 1 on the chromosome. The 1200 bp integrons from all 12 isolates were located on chromosomes. There were significant positive associations between the presence of integrons and the presence of several AMR genes including sul1, aadA2, blaCARB-2, qacEdelta1, tet(G), and floR (p < 0.05). AMR genes were located as follows: aadA2 on IncFIB(S) and IncC plasmids; blaCMY-2 on IncC plasmid; qacEdelta1 on IncFIB(S), IncC, and chromosome; blaCARB-2, floR, tet(A) and tet(G) on the chromosome. Conclusions: The findings highlight the genomic and plasmid complexity of Salmonella Typhimurium which is impacted by the presence and location of integrons, and this study provides genomic insights that can inform efforts to enhance food safety and protect both animal and public health. Full article
Show Figures

Figure 1

17 pages, 2444 KiB  
Article
Characterization of the Diversity in Host Range of an Extensively Drug-Resistant (XDR) Type IV Secretion System-Encoding Plasmid in Acinetobacter
by Kailey Martz, Dalya Alomar, Marisha Karim, Sara Knezevic and Vanessa M. D’Costa
Pathogens 2025, 14(6), 606; https://doi.org/10.3390/pathogens14060606 - 19 Jun 2025
Viewed by 498
Abstract
The World Health Organization (WHO) cites antimicrobial resistance as among the greatest threats to human health. The multidrug-resistant pathogen Acinetobacter baumannii, recognized as a priority pathogen for healthcare and research, is responsible for a diverse array of infections including respiratory tract, soft [...] Read more.
The World Health Organization (WHO) cites antimicrobial resistance as among the greatest threats to human health. The multidrug-resistant pathogen Acinetobacter baumannii, recognized as a priority pathogen for healthcare and research, is responsible for a diverse array of infections including respiratory tract, soft tissue and wound, and bloodstream infections. Despite this importance, the mechanisms of its pathogenesis remain poorly understood. Conjugation represents a central mechanism for bacterial adaptation and evolution and is responsible for the spread of genes that promote pathogen survival, antibiotic resistance, virulence, and biofilm formation. Our laboratory recently characterized a large group of almost 120 Type IV Secretion System (T4SS)-encoding plasmids in Acinetobacter, distributed globally across 20 countries spanning four continents, and demonstrated that an XDR A. baumannii plasmid from this family was transmissible to another A. baumannii strain. This research investigated the potential diversity of host strains for this representative member plasmid. Using the GC1 lineage strain A. baumannii AB5075-UW harbouring the XDR plasmid p1AB5075 and a series of previously characterized clinical and environmental Acinetobacter strains, conjugative analyses demonstrated transfer of the XDR plasmid to both A. baumannii strains of more genetically divergent sequence types and to non-baumannii Acinetobacter species both inside and outside the Acinetobacter calcoaceticus–baumannii (ACB) complex. Successful recipients included diverse strains of both clinical and environmental origin within the Acinetobacter genus. Collectively, this research could provide insights into an important genetic element for future surveillance. Full article
Show Figures

Figure 1

16 pages, 1870 KiB  
Article
Companion Animals as Reservoirs of Multidrug Resistance—A Rare Case of an XDR, NDM-1-Producing Pseudomonas aeruginosa Strain of Feline Origin in Greece
by Marios Lysitsas, Eleftherios Triantafillou, Irene Chatzipanagiotidou, Anastasios Triantafillou, Georgia Agorou, Maria Eleni Filippitzi, Antonis Giakountis and George Valiakos
Vet. Sci. 2025, 12(6), 576; https://doi.org/10.3390/vetsci12060576 - 12 Jun 2025
Viewed by 1517
Abstract
A backyard cat with symptoms of otitis was transferred to a veterinary clinic in Central Greece. A sample was obtained and P. aeruginosa was isolated. The strain exhibited an extensively drug-resistant (XDR) profile, as it was non-susceptible to all tested agents except colistin. [...] Read more.
A backyard cat with symptoms of otitis was transferred to a veterinary clinic in Central Greece. A sample was obtained and P. aeruginosa was isolated. The strain exhibited an extensively drug-resistant (XDR) profile, as it was non-susceptible to all tested agents except colistin. DNA extraction and whole-genome sequencing (WGS) were performed using a robotic extractor and Ion Torrent technology, respectively. The genome was assembled and screened for resistance and virulence determinants. The isolate belonged to the high-risk clone ST308 with a total of 67 antibiotic resistance genes (ARGs) and 221 virulence factor-related genes being identified. No plasmids were detected. The metallo-beta-lactamase (MBL) blaNDM-1 gene and 46 efflux pumps were included in the strain’s resistome. Both ARGs conferring tolerance to disinfecting agents and biofilm-related genes were identified, associated with the ability of this clone to adapt and persist in healthcare facilities. This case highlights the risk of relevant bacterial clones spreading in the community and even being transmitted to companion animals, causing challenging opportunistic infections to susceptible individuals, while others may become carriers, further spreading the clones to their owners, other animals and the environment. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

21 pages, 2707 KiB  
Article
Distribution of Genetic Determinants Associated with CRISPR-Cas Systems and Resistance to Antibiotics in the Genomes of Archaea and Bacteria
by Laura Antequera-Zambrano, Ángel Parra-Sánchez, Lenin González-Paz, Eduardo Fernandez and Gema Martinez-Navarrete
Microorganisms 2025, 13(6), 1321; https://doi.org/10.3390/microorganisms13061321 - 6 Jun 2025
Viewed by 1419
Abstract
The CRISPR-Cas system represents an adaptive immune mechanism found across diverse Archaea and Bacteria, allowing them to defend against invading genetic elements such as viruses and plasmids. Despite its broad distribution, the prevalence and complexity of CRISPR-Cas systems differ significantly between these domains. [...] Read more.
The CRISPR-Cas system represents an adaptive immune mechanism found across diverse Archaea and Bacteria, allowing them to defend against invading genetic elements such as viruses and plasmids. Despite its broad distribution, the prevalence and complexity of CRISPR-Cas systems differ significantly between these domains. This study aimed to characterize and compare the genomic distribution, structural features, and functional implications of CRISPR-Cas systems and associated antibiotic resistance genes in 30 archaeal and 30 bacterial genomes. Through bioinformatic analyses of CRISPR arrays, cas gene architectures, direct repeats (DRs), and thermodynamic properties, we observed that Archaea exhibit a higher number and greater complexity of CRISPR loci, with more diverse cas gene subtypes exclusively of Class 1. Bacteria, in contrast, showed fewer CRISPR loci, comprising a mix of Class 1 and Class 2 systems, with Class 1 representing the majority (~75%) of the detected systems. Notably, Bacteria lacking CRISPR-Cas systems displayed a higher prevalence of antibiotic resistance genes, suggesting a possible inverse correlation between the presence of these immune systems and the acquisition of such genes. Phylogenetic and thermodynamic analyses further highlighted domain-specific adaptations and conservation patterns. These findings support the hypothesis that CRISPR-Cas systems play a dual role: first, as a defense mechanism preventing the integration of foreign genetic material—reflected in the higher complexity and diversity of CRISPR loci in Archaea—and second, as a regulator of horizontal gene transfer, evidenced by the lower frequency of antibiotic resistance genes in organisms with active CRISPR-Cas systems. Together, these results underscore the evolutionary and functional diversification of CRISPR-Cas systems in response to environmental and selective pressures. Full article
(This article belongs to the Special Issue Microbial Evolutionary Genomics and Bioinformatics)
Show Figures

Graphical abstract

11 pages, 1458 KiB  
Article
Molecular Epidemiology and Genetic Context of optrA-Carrying Linezolid-Resistant Enterococci from Humans and Animals in South Korea
by Younggwon On, Sung Young Lee, Jung Sik Yoo and Jung Wook Kim
Antibiotics 2025, 14(6), 571; https://doi.org/10.3390/antibiotics14060571 - 3 Jun 2025
Viewed by 595
Abstract
Objectives: Linezolid resistance among Enterococcus species poses a growing clinical and public health concern, especially due to the dissemination of transferable resistance genes, such as optrA. This study aimed to evaluate the prevalence of linezolid resistance and to characterize the molecular epidemiology [...] Read more.
Objectives: Linezolid resistance among Enterococcus species poses a growing clinical and public health concern, especially due to the dissemination of transferable resistance genes, such as optrA. This study aimed to evaluate the prevalence of linezolid resistance and to characterize the molecular epidemiology and genetic contexts of optrA-positive linezolid-resistant Enterococcus (LRE) isolates from clinical and animal sources in South Korea. Methods: A total of 2156 Enterococcus isolates, collected through nationwide surveillance from hospitalized patients and healthy livestock (pigs, cattle, and chickens) between 2017 and 2019, were retrospectively analyzed. Phenotypic susceptibility testing, optrA gene screening, and whole-genome sequencing were performed to investigate genetic environments and phylogenetic relationships. Results: The prevalence of linezolid resistance was 0.2% in clinical isolates, 3.3% in pigs, 4.3% in cattle, and 1.4% in chickens. optrA-positive linezolid-resistant isolates were less frequent, with rates of 0.1%, 1.4%, 0.9%, and 1.0%, respectively. Multilocus sequence typing identified sequence types (STs) 330 and ST476 in E. faecalis from humans, with no shared STs between human and livestock isolates. The optrA gene was located either chromosomally, frequently associated with transposon Tn6674, or on multidrug resistance plasmids. Notably, optrA variants exhibited host-specific distribution patterns. Phylogenetic analysis demonstrated considerable genomic diversity, and Korean ST476 isolates were genetically related to international strains reported from livestock, poultry products, and wild birds, suggesting potential global dissemination. Conclusions: This study provides a comprehensive, nationally representative assessment of linezolid resistance in South Korea. The findings highlight the zoonotic potential and possible international dissemination of optrA-carrying ST476 lineages, underscoring the need for integrated One Health surveillance to monitor and control the spread of transferable resistance genes. Full article
Show Figures

Figure 1

16 pages, 803 KiB  
Article
Virulence and Antibiotic Resistance of aEPEC/STEC Escherichia coli Pathotypes with Serotype Links to Shigella boydii 16 Isolated from Irrigation Water
by Yessica Enciso-Martínez, Edwin Barrios-Villa, Manuel G. Ballesteros-Monrreal, Armando Navarro-Ocaña, Dora Valencia, Gustavo A. González-Aguilar, Miguel A. Martínez-Téllez, Julián Javier Palomares-Navarro and Fernando Ayala-Zavala
Pathogens 2025, 14(6), 549; https://doi.org/10.3390/pathogens14060549 - 1 Jun 2025
Viewed by 844
Abstract
Irrigation water can serve as a reservoir and transmission route for pathogenic Escherichia coli, posing a threat to food safety and public health. This study builds upon a previous survey conducted in Hermosillo, Sonora (Mexico), where 445 samples were collected from a [...] Read more.
Irrigation water can serve as a reservoir and transmission route for pathogenic Escherichia coli, posing a threat to food safety and public health. This study builds upon a previous survey conducted in Hermosillo, Sonora (Mexico), where 445 samples were collected from a local Honeydew melon farm and associated packing facilities. Among the 32 E. coli strains recovered, two strains, A34 and A51, were isolated from irrigation water and selected for further molecular characterization by PCR, due to their high pathogenic potential. Both strains were identified as hybrid aEPEC/STEC pathotypes carrying bfpA and stx1 virulence genes. Adhesion assays in HeLa cells revealed aggregative and diffuse patterns, suggesting enhanced colonization capacity. Phylogenetic analysis classified A34 within group B2 as associated with extraintestinal pathogenicity and antimicrobial resistance, while A51 was unassigned to any known phylogroup. Serotyping revealed somatic antigens shared with Shigella boydii 16, suggesting possible horizontal gene transfer or antigenic convergence. Antibiotic susceptibility testing showed resistance to multiple β-lactam antibiotics, including cephalosporins, linked to the presence of blaCTX-M-151 and blaCTX-M-9. Although no plasmid-mediated quinolone resistance genes were detected, resistance may involve efflux pumps or mutations in gyrA and parC. These findings are consistent with previous reports of E. coli adaptability in agricultural environments, suggesting potential genetic adaptability. While our data support the presence of virulence and resistance markers, further studies would be required to demonstrate mechanisms such as horizontal gene transfer or adaptive evolution. Full article
Show Figures

Graphical abstract

Back to TopTop