Distribution of Genetic Determinants Associated with CRISPR-Cas Systems and Resistance to Antibiotics in the Genomes of Archaea and Bacteria
Abstract
1. Introduction
2. Materials and Methods
2.1. Obtaining Genomic Sequences from the Representative Genera of Archaea and Bacteria
2.2. Identification of CRISPR Structures
2.3. Identification and Comparison of the Genes Associated with CRISPR and CAS Proteins
2.4. Determination of Conservation of Direct Repeats (DRs)
2.5. Identification of Mutant Variables and Thermodynamics of Direct Repeats (DRs)
2.6. Identification of Antibiotic Resistance Genes in Bacteria and Archaea
2.7. Statistical Analysis
3. Results
3.1. CRISPR Structures Identification
3.2. Genes Associated with CRISPR and CAS Proteins
3.3. Determination of the Conservation of Direct Repeats (DRs)
3.4. Identification of the Mutant Variables and Thermodynamics of Direct Repeats (DRs)
3.5. Antibiotic Resistance Genes in Bacteria and Archaea
4. Discussion
4.1. Structural and Functional Differences Between Archaea and Bacteria
4.2. Subtype Distribution and Evolutionary Implications
4.3. Genetic Architecture of Cas Genes
4.4. Role in Horizontal Gene Transfer and Antibiotic Resistance
4.5. Thermodynamic Stability of Direct Repeats
4.6. Environmental Influence and Species-Specific Factors
4.7. Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elkins, J.; Podar, M.; Graham, D. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc. Natl. Acad. Sci. USA 2008, 105, 8102–8107. [Google Scholar] [CrossRef] [PubMed]
- Albers, S.; Van de Vossenberg, J.; Driessen, A.; Konings, W. Adaptations of the archaeal cell membrane to heat stress. Front. Biosci. 2000, 5, 813–820. [Google Scholar] [CrossRef]
- Barer, M.; Harwood, C. Bacterial Viability and Culturability. Adv. Microb. Physiol. 1999, 41, 93–137. [Google Scholar]
- Zaremba, K.; Caceres, E.; Saw, J.; Bäckström, D.; Juzokaite, L.; Vancaester, E.; Seitz, K.W.; Anantharaman, K.; Starnawski, P.; Kjeldsen, K.U.; et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 2017, 541, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Wang, Y.; Huang, D.; Hou, J.; Li, L.; Hu, H.; Zhao, X.; Wang, F. Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. Sci. China Life Sci. 2022, 65, 818–829. [Google Scholar] [CrossRef]
- Eirini, C.; Markella, M.; Andreas, T. Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. J. Mol. Evol. 2020, 88, 26–40. [Google Scholar]
- He, Y.; Piet, L.; Veiga, M.; Kennes, C. Enhanced Ethanol Production from Carbon Monoxide by Enriched Clostridium Bacteria. Front. Microbiol. 2021, 12, 754713. [Google Scholar] [CrossRef]
- Westhoff, S.; Kloosterman, A.; Van Hoesel, S.; Van Wezel, G.; Rozen, D. Competition Sensing Changes Antibiotic Production in Streptomyces. mBio 2021, 12, e02729-20. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ma, G.; Liu, C.; Qiu, X.; Min, L.; Kuang, J.; Zhu, L. Biosynthesis of pinene in purple non-sulfur photosynthetic bacteria. Microb. Cell Factories 2021, 20, 101. [Google Scholar] [CrossRef]
- Castellone, V.; Bancalari, E.; Rubert, J.; Gatti, M.; Neviani, E.; Bottari, B. Eating Fermented: Health Benefits of LAB-Fermented Foods. Foods 2021, 10, 2639. [Google Scholar] [CrossRef]
- Alós, J. Resistencia bacteriana a los antibióticos: Una crisis global. Enfermedades Infecc. Microbiol. Clin. 2015, 33, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Fatahi-Bafghi, M.; Naseri, S.; Alizehi, A. Genome analysis of probiotic bacteria for antibiotic resistance genes. Antonie Leeuwenhoek 2022, 115, 375–389. [Google Scholar] [CrossRef] [PubMed]
- Oromi, J. Resistencia bacteriana a los antibióticos. Medicina. Integral. 2018, 36, 367–370. [Google Scholar]
- Sands, K.; Carvalho, M.J.; Portal, E.; Thomson, K.; Dyer, C.; Akpulu, C.; Andrews, R.; Ferreira, A.; Gillespie, D.; Hender, T.; et al. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. Nat. Microbiol. 2021, 6, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Huemer, M.; Shambat, S.M.; Brugger, S.D.; Zinkernagel, A.S. Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep. 2020, 21, e51034. [Google Scholar] [CrossRef]
- Horvath, P.; Barrangou, R. CRISPR/CAS, the Immune System of Bacteria and Archaea. Science 2010, 327, 167–170. [Google Scholar] [CrossRef]
- Bhaya, D.; Davison, M.; Barrangou, R. CRISPR-Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet. 2011, 45, 273–297. [Google Scholar] [CrossRef]
- Ran, F.; Hsu, P.; Wright, J.; Agarwala, V.; Scott, D.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef]
- Doudna, J.; Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef]
- Koonin, E. Open questions: CRISPR biology. BMC Biol. 2018, 16, 95. [Google Scholar] [CrossRef]
- McKenzie, R.E.; Keizer, E.M.; Vink, J.N.A.; van Lopik, J.; Büke, F.; Kalkman, V.; Fleck, C.; Tans, S.J.; Brouns, S.J.J. Single cell variability of CRISPR-Cas interference and adaptation. Mol. Syst. Biol. 2022, 18, e10680. [Google Scholar] [CrossRef] [PubMed]
- Mojica, F.J.; Díez-Villaseñor, C.; Soria, E.; Juez, G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol. 2000, 36, 244–246. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Y.; Tang, S.; Liu, Y.; Wei, Y.; Wan, X.; Liu, Y.; Zhang, Z.; Sunkang, Y. Comparison of Structural Features of CRISPR-Cas Systems in Thermophilic Bacteria. Microorganisms 2023, 11, 2275. [Google Scholar] [CrossRef]
- Karimi-Fard, A.; Saidi, A.; Tohidfar, M.; Emami, S.N. CRISPR-Cas-mediated adaptation of Thermus thermophilus HB8 to environmental stress conditions. Arch. Microbiol. 2025, 207, 41. [Google Scholar] [CrossRef]
- Rueter, C.; Bielaszewska, M. Secretion and Delivery of Intestinal Pathogenic Escherichia coli Virulence Factors via Outer Membrane Vesicles. Front. Cell Infect. Microbiol. 2020, 10, 91. [Google Scholar] [CrossRef]
- Chavez, A.; Benjamin, W.; Pruitt, M.; Rebecca, S.; Shapiro, R.; Cecchi, J.; Winston, B.; Turczyk, M.; Collins, J.; Church, G. Precise Cas9 targeting enables genomic mutation prevention. Proc. Natl. Acad. Sci. USA 2018, 115, 3669–3673. [Google Scholar] [CrossRef] [PubMed]
- Makarova, K.S.; Wolf, Y.I.; Alkhnbashi, O.S.; Costa, F.; Shah, S.A.; Saunders, S.J.; Barrangou, R.; Brouns, S.J.J.; Charpentier, E.; Haft, D.H.; et al. An updated evolutionary classification of CRISPR-Cas systems: A guide to function and diversity for researchers and developers. Nat. Rev. Microbiol. 2015, 13, 722–736. [Google Scholar] [CrossRef] [PubMed]
- Marraffini, L.; Sontheimer, E. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008, 322, 1843–1845. [Google Scholar] [CrossRef]
- Li, W.; Zhang, G. Detection and various environmental factors of antibiotic resistance gene horizontal transfer. Environ. Res. 2022, 212, 113267. [Google Scholar] [CrossRef]
- McInnes, R.S.; McCallum, G.E.; Lamberte, L.E.; van Schaik, W. Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Curr. Opin. Microbiol. 2020, 53, 35–43. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, P.; Li, L.; Zhao, H.; Shi, L.; Tian, P. Engineering a CRISPR Interference System To Repress a Class 1 Integron in Escherichia coli. Antimicrob. Agent. Chemother. 2020, 64, e01789-19. [Google Scholar] [CrossRef] [PubMed]
- Gholizadeh, P.; Aghazadeh, M.; Ghotaslou, R.; Rezaee, M.A.; Pirzadeh, T.; Cui, L.; Watanabe, S.; Feizi, H.; Kadkhoda, H.; Kafil, H.S. Role of CRISPR-Cas system on antibiotic resistance patterns of Enterococcus faecalis. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 49. [Google Scholar] [CrossRef] [PubMed]
- Parra-Sánchez, Á.; Antequera-Zambrano, L.; Martínez-Navarrete, G.; Zorrilla-Muñoz, V.; Paz, J.L.; Alvarado, Y.J.; González-Paz, L.; Fernández, E. Comparative Analysis of CRISPR-Cas Systems in Pseudomonas Genomes. Genes. 2023, 14, 1337. [Google Scholar] [CrossRef]
- Chakraborty, S.; Snijders, A.; Chakravorty, R.; Ahmed, M.; Tarek, A.; Hossain, M. Comparative network clustering of direct repeats (DRs) and cas genes confirms the possibility of the horizontal transfer of CRISPR locus among bacteria. Mol. Phylogenet Evol. 2010, 5, 878–887. [Google Scholar] [CrossRef]
- Benson, D.; Karsch, I.; Lipman, D.; Ostell, J.; Wheeler, D. GenBank. Nucleic Acids Res. 2008, 36, 25–30. [Google Scholar] [CrossRef]
- Bernal, A.; Ear, U.; Kyrpides, N. Genomes OnLine Database (GOLD): A monitor of genome projects world-wide. Nucleic Acids Res. 2001, 29, 126–127. [Google Scholar] [CrossRef]
- Grissa, I.; Vergnaud, G.; Pourcel, C. The CRISPRdb database and tools todisplay CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinform. 2007, 23, 172. [Google Scholar]
- Kurtz, S.; Schleiermacher, C. REPuter: Fast computation of maximal repeats in complete genomes. Bioinformatics 1999, 15, 426–427. [Google Scholar] [CrossRef] [PubMed]
- Abouelhoda, M.; Kurtz, S.; Ohlebusch, E. Replacing suffix trees with enhanced suffix arrays. J. Discret. Algorithms 2004, 2, 53–86. [Google Scholar] [CrossRef]
- Hyatt, D.; Chen, G.; LoCascio, F.; Land, M.; Larimer, F.; Hauser, L. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef]
- Abby, S.; Néron, B.; Ménager, H.; Touchon, M.; Rocha, E. MacSyFinder: A program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PLoS ONE 2014, 9, e110726. [Google Scholar] [CrossRef] [PubMed]
- Horvath, P.; Coûté, A.; Romero, D.; Boyaval, P.; Fremaux, C.; Barrangou, R. Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int. J. Food Microbiol. 2009, 131, 62–70. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
- Larkin, M.; Blackshields, G.; Brown, N.; Chenna, R.; McGettigan, P.; McWilliam, H.; Valentin, F.; Wallace, I.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Lv, L.; Wang, X.; Xiu, Z.; Chen, G. Comparative analysis of CRISPR-Cas systems in Klebsiella genomes. J. Basic. Microbiol. 2017, 57, 325–336. [Google Scholar] [CrossRef]
- Crooks, G.; Hon, G.; Chandonia, J.; Brenner, S. WebLogo: Un generador de secuencia de logotipos. Investig. Genoma 2004, 14, 1188–1190. [Google Scholar]
- Schneider, T.; Stormo, G.; Haemer, J.; Gold, L. Un diseño para el almacenamiento, recuperación y manipulación de secuencias de ácido nucleico de computadora. Nucleic Acids Res. 1982, 10, 3013–3024. [Google Scholar] [CrossRef]
- Hofacker, I. Vienna RNA secondary structure server. Nucleic Acids Res. 2003, 31, 3429–3431. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Bian, X.; Evivie, S.; Huo, G. Comparative analysis of clustered regularly interspaced short palindromic repeats (CRISPR) of Streptococcus thermophilus St-I and its bacteriophage-insensitive mutants (BIM) derivatives. Curr. Microbiol. 2016, 73, 393–400. [Google Scholar] [CrossRef]
- Doudna, J.A. CRISPR in Nature. In CRISPRpedia; Hochstrasser, M.L., Murdock, A., Eds.; Innovative Genomics Institute, University of California: Berkeley, CA, USA, 2022; Available online: https://innovativegenomics.org/crisprpedia/crispr-in-nature/ (accessed on 12 September 2022).
- Ghaffarian, S.; Panahi, B. Occurrence and diversity pattern of CRISPR-Cas systems in Acetobacter genus provides insights on adaptive defense mechanisms against invasive DNAs. Front. Microbiol. 2024, 15, 1357156. [Google Scholar] [CrossRef]
- Li, J.; Wu, S.; Zhang, K.; Sun, X.; Lin, W.; Wang, C.; Lin, S. Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-Associated Protein and Its Utility All at Sea: Status, Challenges, and Prospects. Microorganisms 2024, 12, 118. [Google Scholar] [CrossRef] [PubMed]
- Burstein, D.; Sun, C.; Brown, C.; Sharon, I.; Anantharaman, K.; Probst, A.; Thomas, B.; Banfield, J. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems. Nat. Commun. 2016, 7, 10613. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.Y.; Doudna, J.A. Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation. J. Biol. Chem. 2020, 295, 14473–14487. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, R.M.; MacLean, R.C. CRISPR-Cas systems restrict horizontal gene transfer in Pseudomonas aeruginosa. ISME J. 2021, 15, 1420–1433. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, Y.; Liu, Z.; Dong, Z.; Xie, C.; Bravo, A.; Soberón, M.; Mahillon, J.; Sun, M.; Peng, D. The CRISPR-Cas systems were selectively inactivated during evolution of Bacillus cereus group for adaptation to diverse environments. ISME J. 2020, 14, 1479–1493. [Google Scholar] [CrossRef]
- Jiang, F.; Doudna, J.A. CRISPR–Cas9 Structures and Mechanisms. Annu. Rev. Biophys. 2017, 46, 505–529. [Google Scholar] [CrossRef]
- Sternberg, S.H.; Redding, S.; Jinek, M.; Greene, E.C.; Doudna, J.A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 2019, 507, 62–67. [Google Scholar] [CrossRef]
- Klein, M.; Eslami-Mossallam, B.; Arroyo, D.G.; Depken, M. Hybridization Kinetics Explains CRISPR-Cas Off-Targeting Rules. Cell Rep. 2018, 22, 1413–1423. [Google Scholar] [CrossRef] [PubMed]
- Farasat, I.; Salis, H.M. A Biophysical Model of CRISPR/Cas9 Activity for Rational Design of Genome Editing and Gene Regulation. PLoS Comput. Biol. 2016, 12, e1004724. [Google Scholar] [CrossRef]
- Bottery, M.J.; Pitchford, J.W.; Friman, V.P. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 2021, 15, 939–948. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef] [PubMed]
Subtype | Clase | Associated Genes | Number of Arrays | Strains |
---|---|---|---|---|
IA | I | cas1-7, csa5, csaX | 10 | Ferroglobus placidus DSM_10642, Aeropyrum pernix K1, Ignisphaera aggregans DSM17230, Pyrodictium delaneyi Su06, Saccharolobus solfataricus SULA, Archaeoglobus fulgidus DSM_4304 *, Ignicoccus hospitalis KIN4/I *, Hyperthermus butylicus DSM5456 *, Pyrolobus fumarii 1A *, Thermoproteus tenax Kra1 *, Sulfodiicoccus acidiphilus HS-1 *, Sulfolobus islandicus L.S.2.1.5 *, Vulcanisaeta moutnovskia 768-28 *, Methanotorris igneus Kol5 *, Methanocaldococcus fervens AG86 * |
IB | I | cas1-8 | 7 | Geoglobus acetivorans SBH6, Cuniculiplasma divulgatum PM4, Methanobrevibacter smithii ATCC35061, Halohasta litchfieldiae tADL, Nitrososphaera evergladensis SR1, Nitrosocaldus cavascurensis SCU2, Ferroplasma acidarmanus Fer1, Methanosphaera stadtmanae DSM_3091, Sulfodiicoccus acidiphilus HS-1 *, Methanosarcina acetivorans C2A *, Methanocaldococcus fervens AG86 * |
ID | I | cas1-4, cas6, cas10, csc1-2 | 3 | Methanosphaerula palustris E1-9c *, Pycrophilus torridus DSM9790 *, Methanospirillum hungatei JF-1 *, Sulfodiicoccus acidiphilus HS-1 *, Methanospirillum hungatei JF-1 * |
IE | I | cas1-3, cas5-7, cse1-2 | 3 | Methanocella arvoryzae MRE50, Methanosphaerula palustris E1-9c *, Methanospirillum hungatei JF-1 * |
IU | I | cas1, cas3, csb1-2, csx17 | 1 | Methanoculleus bourgensis MS2 |
IIIA | I | cas1-2, cas6, cas10, csm2-5 | 3 | Thermoplasma volcanium GSS1, Methanosarcina acetivorans C2A *, Pycrophilus torridus DSM9790 *, Vulcanisaeta moutnovskia 768-28 *, Methanotorris igneus Kol5 *, Methanocaldococcus fervens AG86 * |
IIIB | I | cas6, cas10, cmr1, cmr3-6, csm3 | 6 | Archaeoglobus fulgidus DSM_4304 *, Ignicoccus hospitalis KIN4/I *, Hyperthermus butylicus DSM5456 *, Pyrolobus fumarii 1A *, Sulfolobus islandicus L.S.2.1.5*, Vulcanisaeta moutnovskia 768-28 * |
IIIC | I | cas10, cmr1, cmr3-6 | 1 | Methanocaldococcus fervens AG86 * |
IIID | I | cas1-2, cas4, cas6, csm3-4 | 3 | Thermoproteus tenax Kra1 *, Methanospirillum hungatei JF-1 *, Sulfodiicoccus acidiphilus HS-1 *, Sulfolobus islandicus L.S.2.1.5 *, Methanotorris igneus Kol5 * |
Subtype | Clase | Associated Genes | Number of Arrays | Strains |
---|---|---|---|---|
IF | I | cas1, cas2-cas3, cas6, csy1-3 | 1 | Acinetobacter baumannii A388, Pseudomonas aeruginosa UCBPP-PA14, Serratia marcescens N4-5, Enterobacter cloacae CZ-1, Vibrio parahaemolyticus FORC_022, Vibrio cholerae FORC_076, Moraxella catarrhalis BBH18, Yersinia pestis FDAARGOS_602 |
IE | I | Variant 1: cas1-3, cas5-7, cse1-2; Variant 2: cas1-3, cas5-7, cse2 | 2 | Escherichia coli K-12, Proteus mirabilis FDAARGOS_67, Klebsiella pneumoniae AATZP, Salmonella enterica SA19980677, Shigella dys-enteriae CFSAN010956, Lactobacillus acidophilus YT1 |
IC | I | cas1-5, cas7-8 | 1 | Bacillus clausii KSM-K16, Acidaminococcus fermentans DSM20731, Bacillus coagulans HM-08, Streptococcus pyogenes MGAS23530 *, Neisseria animaloris NCTC12227 * |
IIA | II | cas1-2, cas9 | 1 | Enterococcus faecium SRCM103470, Enterococcus faecalis OG1RF, Listeria innocua Clip11262, Listeria monocytogenes Lm3163 *, Streptococcus pyogenes MGAS23530 * |
IIC | II | cas1-2, cas9; csn2 | 1 | Helicobacter mustelae NCTC12198, Campylobacter jejuni NS4-5-1, Neisseria meningitidis NCTC10025, Mycoplasma phocicerebrale 1049, Neisseria animaloris NCTC12227 * |
IIIA | I | cas1-2, cas6, cas10, csm2-4, csm6 | 1 | Staphylococcus epidermidis FDAARGOS_153, Haemophilus influenzae NCTC11873 |
IB | I | cas1-8 | 1 | Listeria monocytogenes Lm3163 * |
IIID | I | cas1-2, cas10, csm3 | 1 | Vibrio vulnificus YJ016 |
Ref. | ||
---|---|---|
Species | Origin of Strains | NCBI |
Acinetobacter baumannii 11510 | Bronchial clinical isolate, Italy | NZ_CP018861.2 |
Aerococcus urinae ACS-120-V-Col10a | Human microbiota, USA | NC_015278.1 |
Brevibacillus brevis DZQ7 | Tobacco rhizosphere soil, China | NZ_CP030117.1 |
Brucella abortus 21630 | Buffalo lymph nodes, Italy | NZ_CP023235.1 |
Chlamydia abortus 1H | Clinical isolate, UK | NZ_LN554883.1 |
Citrobacter freundii R17 | Wastewater treatment plant, China | NZ_CP035276.1 |
Clostridium botulinum Mfbjulcb6 | Fish market isolate, India | CP027778.1 |
Corynebacterium pseudotuberculosis Cap1R | Goat intestine, Brazil | NZ_CP036258.1 |
Edwardsiella ictaluri MS-17-156 | Catfish isolate, USA | NZ_CP028813.1 |
Escherichia coli PPECC42 | Pig lung, China | NZ_CM003707.1 |
Glutamicibacter nicotianae OTC-16 | Mud isolate, China | NZ_CP033081.1 |
Haemophilus influenzae 5P54H1 | Clinical isolate, USA | NZ_CP020009.1 |
Helicobacter pylori F209 | Human stomach, Japan | NZ_AP017332.1 |
Klebsiella pneumoniae 121 | Human blood, China | NZ_CP031849.1 |
Lactobacillus amylovorus GRL 1112 | Pig feces, Finland | NC_014724.1 |
Lactobacillus reuteri ATG-F4 | Human isolate, South Korea | NZ_CP035790.1 |
Listeria grayi NCTC 10812 | Corn leaves and stems, USA | NZ_LR134483.1 |
Micrococcus luteus SB1254 | Marine isolate, South Korea | NZ_CP026366.1 |
Mycobacterium abscessus FLAC013 | Human isolate, USA | NZ_CP014955.1 |
Mycobacterium leprae TN | Clinical isolate, USA | NC_002677.1 |
Pandoraea pnomenusa MCB032 | Bioreactor isolate, UK | NZ_CP015371.1 |
Propionibacterium acnes 6609 | Human isolate, Germany | NC_017535.1 |
Pseudomonas aeruginosa Y71 | Clinical isolate, South Korea | NZ_CP030911.1 |
Pseudomonas putida NX-1 | Soil isolate, China | NZ_CP030750.1 |
Rickettsia typhi str. TH1527 | Clinical isolate, USA | NC_017066.1 |
Salmonella enterica SA20100345 | Food isolate, Canada | NZ_CP022504.1 |
Staphylococcus haemolyticus SGAir0252 | Air isolate, Singapore | NZ_CP025031.1 |
Streptococcus pneumoniae NT_110_58 | Clinical isolate, Switzerland | NZ_CP007593.1 |
Streptococcus pyogenes D471 | Human isolate, USA | NZ_CP011415.1 |
Vibrio cholerae C5 | Clinical isolate, Indonesia | NZ_CP013301.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antequera-Zambrano, L.; Parra-Sánchez, Á.; González-Paz, L.; Fernandez, E.; Martinez-Navarrete, G. Distribution of Genetic Determinants Associated with CRISPR-Cas Systems and Resistance to Antibiotics in the Genomes of Archaea and Bacteria. Microorganisms 2025, 13, 1321. https://doi.org/10.3390/microorganisms13061321
Antequera-Zambrano L, Parra-Sánchez Á, González-Paz L, Fernandez E, Martinez-Navarrete G. Distribution of Genetic Determinants Associated with CRISPR-Cas Systems and Resistance to Antibiotics in the Genomes of Archaea and Bacteria. Microorganisms. 2025; 13(6):1321. https://doi.org/10.3390/microorganisms13061321
Chicago/Turabian StyleAntequera-Zambrano, Laura, Ángel Parra-Sánchez, Lenin González-Paz, Eduardo Fernandez, and Gema Martinez-Navarrete. 2025. "Distribution of Genetic Determinants Associated with CRISPR-Cas Systems and Resistance to Antibiotics in the Genomes of Archaea and Bacteria" Microorganisms 13, no. 6: 1321. https://doi.org/10.3390/microorganisms13061321
APA StyleAntequera-Zambrano, L., Parra-Sánchez, Á., González-Paz, L., Fernandez, E., & Martinez-Navarrete, G. (2025). Distribution of Genetic Determinants Associated with CRISPR-Cas Systems and Resistance to Antibiotics in the Genomes of Archaea and Bacteria. Microorganisms, 13(6), 1321. https://doi.org/10.3390/microorganisms13061321