Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = plasmid copy number

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1988 KiB  
Article
Epidemiological Surveillance, Variability, and Evolution of Isolates Belonging to the Spanish Clone of the 4,[5],12:i:- Monophasic Variant of Salmonella enterica Serovar Typhimurium
by Xenia Vázquez, Patricia García, Javier Fernández, Víctor Ladero, Carlos Rodríguez-Lucas, Jürgen J. Heinisch, Rosaura Rodicio and M. Rosario Rodicio
Antibiotics 2025, 14(7), 711; https://doi.org/10.3390/antibiotics14070711 - 16 Jul 2025
Viewed by 230
Abstract
Background/Objective: The present study focused on the analysis of the Spanish clone belonging to the successful 4,[5],12:i:- monophasic variant of Salmonella enterica serovar Typhimurium. Methods: All isolates of the clone recovered in a Spanish region from human clinical samples between 2008 and 2018 [...] Read more.
Background/Objective: The present study focused on the analysis of the Spanish clone belonging to the successful 4,[5],12:i:- monophasic variant of Salmonella enterica serovar Typhimurium. Methods: All isolates of the clone recovered in a Spanish region from human clinical samples between 2008 and 2018 (N = 14) were investigated using microbiological approaches and genome sequence analysis. In addition, they were compared with isolates from the years 2000 to 2003 (N = 21), which were previously characterized but had not yet been sequenced. Results: Phylogenetic analyses indicate that all isolates are closely related (differing by 1 to 103 SNPs) but belong to two clades termed A and B. With few exceptions, clade A comprised isolates of the first period, also including two “older” control strains, LSP 389/97 and LSP 272/98. Clade B only contained isolates from the second period. Isolates from both periods were resistant to antibiotics and biocides, with almost all resistance genes located on large IncC plasmids, additionally carrying pSLT-derived virulence genes. The number of resistance genes was highly variable, resulting in a total of 22 ABR (antibiotic biocide resistance) profiles. The number of antibiotic resistance genes, but not that of biocide resistance genes, was considerably lower in isolates from the second than from the first period (with averages of 5.5 versus 9.6 genes). Importantly, IS26, which resides in multiple copies within these plasmids, appears to be playing a crucial role in the evolution of resistance, and it was also responsible for the monophasic phenotype, which was associated with four different deletions eliminating the fljAB region. Conclusions: the observed reduction in the number of antibiotic resistance genes could correlate with the loss of adaptive advantage originating from the ban on the use of antibiotics as feed additives implemented in the European Union since 2006, facilitated by the intrinsic instability of the IncC plasmids. Two consecutive IS26 transposition events, which can explain both the clonal relationship of the isolates and their variability, may account for the observed fljAB deletions. Full article
(This article belongs to the Special Issue Genomic Analysis of Antimicrobial Drug-Resistant Bacteria)
Show Figures

Figure 1

22 pages, 3848 KiB  
Article
Electroporation- and Liposome-Mediated Co-Transfection of Single and Multiple Plasmids
by Uday K. Baliga, Anthony Gurunian, Aitor Nogales, Luis Martinez-Sobrido and David A. Dean
Pharmaceutics 2025, 17(7), 905; https://doi.org/10.3390/pharmaceutics17070905 - 12 Jul 2025
Viewed by 348
Abstract
Background/Objectives: Co-transfection of multiple DNAs is important to many research and therapeutic applications. While the optimization of single plasmid transfection is common, multiple plasmid co-transfection analyses are limited. Here we provide empirical data regarding multiple plasmid co-transfection while altering the number of species [...] Read more.
Background/Objectives: Co-transfection of multiple DNAs is important to many research and therapeutic applications. While the optimization of single plasmid transfection is common, multiple plasmid co-transfection analyses are limited. Here we provide empirical data regarding multiple plasmid co-transfection while altering the number of species of plasmids transfected (up to four different plasmids) and the amount of plasmids/cell using the two most common non-viral techniques, electroporation and lipofection. Methods: A549 human lung epithelial cells were transfected using lipofectamine 2000 or electroporation with combinations of plasmids, each expressing one of four different fluorescent proteins from the CAGG promoter. Twenty-four hours later, cells were analyzed by spectral flow cytometry to determine the number of cells expressing each fluorescent protein and the amount of fluorescent signal of each protein in a cell. Results and Conclusions: For electroporation, while the fraction of cells expressing plasmids increased with increasing amounts of DNA, increasing the number of plasmid species did not alter the fraction of expressing cells and had no effect on levels of expression in individual cells. By contrast, for lipofection, the fraction of cells expressing plasmids was not affected by the amount of DNA added but both the fraction of cells expressing and the level of protein produced in these cells decreased for each plasmid species as the number of delivered species increased. For both lipofection and electroporation after single plasmid transfection, the expressing cells had greater numbers of plasmid copies/cell than non-expressing cells. Multiple plasmid lipofection resulted in more plasmid copies/cell in co-expressing than non-expressing cells. Multiple plasmid electroporation was the inverse of this with fewer plasmid copies/cell in co-expressing than non-expressing cells. Full article
(This article belongs to the Special Issue Electroporation-Mediated Drug and Gene Delivery)
Show Figures

Figure 1

18 pages, 2158 KiB  
Article
Biosynthesis of Two Types of Exogenous Antigenic Polysaccharides in a Single Escherichia coli Chassis Cell
by Jingjing Hao, Haoqian Liao, Shuhong Meng, Yan Guo, Li Zhu, Hengliang Wang and Yufei Lyu
Life 2025, 15(6), 858; https://doi.org/10.3390/life15060858 - 26 May 2025
Viewed by 522
Abstract
Escherichia coli and Klebsiella pneumoniae are major contributors to the global challenge of antimicrobial resistance, posing serious threats to public health. Among current preventive strategies, conjugate vaccines that utilize bacterial surface polysaccharides have emerged as a promising and effective approach to counter multidrug-resistant [...] Read more.
Escherichia coli and Klebsiella pneumoniae are major contributors to the global challenge of antimicrobial resistance, posing serious threats to public health. Among current preventive strategies, conjugate vaccines that utilize bacterial surface polysaccharides have emerged as a promising and effective approach to counter multidrug-resistant strains. In this study, both the Wzy/Wzx-dependent and ABC transporter-dependent biosynthetic pathways for antigenic polysaccharides were introduced into E. coli W3110 cells. This dual-pathway engineering enabled the simultaneous biosynthesis of two structurally distinct polysaccharides within a single host, offering a streamlined and potentially scalable strategy for vaccine development. Experimental findings confirmed that both polysaccharide types were successfully produced in the engineered strains, although co-expression levels were moderately reduced. A weak competitive interaction was noted during the initial phase of induction, which may be attributed to competition for membrane space or the shared use of activated monosaccharide precursors. Interestingly, despite a reduction in plasmid copy number and transcriptional activity of the biosynthetic gene clusters over time, the overall polysaccharide yield remained stable with prolonged induction. This suggests that extended induction does not adversely affect final product output. Additionally, two glycoproteins were efficiently generated through in vivo bioconjugation of the synthesized polysaccharides with carrier proteins, all within the same cellular environment. This one-cell production system simplifies the workflow and enhances the feasibility of generating complex glycoprotein vaccines. Whole-cell proteomic profiling followed by MFUZZ clustering and Gene Ontology analysis revealed that core biosynthetic genes were grouped into two functional clusters. These genes were predominantly localized to the cytoplasm and were enriched in pathways related to translation and protein binding. Such insights not only validate the engineered biosynthetic routes but also provide a molecular basis for optimizing future constructs. Collectively, this study presents a robust synthetic biology platform for the co-expression of multiple polysaccharides in a single bacterial host. The approach holds significant promise for the rational design and production of multivalent conjugate vaccines targeting drug-resistant pathogens. Full article
(This article belongs to the Special Issue Microorganisms Engineering and Gene-Editing Methods)
Show Figures

Figure 1

19 pages, 9785 KiB  
Article
The Presence of an ESBL-Encoding Plasmid Reported During a Klebsiella pneumoniae Nosocomial Outbreak in the United Kingdom
by Stephen Mark Edward Fordham, Anna Mantzouratou and Elizabeth Sheridan
Microbiol. Res. 2025, 16(5), 90; https://doi.org/10.3390/microbiolres16050090 - 25 Apr 2025
Viewed by 550
Abstract
An EBSL-encoding plasmid, pESBL-PH, was identified during a nosocomial outbreak of Klebsiella pneumoniae ST628 at a United Kingdom general district hospital in 2018. The plasmid from the earliest 2018 K. pneumoniae strain discovered during the outbreak was assembled using both Oxford nanopore long [...] Read more.
An EBSL-encoding plasmid, pESBL-PH, was identified during a nosocomial outbreak of Klebsiella pneumoniae ST628 at a United Kingdom general district hospital in 2018. The plasmid from the earliest 2018 K. pneumoniae strain discovered during the outbreak was assembled using both Oxford nanopore long reads and illumina short reads, yielding a fully closed plasmid, pESBL-PH-2018. pESBL-PH-2018 was queried against the complete NCBI RefSeq Plasmid Database, comprising 93,823 plasmids, which was downloaded on 16 July 2024. To identify structurally similar plasmids, strict thresholds were applied, including a mash similarity ≥0.98. This returned 61 plasmids belonging to 13 unique sequence types (STs) hosts. The plasmids were detected from 13 unique countries, dating from 2012 to 2023. The AMR region of the plasmids varied. Interestingly IS26-mediated tandem amplification of resistance genes, including the ESBL gene blaCTX-M-15 was identified in two independent strains, raising their copy number to three. Furthermore, the genomic background of strains carrying a pESBL-PH-2018-like plasmid were analyzed, revealing truncation of the chromosomal ompK36 porin gene and carbapenem resistance gene carriage on accessory plasmids in 17.85% and 26.78% of strains with a complete chromosome available. This analysis reveals the widespread dissemination of an ESBL-encoding plasmid in a background of resistance-encoding strains, requiring active surveillance. Full article
Show Figures

Figure 1

15 pages, 5654 KiB  
Article
Development of a Real-Time Enzymatic Recombinase Amplification Assay (RT-ERA) and an ERA Combined with a Lateral Flow Dipstick (LFD) Assay (ERA-LFD) for Enteric Microsporidian (Enterospora epinepheli) in Grouper Fishes
by Minqi Chen, Yongcan Zhou, Shifeng Wang, Jian Luo, Weiliang Guo, Hengwei Deng, Pei Zheng, Zhihong Zhong, Baofeng Su, Dongdong Zhang and Zhi Ye
Biology 2025, 14(4), 330; https://doi.org/10.3390/biology14040330 - 25 Mar 2025
Viewed by 540
Abstract
Enterospora epinepheli poses a severe threat to grouper aquaculture due to the absence of effective prevention and treatment strategies. To address this challenge, we developed and validated two isothermal diagnostic tools, the real-time enzymatic recombinase amplification (RT-ERA) assay and the enzymatic recombinase amplification [...] Read more.
Enterospora epinepheli poses a severe threat to grouper aquaculture due to the absence of effective prevention and treatment strategies. To address this challenge, we developed and validated two isothermal diagnostic tools, the real-time enzymatic recombinase amplification (RT-ERA) assay and the enzymatic recombinase amplification combined with a lateral flow dipstick (ERA-LFD) assay, targeting the 18S rDNA gene of the parasite. These assays operate under isothermal conditions at ≤40 °C and offer rapid detection, with RT-ERA yielding results in 14~20 min and ERA-LFD in approximately 10 min. The RT-ERA assay demonstrated a strong linear relationship between plasmid copy numbers and cycle threshold (Ct) values (y = −2.1226x + 19.562, R2 = 0.9915), enabling accurate quantification. Both methods displayed a detection limit of 2 × 100 copies/μL and no cross-reactivity with other aquaculture pathogens. Validation using grouper tissue and water samples from Hainan, China, demonstrated 100% concordance rates with basic ERA and outperformed compared to conventional PCR. These assays provide sensitive, specific, and rapid detection tools for effective monitoring and pathogen load assessment of E. epinepheli, with broad applicability to pathogen detection in aquaculture systems. Full article
Show Figures

Figure 1

14 pages, 1474 KiB  
Article
Evaluation and Application of the MIRA–qPCR Method for Rapid Detection of Norovirus Genogroup II in Shellfish
by Yanting Zhu, Mengyuan Song, Yingjie Pan, Yong Zhao and Haiquan Liu
Microorganisms 2025, 13(4), 712; https://doi.org/10.3390/microorganisms13040712 - 21 Mar 2025
Viewed by 510
Abstract
Globally, norovirus has become the primary cause of outbreaks of acute gastroenteritis, and an increasing number of norovirus GII infections have been associated with shellfish. This highlights the urgent need to establish sensitive and rapid detection platforms for timely screening of contaminated shellfish [...] Read more.
Globally, norovirus has become the primary cause of outbreaks of acute gastroenteritis, and an increasing number of norovirus GII infections have been associated with shellfish. This highlights the urgent need to establish sensitive and rapid detection platforms for timely screening of contaminated shellfish to reduce the risk of virus transmission. To address this challenge, we developed a novel detection method combining multienzyme isothermal rapid amplification (MIRA) with qPCR, referred to as MIRA–qPCR, specifically targeting norovirus GII. It exhibited robust specificity, demonstrating no cross-reactivity with sapovirus, rotavirus, hepatitis A virus, Escherichia coli, Listeria monocytogenes, or Vibrio parahaemolyticus, and exhibited high sensitivity, detecting as low as 1.62 copies/μL for recombinant plasmid standards. Furthermore, MIRA–qPCR showed good linearity in the 1.62 × 101 to 1.62 × 107 copies/μL range, with an R2 > 0.90. MIRA–qPCR and qPCR assays were performed on 125 fresh shellfish samples; there was good consistency in the detection results, and the Kappa value was 0.90 (p < 0.001). The sensitivity and specificity of the MIRA–qPCR detection were 100.00% and 97.25%, respectively. The MIRA–qPCR technique provides a viable alternative for the rapid screening of norovirus GII-contaminated shellfish to guarantee food safety. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

14 pages, 1971 KiB  
Article
Metabolic Engineering of Zymomonas mobilis for Xylonic Acid Production from Lignocellulosic Hydrolysate
by Banrui Ruan, Xiongying Yan, Zhaoqing He, Qiaoning He and Shihui Yang
Fermentation 2025, 11(3), 141; https://doi.org/10.3390/fermentation11030141 - 13 Mar 2025
Cited by 1 | Viewed by 837
Abstract
Bio-based xylonic acid produced from inexpensive lignocellulosic biomass has enormous market potential and enhances the overall economic benefits of biorefinery processes. In this study, the introduction of genes encoding xylose dehydrogenase driven by the promoter Ppdc into Z. mobilis using a plasmid [...] Read more.
Bio-based xylonic acid produced from inexpensive lignocellulosic biomass has enormous market potential and enhances the overall economic benefits of biorefinery processes. In this study, the introduction of genes encoding xylose dehydrogenase driven by the promoter Ppdc into Z. mobilis using a plasmid vector resulted in the accumulation of xylonic acid at a titer of 16.8 ± 1.6 g/L. To achieve stable xylonic acid production, a gene cassette for xylonic acid production was integrated into the genome at the chromosomal locus of ZMO0038 and ZMO1650 using the endogenous type I-F CRISPR-Cas system. The titer of the resulting recombinant strain XA3 reduced to 12.2 ± 0.56 g/L, which could be the copy number difference between the plasmid and chromosomal integration. Oxygen content was then identified to be the key factor for xylonic acid production. To further increase xylonic acid production capability, a recombinant strain, XA9, with five copies of a gene cassette for xylonic acid production was constructed by integrating the gene cassette into the genome at the chromosomal locus of ZMO1094, ZMO1547, and ZMO1577 on the basis of XA3. The titer of xylonic acid increased to 51.9 ± 0.1 g/L with a maximum yield of 1.10 g/g, which is close to the theoretical yield in a pure sugar medium. In addition, the recombinant strain XA9 is genetically stable and can produce 16.2 ± 0.14 g/L of xylonic acid with a yield of 1.03 ± 0.01 g/g in the lignocellulosic hydrolysate. Our study thus constructed a recombinant strain, XA9, of Z. mobilis for xylonic acid production from lignocellulosic hydrolysate, demonstrating the capability of Z. mobilis as a biorefinery chassis for economic lignocellulosic biochemical production. Full article
(This article belongs to the Special Issue Metabolic Engineering in Microbial Synthesis)
Show Figures

Figure 1

23 pages, 3298 KiB  
Article
Construction of a Plasmid-Free Escherichia coli Strain with Enhanced Heme Supply to Produce Active Hemoglobins
by Zihan Zhang, Baodong Hu, Jingwen Zhou, Jianghua Li, Jian Chen, Guocheng Du and Xinrui Zhao
Metabolites 2025, 15(3), 151; https://doi.org/10.3390/metabo15030151 - 23 Feb 2025
Viewed by 678
Abstract
Background: Heme is an important cofactor and plays crucial roles in the correct folding of hemoproteins. The synthesis of heme can be enhanced by the plasmid-based expression of heme biosynthetic genes. However, plasmid-based expression is genetically unstable and requires the utilization of antibiotics [...] Read more.
Background: Heme is an important cofactor and plays crucial roles in the correct folding of hemoproteins. The synthesis of heme can be enhanced by the plasmid-based expression of heme biosynthetic genes. However, plasmid-based expression is genetically unstable and requires the utilization of antibiotics to maintain high copy numbers of plasmids. Methods: The rate-limiting steps in heme biosynthesis were first analyzed based on previous studies and the accumulation of heme intermediates was achieved by adding heme precursor (5-aminolevulinic acid, ALA). Next, the intracellular accumulation of porphyrin was increased by deleting the porphyrin transporter TolC. Finally, the heme synthetic genes were modified by integrating the hemA and hemL genes into the cheW and yciQ locus, assembling the rate-limiting enzymes HemC and HemD with RIAD-RIDD tags, replacing the promoters of hemE/hemH genes with the constitutive promoter PJ23100, and deleting the heme degradation gene yfeX. Results: An enhanced heme supply HEME2 strain was obtained with a heme titer of 0.14 mg/L, which was 4.60-fold higher than that of the C41(DE3) strain. The HEME2 strain was applied to produce human hemoglobin and leghemoglobin. The titer and peroxidase activity of human hemoglobin were 1.29-fold and 42.4% higher in the HEME2-hHb strain than the values in the control strain C41-hHb. In addition, the peroxidase activity and heme content of leghemoglobin were increased by 39.2% and 53.4% in the HEME2-sHb strain compared to the values in the control strain C41-sHb. Conclusions: A plasmid-free Escherichia coli C41(DE3) strain capable of efficient and stable heme supply was constructed and can be used for the production of high-active hemoglobins. Full article
(This article belongs to the Section Microbiology and Ecological Metabolomics)
Show Figures

Figure 1

16 pages, 1043 KiB  
Article
Dissemination of IncQ1 Plasmids Harboring NTEKPC-IId in a Brazilian Hospital
by Camila Maria dos Santos Boralli, Julian Andres Paganini, Rodrigo Silva Meneses, Camila Pacheco Silveira Martins da Mata, Edna Marilea Meireles Leite, Anita C. Schürch, Fernanda L. Paganelli, Rob J. L. Willems and Ilana L. B. C. Camargo
Microorganisms 2025, 13(1), 180; https://doi.org/10.3390/microorganisms13010180 - 16 Jan 2025
Viewed by 1138
Abstract
KPC is a clinically significant serine carbapenemase in most countries, and its rapid spread threatens global public health. blaKPC transmission is commonly mediated by Tn4401 transposons. The blaKPC gene has also been found in non-Tn4401 elements (NTEKPC). To [...] Read more.
KPC is a clinically significant serine carbapenemase in most countries, and its rapid spread threatens global public health. blaKPC transmission is commonly mediated by Tn4401 transposons. The blaKPC gene has also been found in non-Tn4401 elements (NTEKPC). To fill the gap in the understanding of the stability and dissemination of NTEKPC-carrying plasmids, we selected and characterized carbapenem-resistant bacteria isolated between 2009 and 2016 from a hospital for a retrospective study of their plasmids conjugation capacity, impact on fitness, and replication in different species. Different clones were selected using PFGE, and their genomes were sequenced using Illumina and Oxford Nanopore methods. Minimum inhibitory concentrations (MICs) were determined by broth microdilution. Plasmid copy numbers (PCNs) were determined using qPCR. Doubling time was used to analyze fitness change. Most isolates (67%, 33/49) carried blaKPC, of which 85% presented blaKPC in a NTEKPC. The 25 isolates selected presented the blaKPC gene in NTEKPC-IId in IncQ1-type plasmids, showing multispecies dissemination. IncQ1 plasmids were mobilizable and PCN seemed to be directly linked to the species, presenting a high-copy number, mainly in K. pneumoniae. No relationship was observed between IncQ1 PCN and carbapenems MIC values. IncQ1 and a conjugative plasmid from K. pneumoniae BHKPC10 were transferred to E. coli J53 without fitness changes, and MIC values were maintained for carbapenems despite the low transconjugant PCN. In addition to IncQ1 with NTEKPC, Enterobacter cloacae BHKPC28 contained the mcr-9 gene in an IncHI2/IncHI2A conjugative plasmid, which may help the mobility of IncQ1 and the dissemination of two resistance determinants to last-resort antibiotics. Understanding the interaction between plasmids and high-risk lineages can help develop new therapies to prevent the dissemination of resistance traits. Full article
Show Figures

Figure 1

15 pages, 2170 KiB  
Article
Optimization of Conditions for Production of Soluble E. coli Poly(A)-Polymerase for Biotechnological Applications
by Igor P. Oscorbin, Maria S. Kunova and Maxim L. Filipenko
Biology 2025, 14(1), 48; https://doi.org/10.3390/biology14010048 - 9 Jan 2025
Viewed by 1630
Abstract
Poly(A) polymerase (PAP 1) from Escherichia coli is the primary enzyme responsible for synthesizing poly(A) tails on RNA molecules, signaling RNA degradation in bacterial cells. In vitro, PAP 1 is used to prepare libraries for RNAseq and to produce mRNA vaccines. However, E. [...] Read more.
Poly(A) polymerase (PAP 1) from Escherichia coli is the primary enzyme responsible for synthesizing poly(A) tails on RNA molecules, signaling RNA degradation in bacterial cells. In vitro, PAP 1 is used to prepare libraries for RNAseq and to produce mRNA vaccines. However, E. coli PAP 1’s toxicity and instability in low-salt buffers complicate its expression and purification. Here, we optimized the conditions for the production of recombinant PAP 1. For that, E. coli PAP 1 was expressed in seven E. coli strains with different origins and genetic backgrounds, followed by assessment of the overall protein yield, solubility, and enzymatic activity. Among the tested strains, BL21 (DE3) pLysS achieved the best balance of cell density, total PAP 1 yield, solubility, and specific activity. Rosetta 2 (DE3) and Rosetta Blue (DE3) hosting the pRARE plasmid exhibited the lowest solubility, likely due to excessive translation efficiency. Higher induction temperatures (>18 °C) exacerbated PAP 1’s insolubility. Interestingly, PAP 1 accumulation correlated with an increase in the plasmid copy number encoding the enzyme, indicating its potential utility as a surrogate marker of PAP 1 activity. These findings provide insights into optimizing E. coli PAP 1 production for biotechnological applications. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

17 pages, 10678 KiB  
Article
Influence of Surface Material and Nutrient Conditions on Green Fluorescent Protein Production in Escherichia coli Biofilms
by Ana Azevedo, Rita Teixeira-Santos, Fábio M. Carvalho, Luciana C. Gomes, Gabriel A. Monteiro and Filipe J. Mergulhão
Appl. Sci. 2024, 14(23), 11029; https://doi.org/10.3390/app142311029 - 27 Nov 2024
Cited by 2 | Viewed by 3613
Abstract
Escherichia coli biofilms have been investigated as a platform for producing recombinant proteins. This study aimed to assess the effect of different surface materials and culture media on E. coli biofilm formation and enhanced Green Fluorescent Protein (eGFP) production. Three culture media with [...] Read more.
Escherichia coli biofilms have been investigated as a platform for producing recombinant proteins. This study aimed to assess the effect of different surface materials and culture media on E. coli biofilm formation and enhanced Green Fluorescent Protein (eGFP) production. Three culture media with different carbon and nitrogen sources (Lysogeny broth, Terrific broth, and M9ZB broth) were tested in combination with three materials with distinct surface properties (stainless steel, polyvinyl chloride, and silicone rubber). Biofilm formation, specific eGFP production, and plasmid copy number were monitored in microtiter plates for 9 days. Microscopy and culturability results indicated that biofilm formation was highest in Terrific broth, regardless of the surface material. Additionally, polyvinyl chloride surfaces exposed to Terrific broth provided the most advantageous conditions for achieving the highest specific eGFP production and plasmid maintenance in biofilms. These findings are relevant for establishing operational conditions for producing recombinant proteins and other high-value-added compounds on larger-scale biofilm platforms. Full article
(This article belongs to the Special Issue Advances in Biofilms and Their Applications in Biotechnology)
Show Figures

Figure 1

20 pages, 4536 KiB  
Article
Lifespan Extension by Retrotransposons under Conditions of Mild Stress Requires Genes Involved in tRNA Modifications and Nucleotide Metabolism
by Patrick H. Maxwell, Mustafa Mahmood, Maya Villanueva, Kaitlyn Devine and Nina Avery
Int. J. Mol. Sci. 2024, 25(19), 10593; https://doi.org/10.3390/ijms251910593 - 1 Oct 2024
Viewed by 1137
Abstract
Retrotransposons are mobile DNA elements that are more active with increasing age and exacerbate aging phenotypes in multiple species. We previously reported an unexpected extension of chronological lifespan in the yeast, Saccharomyces paradoxus, due to the presence of Ty1 retrotransposons when cells [...] Read more.
Retrotransposons are mobile DNA elements that are more active with increasing age and exacerbate aging phenotypes in multiple species. We previously reported an unexpected extension of chronological lifespan in the yeast, Saccharomyces paradoxus, due to the presence of Ty1 retrotransposons when cells were aged under conditions of mild stress. In this study, we tested a subset of genes identified by RNA-seq to be differentially expressed in S. paradoxus strains with a high-copy number of Ty1 retrotransposons compared with a strain with no retrotransposons and additional candidate genes for their contribution to lifespan extension when cells were exposed to a moderate dose of hydroxyurea (HU). Deletion of ADE8, NCS2, or TRM9 prevented lifespan extension, while deletion of CDD1, HAC1, or IRE1 partially prevented lifespan extension. Genes overexpressed in high-copy Ty1 strains did not typically have Ty1 insertions in their promoter regions. We found that silencing genomic copies of Ty1 prevented lifespan extension, while expression of Ty1 from a high-copy plasmid extended lifespan in medium with HU or synthetic medium. These results indicate that cells adapt to expression of retrotransposons by changing gene expression in a manner that can better prepare them to remain healthy under mild stress. Full article
Show Figures

Figure 1

16 pages, 3573 KiB  
Article
Local Genomic Surveillance of Invasive Streptococcus pyogenes in Eastern North Carolina (ENC) in 2022–2023
by Weihua Huang, John E. Markantonis, Changhong Yin, Joseph R. Pozdol, Kimberly P. Briley and John T. Fallon
Int. J. Mol. Sci. 2024, 25(15), 8179; https://doi.org/10.3390/ijms25158179 - 26 Jul 2024
Cited by 2 | Viewed by 1631
Abstract
The recent increase in Group A Streptococcus (GAS) incidences in several countries across Europe and some areas of the Unites States (U.S.) has raised concerns. To understand GAS diversity and prevalence, we conducted a local genomic surveillance in Eastern North Carolina (ENC) in [...] Read more.
The recent increase in Group A Streptococcus (GAS) incidences in several countries across Europe and some areas of the Unites States (U.S.) has raised concerns. To understand GAS diversity and prevalence, we conducted a local genomic surveillance in Eastern North Carolina (ENC) in 2022–2023 with 95 isolates and compared its results to those of the existing national genomic surveillance in the U.S. in 2015–2021 with 13,064 isolates. We observed their epidemiological changes before and during the COVID-19 pandemic and detected a unique sub-lineage in ENC among the most common invasive GAS strain, ST28/emm1. We further discovered a multiple-copy insertion sequence, ISLgar5, in ST399/emm77 and its single-copy variants in some other GAS strains. We discovered ISLgar5 was linked to a Tn5801-like tetM-carrying integrative and conjugative element, and its copy number was associated with an ermT-carrying pRW35-like plasmid. The dynamic insertions of ISLgar5 may play a vital role in genome fitness and adaptation, driving GAS evolution relevant to antimicrobial resistance and potentially GAS virulence. Full article
(This article belongs to the Special Issue Genomics: Infectious Disease and Host-Pathogen Interaction 3.0)
Show Figures

Figure 1

27 pages, 3518 KiB  
Review
Highs and Lows in Calicivirus Reverse Genetics
by Ángel L. Álvarez, Aroa Arboleya, Fábio A. Abade dos Santos, Alberto García-Manso, Inés Nicieza, Kevin P. Dalton, Francisco Parra and José M. Martín-Alonso
Viruses 2024, 16(6), 866; https://doi.org/10.3390/v16060866 - 28 May 2024
Cited by 2 | Viewed by 2163
Abstract
In virology, the term reverse genetics refers to a set of methodologies in which changes are introduced into the viral genome and their effects on the generation of infectious viral progeny and their phenotypic features are assessed. Reverse genetics emerged thanks to advances [...] Read more.
In virology, the term reverse genetics refers to a set of methodologies in which changes are introduced into the viral genome and their effects on the generation of infectious viral progeny and their phenotypic features are assessed. Reverse genetics emerged thanks to advances in recombinant DNA technology, which made the isolation, cloning, and modification of genes through mutagenesis possible. Most virus reverse genetics studies depend on our capacity to rescue an infectious wild-type virus progeny from cell cultures transfected with an “infectious clone”. This infectious clone generally consists of a circular DNA plasmid containing a functional copy of the full-length viral genome, under the control of an appropriate polymerase promoter. For most DNA viruses, reverse genetics systems are very straightforward since DNA virus genomes are relatively easy to handle and modify and are also (with few notable exceptions) infectious per se. This is not true for RNA viruses, whose genomes need to be reverse-transcribed into cDNA before any modification can be performed. Establishing reverse genetics systems for members of the Caliciviridae has proven exceptionally challenging due to the low number of members of this family that propagate in cell culture. Despite the early successful rescue of calicivirus from a genome-length cDNA more than two decades ago, reverse genetics methods are not routine procedures that can be easily extrapolated to other members of the family. Reports of calicivirus reverse genetics systems have been few and far between. In this review, we discuss the main pitfalls, failures, and delays behind the generation of several successful calicivirus infectious clones. Full article
(This article belongs to the Special Issue Caliciviruses)
Show Figures

Graphical abstract

16 pages, 3025 KiB  
Article
Construction of an Elastin-like Polypeptide Gene in a High Copy Number Plasmid Using a Modified Method of Recursive Directional Ligation
by Derek W. Nelson, Alexander Connor, Yu Shen and Ryan J. Gilbert
SynBio 2024, 2(2), 174-189; https://doi.org/10.3390/synbio2020010 - 5 May 2024
Cited by 1 | Viewed by 2208
Abstract
Elastin-like polypeptides (ELPs) are popular biomaterials due to their reversible, temperature-dependent phase separation and their tunability, which is achievable by evolving procedures in recombinant technology. In particular, recursive direction ligation by plasmid reconstruction (PRe-RDL) is the predominant cloning technique used to generate ELPs [...] Read more.
Elastin-like polypeptides (ELPs) are popular biomaterials due to their reversible, temperature-dependent phase separation and their tunability, which is achievable by evolving procedures in recombinant technology. In particular, recursive direction ligation by plasmid reconstruction (PRe-RDL) is the predominant cloning technique used to generate ELPs of varying lengths. Pre-RDL provides precise control over the number of (VPGXG)n repeat units in an ELP due to the selection of type IIS restriction enzyme (REs) sites in the reconstructed pET expression plasmid, which is a low-to-medium copy number plasmid. While Pre-RDL can be used to seamlessly repeat essentially any gene sequence and overcome limitations of previous cloning practices, we modified the Pre-RDL technique, where a high copy number plasmid (pBluescript II SK(+)—using a new library of type IIS REs) was used instead of a pET plasmid. The modified technique successfully produced a diblock ELP gene of 240 pentapeptide repeats from 30 pentapeptide “monomers” composed of alanine, tyrosine, and leucine X residues. This study found that the large, GC-rich ELP gene compromised plasmid yields in pBluescript II SK(+) and favored higher plasmid yields in the pET19b expression plasmid. Additionally, the BL21 E. coli strain expression consistently provided a higher transformation efficiency and higher plasmid yield than the high cloning efficiency strain TOP10 E. coli. We hypothesize that the plasmid/high GC gene ratio may play a significant role in these observations, and not the total plasmid size or the total plasmid GC content. While expression of the final gene resulted in a diblock ELP with a phase separation temperature of 34.5 °C, future work will need to investigate RDL techniques in additional plasmids to understand the primary driving factors for improving yields of plasmids with large ELP-encoding genes. Full article
Show Figures

Figure 1

Back to TopTop