Electroporation-Mediated Drug and Gene Delivery

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Delivery and Controlled Release".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 1443

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
Interests: electroporation; electrochemotherapy; pulsed electric fields; FEM modelling; nanosecond electrochemotherapy; cancer; numerical modelling

E-Mail Website
Guest Editor
Department of Molecular and Cellular Biology, Wroclaw Medical University, Wrocław, Poland
Interests: extracellular vesicles; electroporation; anti-cancer medicinal plants; cell migration
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We are pleased to present this Special Issue on "Electroporation-Mediated Drug and Gene Delivery", focusing on the transformative potential of electroporation in biomedical applications. Electroporation, a technique using pulsed electric fields to enhance cell membrane permeability, has shown tremendous promise in biomedical applications by improving the delivery efficiency of drugs and genes. The benefits that it offers make it a vital area of study. However, to fully exploit the capabilities of electroporation and enhance its efficiency, deeper insights into the molecular mechanisms of drug and gene delivery are essential. This Special Issue seeks innovative research on pharmaceutical substances and the incorporation of chemical and physical methods, novel pulsed electric field protocols, their molecular interactions, and advanced analytical and numerical methods to deepen our understanding of the field, leading to more efficient electroporation-based treatments. We invite you to submit innovative research in the form of reviews, original research articles, and communications. By advancing our knowledge in these areas, we aim to inspire further innovation and optimization in electroporation-mediated therapies, facilitating their wider application in clinical settings.

Dr. Veronika Malyško-Ptašinskė
Dr. Anna Choromańska
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electroporation
  • drug delivery
  • gene electrotransfer
  • electrochemotherapy
  • pulsed electric field
  • gene delivery

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 3848 KiB  
Article
Electroporation- and Liposome-Mediated Co-Transfection of Single and Multiple Plasmids
by Uday K. Baliga, Anthony Gurunian, Aitor Nogales, Luis Martinez-Sobrido and David A. Dean
Pharmaceutics 2025, 17(7), 905; https://doi.org/10.3390/pharmaceutics17070905 - 12 Jul 2025
Viewed by 321
Abstract
Background/Objectives: Co-transfection of multiple DNAs is important to many research and therapeutic applications. While the optimization of single plasmid transfection is common, multiple plasmid co-transfection analyses are limited. Here we provide empirical data regarding multiple plasmid co-transfection while altering the number of species [...] Read more.
Background/Objectives: Co-transfection of multiple DNAs is important to many research and therapeutic applications. While the optimization of single plasmid transfection is common, multiple plasmid co-transfection analyses are limited. Here we provide empirical data regarding multiple plasmid co-transfection while altering the number of species of plasmids transfected (up to four different plasmids) and the amount of plasmids/cell using the two most common non-viral techniques, electroporation and lipofection. Methods: A549 human lung epithelial cells were transfected using lipofectamine 2000 or electroporation with combinations of plasmids, each expressing one of four different fluorescent proteins from the CAGG promoter. Twenty-four hours later, cells were analyzed by spectral flow cytometry to determine the number of cells expressing each fluorescent protein and the amount of fluorescent signal of each protein in a cell. Results and Conclusions: For electroporation, while the fraction of cells expressing plasmids increased with increasing amounts of DNA, increasing the number of plasmid species did not alter the fraction of expressing cells and had no effect on levels of expression in individual cells. By contrast, for lipofection, the fraction of cells expressing plasmids was not affected by the amount of DNA added but both the fraction of cells expressing and the level of protein produced in these cells decreased for each plasmid species as the number of delivered species increased. For both lipofection and electroporation after single plasmid transfection, the expressing cells had greater numbers of plasmid copies/cell than non-expressing cells. Multiple plasmid lipofection resulted in more plasmid copies/cell in co-expressing than non-expressing cells. Multiple plasmid electroporation was the inverse of this with fewer plasmid copies/cell in co-expressing than non-expressing cells. Full article
(This article belongs to the Special Issue Electroporation-Mediated Drug and Gene Delivery)
Show Figures

Figure 1

20 pages, 2375 KiB  
Article
Calcium Electrochemotherapy and Challenges in Combined Treatment with Dendritic Cell Vaccination
by Eivina Radzevičiūtė-Valčiukė, Austėja Balevičiūtė, Augustinas Želvys, Karolina Suveizdė, Auksė Zinkevičienė, Vytautas Kašėta, Veronika Malyško-Ptašinskė, Neringa Dobrovolskienė, Vita Pašukonienė, Jurij Novickij, Irutė Girkontaitė and Vitalij Novickij
Pharmaceutics 2025, 17(7), 804; https://doi.org/10.3390/pharmaceutics17070804 - 21 Jun 2025
Viewed by 422
Abstract
Background/Objectives: Electrochemotherapy (ECT) is a reliable and potent technique for managing primary tumors; however, significant efforts are being made to characterize and improve the systemic immune response, which is crucial for metastasis prevention. Current evidence suggests that the advancement of ECT will depend [...] Read more.
Background/Objectives: Electrochemotherapy (ECT) is a reliable and potent technique for managing primary tumors; however, significant efforts are being made to characterize and improve the systemic immune response, which is crucial for metastasis prevention. Current evidence suggests that the advancement of ECT will depend on its integration with complementary immunomodulatory methods. Methods: In this study, we examined the combined effects of calcium-based electrochemotherapy (CaECT, 1.3 kV/cm × 100 µs, eight pulses delivered at 1 Hz repetition frequency) with dendritic cell vaccination (DCV). Lewis lung carcinoma (LLC1) was used as a tumor model. We characterized the effects of CaECT alone and in combination with DCV therapy on tumor growth, analyzed the changes in immune cell subpopulations, and studied the humoral immune response dynamics on day 10, 20, and 30. Given the limited effect of DCV, additional experiments were conducted with the chemotherapeutic drug cyclophosphamide (CP), known for its immunomodulatory properties. Results: Although CaECT demonstrated potent antitumor activity and induced a significant immune response, its combination with DCV did not result in enhanced therapeutic efficacy. The combination of CP also failed to improve median survival. Conclusions: It is concluded that CaECT is a promising alternative to standard ECT involving bleomycin or cisplatin. However, further optimization is necessary to enhance the therapeutic synergy of CaECT when combined with DCV. Full article
(This article belongs to the Special Issue Electroporation-Mediated Drug and Gene Delivery)
Show Figures

Figure 1

Back to TopTop