Construction of an Elastin-like Polypeptide Gene in a High Copy Number Plasmid Using a Modified Method of Recursive Directional Ligation
Abstract
:1. Introduction
2. Results
2.1. ELP Gene Design
- Include a NcoI RE site (cc atg g) at the beginning of the ELP gene and a BpiI RE site (g tct tc) at the end of the ELP gene.
- Use a tag stop codon to overlap with the BpiI RE site by one base pair.
- Include a G amino acid (encoded by ggc) before the first VPGXG and overlap with the NcoI site by 1 base pair.
- XG in the last VPGXG repeat must be encoded by yyg ggc, where y can be any base.
- Include a BmsI RE site (gc atc) one base pair before the NcoI RE site and a BamHI restriction enzyme site (g gat cc) after the BpiI site.
2.2. GTMs-RDL Can Be Used to Produce the ELP-L4Y4 Gene from Monomer Genes in pBluescript II SK(+)
2.3. Expression, Purification, and Characterization of ELP-L4Y4
3. Discussion
4. Materials and Methods
4.1. GTMs-RDL of ELP Genes in pBluescript II SK(+)
4.2. ELP Gene Expression and Purification
4.3. ELP Characterization
5. Future Direction and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Straley, K.S.; Heilshorn, S.C. Independent Tuning of Multiple Biomaterial Properties Using Protein Engineering. Soft Matter 2008, 5, 114–124. [Google Scholar] [CrossRef]
- McDaniel, J.R.; Radford, D.C.; Chilkoti, A. A Unified Model for De Novo Design of Elastin-like Polypeptides with Tunable Inverse Transition Temperatures. Biomacromolecules 2013, 14, 2866–2872. [Google Scholar] [CrossRef] [PubMed]
- Despanie, J.; Dhandhukia, J.P.; Hamm-Alvarez, S.F.; MacKay, J.A. Elastin-Like Polypeptides: Therapeutic Applications for an Emerging Class of Nanomedicines. J. Control. Release 2016, 240, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.W.; Gilbert, R.J. Extracellular Matrix-Mimetic Hydrogels for Treating Neural Tissue Injury: A Focus on Fibrin, Hyaluronic Acid, and Elastin-Like Polypeptide Hydrogels. Adv. Healthc. Mater. 2021, 10, e2101329. [Google Scholar] [CrossRef] [PubMed]
- Yeo, G.C.; Aghaei-Ghareh-Bolagh, B.; Brackenreg, E.P.; Hiob, M.A.; Lee, P.; Weiss, A.S. Fabricated Elastin. Adv. Healthc. Mater. 2015, 4, 2530–2556. [Google Scholar] [CrossRef] [PubMed]
- Mbundi, L.; González-Pérez, M.; González-Pérez, F.; Juanes-Gusano, D.; Rodríguez-Cabello, J.C. Trends in the Development of Tailored Elastin-Like Recombinamer–Based Porous Biomaterials for Soft and Hard Tissue Applications. Front. Mater. 2021, 7, 601795. [Google Scholar] [CrossRef]
- Rodríguez-Cabello, J.C.; Arias, F.J.; Rodrigo, M.A.; Girotti, A. Elastin-like Polypeptides in Drug Delivery. Adv. Drug Deliv. Rev. 2016, 97, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Asai, D.; Xu, D.; Liu, W.; Quiroz, F.G.; Callahan, D.J.; Zalutsky, M.R.; Craig, S.L.; Chilkoti, A. Protein Polymer Hydrogels by in Situ, Rapid and Reversible Self-Gelation. Biomaterials 2012, 33, 5451–5458. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, S.M.; Bhattacharyya, J.; McDaniel, J.R.; Gooden, D.M.; Gopalaswamy, R.; Chilkoti, A.; Setton, L.A. A Genetically Engineered Thermally Responsive Sustained Release Curcumin Depot to Treat Neuroinflammation. J. Control. Release 2013, 171, 38–47. [Google Scholar] [CrossRef]
- de Torre, I.G.; Santos, M.; Quintanilla, L.; Testera, A.; Alonso, M.; Cabello, J.C.R. Elastin-like Recombinamer Catalyst-Free Click Gels: Characterization of Poroelastic and Intrinsic Viscoelastic Properties. Acta Biomater. 2014, 10, 2495–2505. [Google Scholar] [CrossRef]
- Costa, S.A.; Mozhdehi, D.; Dzuricky, M.J.; Isaacs, F.J.; Brustad, E.M.; Chilkoti, A. Active Targeting of Cancer Cells by Nanobody Decorated Polypeptide Micelle with Bio-Orthogonally Conjugated Drug. Nano Lett. 2019, 19, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Dreher, M.R.; Simnick, A.J.; Fischer, K.; Smith, R.J.; Patel, A.; Schmidt, M.; Chilkoti, A. Temperature Triggered Self-Assembly of Polypeptides into Multivalent Spherical Micelles. J. Am. Chem. Soc. 2008, 130, 687–694. [Google Scholar] [CrossRef] [PubMed]
- MacEwan, S.R.; Chilkoti, A. Digital Switching of Local Arginine Density in a Genetically Encoded Self-Assembled Polypeptide Nanoparticle Controls Cellular Uptake. Nano Lett. 2012, 12, 3322–3328. [Google Scholar] [CrossRef] [PubMed]
- van Oppen, L.M.P.E.; Pille, J.; Stuut, C.; van Stevendaal, M.; van der Vorm, L.N.; Smeitink, J.A.M.; Koopman, W.J.H.; Willems, P.H.G.M.; van Hest, J.C.M.; Brock, R. Octa-Arginine Boosts the Penetration of Elastin-like Polypeptide Nanoparticles in 3D Cancer Models. Eur. J. Pharm. Biopharm. 2019, 137, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Benitez, P.L.; Sweet, J.A.; Fink, H.; Chennazhi, K.P.; Nair, S.V.; Enejder, A.; Heilshorn, S.C. Sequence-Specific Crosslinking of Electrospun, Elastin-Like Protein Preserves Bioactivity and Native-Like Mechanics. Adv. Healthc. Mater. 2013, 2, 114–118. [Google Scholar] [CrossRef] [PubMed]
- de Torre, I.G.; Ibáñez-Fonseca, A.; Quintanilla, L.; Alonso, M.; Rodríguez-Cabello, J.-C. Random and Oriented Electrospun Fibers Based on a Multicomponent, in Situ Clickable Elastin-like Recombinamer System for Dermal Tissue Engineering. Acta Biomater. 2018, 72, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Swindle-Reilly, K.E.; Paranjape, C.S.; Miller, C.A. Electrospun Poly(Caprolactone)-Elastin Scaffolds for Peripheral Nerve Regeneration. Prog. Biomater. 2014, 3, 20. [Google Scholar] [CrossRef] [PubMed]
- Salinas-Fernández, S.; Santos, M.; Alonso, M.; Quintanilla, L.; Rodríguez-Cabello, J.C. Genetically Engineered Elastin-like Recombinamers with Sequence-Based Molecular Stabilization as Advanced Bioinks for 3D Bioprinting. Appl. Mater. Today 2020, 18, 100500. [Google Scholar] [CrossRef]
- Dai, M.; Belaïdi, J.-P.; Fleury, G.; Garanger, E.; Rielland, M.; Schultze, X.; Lecommandoux, S. Elastin-like Polypeptide-Based Bioink: A Promising Alternative for 3D Bioprinting. Biomacromolecules 2021, 22, 4956–4966. [Google Scholar] [CrossRef]
- Bravo-Anaya, L.M.; Garbay, B.; Nando-Rodríguez, J.L.E.; Carvajal Ramos, F.; Ibarboure, E.; Bathany, K.; Xia, Y.; Rosselgong, J.; Joucla, G.; Garanger, E.; et al. Nucleic Acids Complexation with Cationic Elastin-like Polypeptides: Stoichiometry and Stability of Nano-Assemblies. J. Colloid Interface Sci. 2019, 557, 777–792. [Google Scholar] [CrossRef]
- Saha, S.; Banskota, S.; Roberts, S.; Kirmani, N.; Chilkoti, A. Engineering the Architecture of Elastin-Like Polypeptides: From Unimers to Hierarchical Self-Assembly. Adv. Ther. 2020, 3, 1900164. [Google Scholar] [CrossRef] [PubMed]
- Meco, E.; Zheng, W.S.; Sharma, A.H.; Lampe, K.J. Guiding Oligodendrocyte Precursor Cell Maturation with Urokinase Plasminogen Activator-Degradable Elastin-like Protein Hydrogels. Biomacromolecules 2020, 21, 4724–4736. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, B.P.; Garbay, B.; Pasqua, M.; Chevron, E.; Chinoy, Z.S.; Cullin, C.; Bathany, K.; Lecommandoux, S.; Amédée, J.; Oliveira, H.; et al. Production, Purification and Characterization of an Elastin-like Polypeptide Containing the Ile-Lys-Val-Ala-Val (IKVAV) Peptide for Tissue Engineering Applications. J. Biotechnol. 2019, 298, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Hearst, S.M.; Shao, Q.; Lopez, M.; Raucher, D.; Vig, P.J.S. The Design and Delivery of a PKA Inhibitory Polypeptide to Treat SCA1. J. Neurochem. 2014, 131, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.; Koria, P. Expression and Purification of Neurotrophin-Elastin-Like Peptide Fusion Proteins for Neural Regeneration. BioDrugs 2016, 30, 117–127. [Google Scholar] [CrossRef] [PubMed]
- MacEwan, S.R.; Hassouneh, W.; Chilkoti, A. Non-Chromatographic Purification of Recombinant Elastin-like Polypeptides and Their Fusions with Peptides and Proteins from Escherichia Coli. J. Vis. Exp. 2014, 88, e51583. [Google Scholar] [CrossRef] [PubMed]
- Floss, D.M.; Schallau, K.; Rose-John, S.; Conrad, U.; Scheller, J. Elastin-like Polypeptides Revolutionize Recombinant Protein Expression and Their Biomedical Application. Trends Biotechnol. 2010, 28, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.E.; Chilkoti, A. Purification of Recombinant Proteins by Fusion with Thermally-Responsive Polypeptides. Nat. Biotechnol. 1999, 17, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.E.; Chilkoti, A. Genetically Encoded Synthesis of Protein-Based Polymers with Precisely Specified Molecular Weight and Sequence by Recursive Directional Ligation: Examples from the Elastin-like Polypeptide System. Biomacromolecules 2002, 3, 357–367. [Google Scholar] [CrossRef]
- Dinjaski, N.; Huang, W.; Kaplan, D.L. Recursive Directional Ligation Approach for Cloning Recombinant Spider Silks. In Peptide Self-Assembly: Methods and Protocols; Nilsson, B.L., Doran, T.M., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2018; pp. 181–192. ISBN 978-1-4939-7811-3. [Google Scholar]
- Prince, J.T.; McGrath, K.P.; DiGirolamo, C.M.; Kaplan, D.L. Construction, Cloning, and Expression of Synthetic Genes Encoding Spider Dragline Silk. Biochemistry 1995, 34, 10879–10885. [Google Scholar] [CrossRef]
- McDaniel, J.R.; MacKay, J.A.; Quiroz, F.G.; Chilkoti, A. Recursive Directional Ligation by Plasmid Reconstruction Allows Rapid and Seamless Cloning of Oligomeric Genes. Biomacromolecules 2010, 11, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.E.; Chilkoti, A. Quantification of the Effects of Chain Length and Concentration on the Thermal Behavior of Elastin-like Polypeptides. Biomacromolecules 2004, 5, 846–851. [Google Scholar] [CrossRef]
- Castagnoli, L.; Scarpa, M.; Kokkinidis, M.; Banner, D.W.; Tsernoglou, D.; Cesareni, G. Genetic and Structural Analysis of the ColE1 Rop (Rom) Protein. EMBO J. 1989, 8, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Lin-Chao, S.; Chen, W.T.; Wong, T.T. High Copy Number of the pUC Plasmid Results from a Rom/Rop-Suppressible Point Mutation in RNA II. Mol. Microbiol. 1992, 6, 3385–3393. [Google Scholar] [CrossRef] [PubMed]
- Ingrole, R.S.; Tao, W.; Tripathy, J.N.; Gill, H.S. Synthesis and Immunogenicity Assessment of Elastin-Like Polypeptide-M2e Construct as an Influenza Antigen. Nano Life 2014, 4, 1450004. [Google Scholar] [CrossRef]
- Bhattacharyya, J.; Weitzhandler, I.; Ho, S.B.; McDaniel, J.R.; Li, X.; Tang, L.; Liu, J.; Dewhirst, M.; Chilkoti, A. Encapsulating a Hydrophilic Chemotherapeutic into Rod-Like Nanoparticles of a Genetically Encoded Asymmetric Triblock Polypeptide Improves Its Efficacy. Adv. Funct. Mater. 2017, 27, 1605421. [Google Scholar] [CrossRef]
- Urry, D.W.; Gowda, D.C.; Parker, T.M.; Luan, C.H.; Reid, M.C.; Harris, C.M.; Pattanaik, A.; Harris, R.D. Hydrophobicity Scale for Proteins Based on Inverse Temperature Transitions. Biopolymers 1992, 32, 1243–1250. [Google Scholar] [CrossRef]
- Connor, A.; Wigham, C.; Bai, Y.; Rai, M.; Nassif, S.; Koffas, M.; Zha, R.H. Novel Insights into Construct Toxicity, Strain Optimization, and Primary Sequence Design for Producing Recombinant Silk Fibroin and Elastin-like Peptide in E. coli. Metab. Eng. Commun. 2023, 16, e00219. [Google Scholar] [CrossRef]
pBluescript II SK(+) | pET19b | |
---|---|---|
sense: | ggg aac aaa agc tgg agc t | acg act cac tat agg gga att gt |
antisense: | ggg cga att ggg tac cg | acc cct caa gac ccg ttt ag |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelson, D.W.; Connor, A.; Shen, Y.; Gilbert, R.J. Construction of an Elastin-like Polypeptide Gene in a High Copy Number Plasmid Using a Modified Method of Recursive Directional Ligation. SynBio 2024, 2, 174-189. https://doi.org/10.3390/synbio2020010
Nelson DW, Connor A, Shen Y, Gilbert RJ. Construction of an Elastin-like Polypeptide Gene in a High Copy Number Plasmid Using a Modified Method of Recursive Directional Ligation. SynBio. 2024; 2(2):174-189. https://doi.org/10.3390/synbio2020010
Chicago/Turabian StyleNelson, Derek W., Alexander Connor, Yu Shen, and Ryan J. Gilbert. 2024. "Construction of an Elastin-like Polypeptide Gene in a High Copy Number Plasmid Using a Modified Method of Recursive Directional Ligation" SynBio 2, no. 2: 174-189. https://doi.org/10.3390/synbio2020010
APA StyleNelson, D. W., Connor, A., Shen, Y., & Gilbert, R. J. (2024). Construction of an Elastin-like Polypeptide Gene in a High Copy Number Plasmid Using a Modified Method of Recursive Directional Ligation. SynBio, 2(2), 174-189. https://doi.org/10.3390/synbio2020010