Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = plasmatron

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 24404 KiB  
Article
Oxidation of HfB2-HfO2-SiC Ceramics Modified with Ti2AlC Under Subsonic Dissociated Airflow
by Elizaveta P. Simonenko, Aleksey V. Chaplygin, Nikolay P. Simonenko, Ilya V. Lukomskii, Semen S. Galkin, Anton S. Lysenkov, Ilya A. Nagornov, Artem S. Mokrushin, Tatiana L. Simonenko, Anatoly F. Kolesnikov and Nikolay T. Kuznetsov
Corros. Mater. Degrad. 2025, 6(3), 35; https://doi.org/10.3390/cmd6030035 (registering DOI) - 1 Aug 2025
Abstract
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using [...] Read more.
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using them as an electrode material for energy storage devices with increased oxidation resistance. This study investigates the behavior of ceramic composites based on the HfB2-HfO2-SiC system, obtained using 15 vol% Ti2AlC MAX-phase as a sintering component, under the influence of subsonic flow of dissociated air. It was determined that incorporating the modifying component (Ti2AlC) altered the composition of the silicate melt formed on the surface during ceramic oxidation. This modification led to the observation of a protective antioxidant function. Consequently, liquation was observed in the silicate melt layer, resulting in the formation of spherical phase inhomogeneities in its volume with increased content of titanium, aluminum, and hafnium. It is hypothesized that the increase in the high-temperature viscosity of this melt prevents it from being carried away in the form of drops, even at a surface temperature of ~1900–2000 °C. Despite the established temperature, there is no sharp increase in its values above 2400–2500 °C. This is due to the evaporation of silicate melt from the surface. In addition, the electrochemical behavior of the obtained material in a liquid electrolyte medium (KOH, 3 mol/L) was examined, and it was shown that according to the value of electrical conductivity and specific capacitance, it is a promising electrode material for supercapacitors. Full article
Show Figures

Figure 1

15 pages, 5573 KiB  
Article
Surface Transformation of Ultrahigh-Temperature ZrB2–HfB2–SiC–CCNT Ceramics Under Exposure to Subsonic N2-CH4 Plasma Flow
by Elizaveta P. Simonenko, Aleksey V. Chaplygin, Nikolay P. Simonenko, Ilya V. Lukomskii, Semen S. Galkin, Anton S. Lysenkov, Ilya A. Nagornov, Artem S. Mokrushin, Anatoly F. Kolesnikov and Nikolay T. Kuznetsov
Ceramics 2025, 8(2), 67; https://doi.org/10.3390/ceramics8020067 - 2 Jun 2025
Viewed by 983
Abstract
The chemical and microstructural transformation of the surface of a 31.5 vol.% ZrB2-31.5 vol.% HfB2-27 vol.% SiC-10 vol.% CCNT ultrahigh-temperature ceramic sample (where CCNT refers to carbon nanotubes) was studied under the influence of a subsonic N [...] Read more.
The chemical and microstructural transformation of the surface of a 31.5 vol.% ZrB2-31.5 vol.% HfB2-27 vol.% SiC-10 vol.% CCNT ultrahigh-temperature ceramic sample (where CCNT refers to carbon nanotubes) was studied under the influence of a subsonic N2-plasma flow with the addition of 5 mol% methane, simulating aerodynamic heating in the atmosphere of Titan. As in the case of pure nitrogen flow, it was found that silicon carbide is removed from the surface. Zirconium and hafnium diborides are partially transformed into a Zr-Hf-B-C-N solid solution in the experiment conducted. XRD, Raman spectroscopy, and SEM-EDX analysis show that the presence of C2 in the N2-CH4 plasma flow leads to surface carbonization (formation of a graphite- and diamond-like coating with a high proportion of amorphous carbon), resulting in significant changes in the microstructure and emissivity, potentially affecting the catalytic properties of the surface. Full article
Show Figures

Figure 1

17 pages, 13969 KiB  
Article
Combined Plasma and Laser Heating of Graphite
by Aleksey Chaplygin, Mikhail Yakimov, Sergey Vasil’evskii, Mikhail Kotov, Ilya Lukomskii, Semen Galkin, Andrey Shemyakin, Nikolay Solovyov and Anatoly Kolesnikov
Plasma 2025, 8(1), 9; https://doi.org/10.3390/plasma8010009 - 4 Mar 2025
Cited by 1 | Viewed by 1754
Abstract
This paper investigates a novel combined laser and plasma heating test technique. Integrating the 1.5 kW Raycus RFL-C1500 laser source into the VGU-4 Inductively Coupled Plasma Facility (IPMech RAS) allowed the study of fine-grain MPG-7 graphite ablation in the high-temperature range from 2920 [...] Read more.
This paper investigates a novel combined laser and plasma heating test technique. Integrating the 1.5 kW Raycus RFL-C1500 laser source into the VGU-4 Inductively Coupled Plasma Facility (IPMech RAS) allowed the study of fine-grain MPG-7 graphite ablation in the high-temperature range from 2920 to 3865 K under exposure to subsonic nitrogen plasma flow and combined exposure to nitrogen plasma flow and laser irradiation. Graphite nitridation and sublimation were observed. The subsonic nitrogen plasma flow was characterized by numerical modeling, probes, and spectral measurements. The proposed experimental approach is promising for simulating the entry conditions of planetary mission vehicles into different atmospheres. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

22 pages, 4764 KiB  
Article
The Effect of Liquids Activated by Plasma Generated with a Microwave Plasmatron and High-Frequency Glow Discharge on Cotton Plant Development
by Sergey A. Shumeyko, Denis V. Yanykin, Mark O. Paskhin, Vladimir I. Lukanin, Dmitry A. Zakharov, Maxim E. Astashev, Roman Y. Pishchalnikov, Ruslan M. Sarimov, Mukhsindjan Kh. Ashurov, Erkindjan M. Ashurov, Dilbar K. Rashidova, Muzaffar M. Yakubov, Aleksei M. Davydov, Victoriya V. Gudkova, Yuri K. Danileyko, Alexey S. Dorokhov and Sergey V. Gudkov
Plants 2025, 14(3), 304; https://doi.org/10.3390/plants14030304 - 21 Jan 2025
Cited by 2 | Viewed by 1200
Abstract
In this study, we investigated the effect of plasma-activated liquids (PAL) on the cotton plant (Gossypium hirsutum L.) growth under laboratory and field conditions. We used two types of PAL: deionized water activated with plasma generated using a microwave plasmatron in atmospheric-pressure [...] Read more.
In this study, we investigated the effect of plasma-activated liquids (PAL) on the cotton plant (Gossypium hirsutum L.) growth under laboratory and field conditions. We used two types of PAL: deionized water activated with plasma generated using a microwave plasmatron in atmospheric-pressure air flow (PAW) and a 1.5% KNO3 solution activated using plasma generated in an electrochemical cell (PAKNO3). These treatments differ in terms of their content of long-lived biologically active compounds. PAW contains a higher concentration of hydrogen peroxide (150 μM compared to 1.1 μM), while PAKNO3 is more saturated with NO2 and NO3 (1510 μM compared to 300 µM). We found that PAW improved cotton plant growth under field conditions and in a laboratory drought stress. Additionally, PAW increased field emergence and germination of heat-treated cotton seeds in the laboratory. It was revealed that PAW prevents the drought-induced disruption of the partitioning of absorbed light energy in the photosynthetic apparatus. Meanwhile, PAKNO3 has a positive effect on seed germination. The positive effect of PALs on cotton seeds and plants is thought to be due to the generation of long-lived biologically active oxygen and nitrogen species during plasma treatment of the liquid. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

13 pages, 3666 KiB  
Article
Oxidation of Zinc Microparticles by Microwave Plasma to Form Effective Solar-Sensitive Photocatalysts
by Arsen Muslimov, Sergey Antipov, Makhach Gadzhiev, Anna Ulyankina, Valeria Krasnova, Alexander Lavrikov and Vladimir Kanevsky
Appl. Sci. 2023, 13(22), 12195; https://doi.org/10.3390/app132212195 - 10 Nov 2023
Cited by 3 | Viewed by 1343
Abstract
The presented work studies the processes of synthesis of ZnO microstructures using atmospheric-pressure microwave nitrogen plasma and investigates their photocatalytic activity in the processes of degradation of 2,4-dinitrophenol and the antibiotic ciprofloxacin when irradiated with sunlight. The work proposes an effective method for [...] Read more.
The presented work studies the processes of synthesis of ZnO microstructures using atmospheric-pressure microwave nitrogen plasma and investigates their photocatalytic activity in the processes of degradation of 2,4-dinitrophenol and the antibiotic ciprofloxacin when irradiated with sunlight. The work proposes an effective method for formation of photosensitive ZnO powders. Due to the features of plasma treatment in the open atmosphere of zinc metal microparticles, ZnO structures are formed with sizes from hundreds of nanometers to several micrometers with various micromorphologies. The lattice parameters of ZnO structures are characteristic of a hexagonal unit with a = 3.258 Å and c = 5.21 Å, volume 47.95 Å3. The size of the crystallites is 48 nm. The plasma treatment was performed by means of a 2.45-GHz plasmatron at a power input of 1 kW in nitrogen flow at a rate of 1–10 L/min. Zn microparticles were injected into the microwave plasma at a mass rate of 20 g/min. High photoactivity was demonstrated (rate constants 0.036 min−1 and 0.051 min−1) of synthesized ZnO structures during photo-degradation of 2,4-dinitrophenol and ciprofloxacin, respectively, when exposed to solar radiation. Photo-active structures of ZnO synthesized using microwave plasma can find application in processes of mineralization of toxic organic compounds. Structures of ZnO synthesized using microwave plasma can find application in processes of mineralization of toxic organic compounds, and also in scintillation detectors, phosphors. Full article
(This article belongs to the Special Issue Metals and Materials: Science, Processes and Applications)
Show Figures

Figure 1

20 pages, 21044 KiB  
Article
Oxidation of Ceramic Materials Based on HfB2-SiC under the Influence of Supersonic CO2 Jets and Additional Laser Heating
by Elizaveta P. Simonenko, Anatoly F. Kolesnikov, Aleksey V. Chaplygin, Mikhail A. Kotov, Mikhail Yu. Yakimov, Ilya V. Lukomskii, Semen S. Galkin, Andrey N. Shemyakin, Nikolay G. Solovyov, Anton S. Lysenkov, Ilya A. Nagornov, Artem S. Mokrushin, Nikolay P. Simonenko and Nikolay T. Kuznetsov
Int. J. Mol. Sci. 2023, 24(17), 13634; https://doi.org/10.3390/ijms241713634 - 4 Sep 2023
Cited by 13 | Viewed by 2060
Abstract
The features of oxidation of ultra-high-temperature ceramic material HfB2-30 vol.%SiC modified with 1 vol.% graphene as a result of supersonic flow of dissociated CO2 (generated with the use of high-frequency induction plasmatron), as well as under the influence of combined [...] Read more.
The features of oxidation of ultra-high-temperature ceramic material HfB2-30 vol.%SiC modified with 1 vol.% graphene as a result of supersonic flow of dissociated CO2 (generated with the use of high-frequency induction plasmatron), as well as under the influence of combined heating by high-speed CO2 jets and ytterbium laser radiation, were studied for the first time. It was found that the addition of laser radiation leads to local heating of the central region from ~1750 to ~2000–2200 °C; the observed temperature difference between the central region and the periphery of ~300–550 °C did not lead to cracking and destruction of the sample. Oxidized surfaces and cross sections of HfB2-SiC-CG ceramics with and without laser heating were investigated using X-ray phase analysis, Raman spectroscopy and scanning electron microscopy with local elemental analysis. During oxidation by supersonic flow of dissociated CO2, a multilayer near-surface region similar to that formed under the influence of high-speed dissociated air flows was formed. An increase in surface temperature with the addition of laser heating from 1750–1790 to 2000–2200 °C (short term, within 2 min) led to a two to threefold increase in the thickness of the degraded near-surface area of ceramics from 165 to 380 microns. The experimental results indicate promising applications of ceramic materials based on HfB2-SiC as part of high-speed flying vehicles in planetary atmospheres predominantly composed of CO2 (e.g., Venus and Mars). Full article
(This article belongs to the Special Issue Synthesis and Applications of Advanced Inorganic Materials)
Show Figures

Figure 1

16 pages, 1222 KiB  
Article
Plasma-Assisted Abatement of Per- and Polyfluoroalkyl Substances (PFAS): Thermodynamic Analysis and Validation in Gliding Arc Discharge
by Mikaela J. Surace, Jimmy Murillo-Gelvez, Mobish A. Shaji, Alexander A. Fridman, Alexander Rabinovich, Erica R. McKenzie, Gregory Fridman and Christopher M. Sales
Plasma 2023, 6(3), 419-434; https://doi.org/10.3390/plasma6030029 - 17 Jul 2023
Cited by 13 | Viewed by 4070
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic organofluorine surfactants that are resistant to typical methods of degradation. Thermal techniques along with other novel, less energy-intensive techniques are currently being investigated for the treatment of PFAS-contaminated matrices. Non-equilibrium plasma is one [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic organofluorine surfactants that are resistant to typical methods of degradation. Thermal techniques along with other novel, less energy-intensive techniques are currently being investigated for the treatment of PFAS-contaminated matrices. Non-equilibrium plasma is one technique that has shown promise for the treatment of PFAS-contaminated water. To better tailor non-equilibrium plasma systems for this application, knowledge of the energy required for mineralization, and in turn the roles that plasma reactive species and heat can play in this process, would be useful. In this study, fundamental thermodynamic equations were used to estimate the enthalpies of reaction (480 kJ/mol) and formation (−4640 kJ/mol) of perfluorooctanoic acid (PFOA, a long-chain legacy PFAS) in water. This enthalpy of reaction estimate indicates that plasma reactive species alone cannot catalyze the reaction; because the reaction is endothermic, energy input (e.g., heat) is required. The estimated enthalpies were used with HSC Chemistry software to produce a model of PFOA defluorination in a 100 mg/L aqueous solution as a function of enthalpy. The model indicated that as enthalpy of the reaction system increased, higher PFOA defluorination, and thus a higher extent of mineralization, was achieved. The model results were validated using experimental results from the gliding arc plasmatron (GAP) treatment of PFOA or PFOS-contaminated water using argon and air, separately, as the plasma gas. It was demonstrated that PFOA and PFOS mineralization in both types of plasma required more energy than predicted by thermodynamics, which was anticipated as the model did not take kinetics into account. However, the observed trends were similar to that of the model, especially when argon was used as the plasma gas. Overall, it was demonstrated that while energy input (e.g., heat) was required for the non-equilibrium plasma degradation of PFOA in water, a lower energy barrier was present with plasma treatment compared to conventional thermal treatments, and therefore mineralization was improved. Plasma reactive species, such as hydroxyl radicals (OH) and/or hydrated electrons (e(aq)), though unable to accelerate an endothermic reaction alone, likely served as catalysts for PFOA mineralization, helping to lower the energy barrier. In this study, the activation energies (Ea) for these species to react with the alpha C–F bond in PFOA were estimated to be roughly 1 eV for hydroxyl radicals and 2 eV for hydrated electrons. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Figure 1

13 pages, 6113 KiB  
Article
Combined Surface Heating by Laser Beam and Subsonic Nitrogen Plasma Jet
by Aleksey Chaplygin, Mikhail Kotov, Mikhail Yakimov, Ilya Lukomskii, Semen Galkin, Anatoly Kolesnikov, Andrey Shemyakin and Nikolay Solovyov
Fluids 2023, 8(1), 11; https://doi.org/10.3390/fluids8010011 - 28 Dec 2022
Cited by 6 | Viewed by 3387
Abstract
The paper describes new combined heating capability of the IPMech RAS inductively coupled plasma facility VGU-4. A 200 W ytterbium laser was added to the facility as a source of radiative heating. The cylindrical specimen made of the Buran orbital vehicle’s heat-shielding tile [...] Read more.
The paper describes new combined heating capability of the IPMech RAS inductively coupled plasma facility VGU-4. A 200 W ytterbium laser was added to the facility as a source of radiative heating. The cylindrical specimen made of the Buran orbital vehicle’s heat-shielding tile material with a black low catalytic coating was exposed to subsonic pure nitrogen plasma jet and laser radiation. The specimen surface temperature reached 1325 C during combined radiative and convective heating. The maximum heat flux obtained in the combined mode for a laser incident power of 47 W and a VGU-4 HF-generator anode power of 22 kW was 32.1 W/cm2. The convective heat flux from the nitrogen plasma jet at the same anode power was 12.6 W/cm2. Adding a laser to an existing inductively coupled plasma facility gives the future opportunity to better simulate entry into the atmospheres of Mars, Venus, the outer planets and their moons. Full article
Show Figures

Figure 1

15 pages, 8819 KiB  
Article
Investigation of the Effect of Supersonic Flow of Dissociated Nitrogen on ZrB2–HfB2–SiC Ceramics Doped with 10 vol.% Carbon Nanotubes
by Elizaveta P. Simonenko, Nikolay P. Simonenko, Anatoly F. Kolesnikov, Aleksey V. Chaplygin, Anton S. Lysenkov, Ilya A. Nagornov, Artem S. Mokrushin and Nikolay T. Kuznetsov
Materials 2022, 15(23), 8507; https://doi.org/10.3390/ma15238507 - 29 Nov 2022
Cited by 12 | Viewed by 2005
Abstract
The method of fabricating dense ultra-high temperature ceramic materials ZrB2–HfB2–SiC–CCNT was developed using a combination of sol-gel synthesis and reaction hot pressing approaches at 1800 °C. It was found that the introduction of multilayer nanotubes (10 vol.%) led [...] Read more.
The method of fabricating dense ultra-high temperature ceramic materials ZrB2–HfB2–SiC–CCNT was developed using a combination of sol-gel synthesis and reaction hot pressing approaches at 1800 °C. It was found that the introduction of multilayer nanotubes (10 vol.%) led to an increase in the consolidation efficiency of ceramics (at temperatures > 1600 °C). The obtained ZrB2–HfB2–SiC and ZrB2–HfB2–SiC–CCNT materials were characterized by a complex of physical and chemical analysis methods. A study of the effects on the modified sample ZrB2–HfB2–SiC–CCNT composition speed flow of partially dissociated nitrogen, using a high-frequency plasmatron, showed that, despite the relatively low temperature established on the surface (≤1585 °C), there was a significant change in the chemical composition and surface microstructure: in the near-surface layer, zirconium–hafnium carbonitride, amorphous boron nitride, and carbon were present. The latter caused changes in crucial characteristics such as the emission coefficient and surface catalyticity. Full article
(This article belongs to the Special Issue Dynamic Behavior of Ceramic Composites and Composite Structures)
Show Figures

Figure 1

12 pages, 4045 KiB  
Article
Improving the Efficiency of Air Plasma Spraying of Titanium Nitride Powder
by Aidar Kengesbekov, Bauyrzhan Rakhadilov, Zhuldyz Sagdoldina, Dastan Buitkenov, Yelmurat Dosymov and Manarbek Kylyshkanov
Coatings 2022, 12(11), 1644; https://doi.org/10.3390/coatings12111644 - 30 Oct 2022
Cited by 13 | Viewed by 2095
Abstract
The operation modes of a plasmatron for powder coating spraying have been studied. The plasmatron has a node of annular input and a gasdynamic focusing of the powder, and the outlet holes of the nozzle-anode are made in the form of rectangular narrowing-expanding [...] Read more.
The operation modes of a plasmatron for powder coating spraying have been studied. The plasmatron has a node of annular input and a gasdynamic focusing of the powder, and the outlet holes of the nozzle-anode are made in the form of rectangular narrowing-expanding channels (No.34334 RK: IPC H05H 1/42). The dynamics and trajectories of the powder particles in the plasmatron were investigated. The paper analyzes the influence of plasmatron arc current and working gas flow rate on the structure and properties of the obtained coatings. It is established that the phase composition of the sprayed coatings and the initial powder is the same: the main phase is the compound TiN, in addition, the structure contains the phase TiO2. The results of tribological tests of the coatings under dry friction conditions according to the ball-on-disk scheme are presented. Within the framework of this study, it can be said, from the point of view of obtaining denser coatings with high performance characteristics, that the optimal modes of plasma spraying of TiN powder are a current of 250 A and the working gas flow rate of argon 34 L/min. Full article
(This article belongs to the Special Issue Surface Engineering and Tribology)
Show Figures

Figure 1

14 pages, 61127 KiB  
Article
A Developed Plasmatron Design to Enhance Production of Hydrogen in Synthesis Gas Produced by a Fuel Reformer System
by Ahmed A. Alharbi, Naif B. Alqahtani, Abdullah M. Alkhedhair, Abdullah J. Alabduly, Ahmad A. Almaleki, Mustafa H. Almadih, Miqad S. Albishi and Abdullah A. Almayeef
Energies 2022, 15(3), 1071; https://doi.org/10.3390/en15031071 - 31 Jan 2022
Cited by 4 | Viewed by 3619
Abstract
Feeding IC engines with hydrogen-rich syngas as an admixture to hydrocarbon fuels can decrease pollutant emissions, particularly NOx. It offers a potential technique for low-environmental impact hydrocarbon fuel use in automotive applications. However, hydrogen-rich reformate gas (syngas) production via fuel reforming still needs [...] Read more.
Feeding IC engines with hydrogen-rich syngas as an admixture to hydrocarbon fuels can decrease pollutant emissions, particularly NOx. It offers a potential technique for low-environmental impact hydrocarbon fuel use in automotive applications. However, hydrogen-rich reformate gas (syngas) production via fuel reforming still needs more research and optimization. In this paper, we describe the effect of a plasma torch assembly design on syngas yield and composition during plasma-assisted reforming of gasoline. Additionally, erosion resistance of the cathode-emitting material under the conditions of gasoline reforming was studied, using hafnium metal and lanthanated tungsten alloy. The gasoline reforming was performed with a noncatalytic, nonthermal, low-current plasma system in the conditions of partial oxidation in an air and steam mixture. To find the most efficient plasma torch assembly configuration in terms of hydrogen production yield, four types of anode design were tested, i.e., two types of the swirl ring, and two cathode materials while varying the inlet air and fuel flow rates. The experimental results showed that hydrogen was the highest proportion of the produced syngas. The smooth funnel shape anode design in Ring 1 at air/fuel flow rates of 24/4, 27/4.5, and 30/5 g/min, respectively, was more effective than the edged funnel shape. Lanthanated tungsten alloy displayed higher erosion resistance than hafnium metal. Full article
(This article belongs to the Special Issue Application and Development of Pyrolysis Technology)
Show Figures

Figure 1

9 pages, 4360 KiB  
Article
Construction Materials from Vitrified Lignite Fly Ash in Plasmatron Plasma Reactor
by Jakub Szałatkiewicz
Materials 2019, 12(6), 905; https://doi.org/10.3390/ma12060905 - 19 Mar 2019
Cited by 6 | Viewed by 3753
Abstract
This article presents results of an investigation of vitrified (melted) fly ash samples from lignite (brown coal) in a plasmatron plasma reactor, to determine its mechanical and chemical properties. The XRF elemental analysis results of sample tests, from before the vitrification process and [...] Read more.
This article presents results of an investigation of vitrified (melted) fly ash samples from lignite (brown coal) in a plasmatron plasma reactor, to determine its mechanical and chemical properties. The XRF elemental analysis results of sample tests, from before the vitrification process and after the vitrification process are shown. The experiments were carried out in a plasma plasmatron reactor with a total power of 65 kW, enabling testing on a quarter technical scale. During the tests, samples of fly ash of about 4 kg mass were processed under selected process conditions. Produced samples of vitrified materials were analyzed in accordance to the requirements for building/construction materials. Results from this investigation confirm its quality to be used as concrete and cement filler, as an addition, and as synthetic aggregate, safe for the environment and neutral for cements. Also the most important leaching of heavy metals to water was analyzed which confirmed meeting of all of requirements necessary to use this material in building materials. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

15 pages, 4080 KiB  
Article
Inconel 625/TiB2 Metal Matrix Composites by Direct Laser Deposition
by Vladimir Promakhov, Alexander Zhukov, Mansur Ziatdinov, Ilya Zhukov, Nikita Schulz, Sergey Kovalchuk, Yana Dubkova, Rudolf Korsmik, Olga Klimova-Korsmik, Gleb Turichin and Anton Perminov
Metals 2019, 9(2), 141; https://doi.org/10.3390/met9020141 - 28 Jan 2019
Cited by 30 | Viewed by 5122
Abstract
This work presents results in the field of synthesis of new metal matrix composites with matrix NiTi and particles TiB2, and their use as additives to fabricate metal matrix composites based on the Inconel 625 alloy. NiTi-TB2 powders were obtained [...] Read more.
This work presents results in the field of synthesis of new metal matrix composites with matrix NiTi and particles TiB2, and their use as additives to fabricate metal matrix composites based on the Inconel 625 alloy. NiTi-TB2 powders were obtained using self-propagating high-temperature synthesis. Composite NiTi-TiB2 particles were spheroidized on a high-frequency induction plasmatron. Composite NiTi-TB2 particles were mixed with metallic Inconel 625 powder with particle sizes of 50–150 µm. We used direct laser deposition by means of mixture of powders to grow samples with different contents of ceramics in the metal matrix. The process of direct laser deposition during the experiment was investigated. We have determined the peculiarities of the formation of the structure in metal matrix composites with different contents of titanium diboride. We have demonstrated the possibility of using Direct Laser Deposition (DLD) for fabricating items from ceramic metal materials. We have determined promising fields of further research for the purpose of obtaining efficient metal matrix composites using additive manufacturing technologies. Full article
Show Figures

Figure 1

13 pages, 3007 KiB  
Article
Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor
by Jakub Szałatkiewicz
Materials 2016, 9(8), 683; https://doi.org/10.3390/ma9080683 - 10 Aug 2016
Cited by 26 | Viewed by 9575
Abstract
This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than [...] Read more.
This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

Back to TopTop