Combined Surface Heating by Laser Beam and Subsonic Nitrogen Plasma Jet
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IPMech RAS | Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences |
HF | High Frequency |
ICP | Inductively Coupled Plasma |
IHF | Interaction Heating Facility |
LEAF | Laser-Enhanced Arc-jet Facility |
References
- Anfimov, N. Capabilities of TNIIMASH test facilities for experimental investigations of aerospace plane aerothermodynamics. In Proceedings of the 5th International Aerospace Planes and Hypersonics Technologies Conference, Munich, Germany, 30 November–3 December 1993; p. 5000. [Google Scholar] [CrossRef]
- Neiland, V.Y. Review of TsAGI wind tunnels. In Proceedings of the Wind Tunnels and Wind Tunnel Test Techniques Conference, Southampton, UK, 14–17 September 1992; p. 2.1-8. [Google Scholar]
- Gordeev, A.; Kolesnikov, A.; Yakushin, M. Induction plasma application to Buran’s heat protection tiles ground tests. SAMPE J. (Soc. Aerosp. Mater. Process. Eng.) 1992, 28, 29–33. [Google Scholar]
- Stewart, D.; Chen, Y.K.; Bamford, D.; Romanovsky, A. Predicting material surface catalytic efficiency using arc-jet tests. In Proceedings of the 30th Thermophysics Conference, San Diego, CA, USA, 19–22 June 1995; p. 2013. [Google Scholar] [CrossRef]
- Miller, C. Aerothermodynamic flight simulation capabilities for aerospace vehicles. In Proceedings of the 20th AIAA Advanced Measurement and Ground Testing Technology Conference, Albuquerque, NM, USA, 15–18 June 1998; p. 2600. [Google Scholar] [CrossRef]
- Muylaert, J.; Cipollini, F.; Auweter-Kurtz, M.; Balat, M.; Borrelli, S.; Conte, D.; Enzian, A.; Guelhan, A.; Traineau, J. European plasma working group: Status of activities and future plans. In Proceedings of the Hot Structures and Thermal Protection Systems for Space Vehicles, Palermo, Italy, 26–29 November 2002; Volume 521, p. 321. [Google Scholar]
- Babat, G.I. Electrodeless discharges and some allied problems. J. Inst. Electr. Eng. Part III Radio Commun. Eng. 1947, 94, 27–37. [Google Scholar] [CrossRef]
- Reed, T.B. Induction-coupled plasma torch. J. Appl. Phys. 1961, 32, 821–824. [Google Scholar] [CrossRef]
- Gordeev, A. Overview of Characteristics and Experiments in IPM Plasmatrons. VKI, RTO AVT/VKI Special Course on Measurement Techniques for High Enthalpy Plasma Flows. 1999. Available online: https://apps.dtic.mil/sti/citations/ADP010736 (accessed on 22 December 2022).
- Bottin, B.; Chazot, O.; Carbonaro, M.; Van Der Haegen, V.; Paris, S. The VKI Plasmatron Characteristics and Performance; Technical report; Von Karman Inst for Fluid Dynamics: Rhode-Saint-Genese, Belgium, 2000. [Google Scholar]
- Herdrich, G.; Marynowski, T.; Dropmann, M.; Fasoulas, S. Mars and Venus Entry Simulation Capabilities of IRS Plasma Wind Tunnel PWK3; University of Stuttgart: Stuttgart, Germany, 2012. [Google Scholar] [CrossRef]
- Owens, W.; Uhl, J.; Dougherty, M.; Lutz, A.; Fletcher, D.; Meyers, J. Development of a 30kW inductively coupled plasma torch for aerospace material testing. In Proceedings of the 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Chicago, IL, USA, 28 June–1 July 2010; p. 4322. [Google Scholar] [CrossRef]
- Greene, B.R.; Clemens, N.T.; Varghese, P.L.; Bouslog, S.; Del Papa, S.V. Characterization of a 50kW inductively coupled plasma torch for testing of ablative thermal protection materials. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017; p. 0394. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.; Ishida, K.; Mizuno, M.; Sumi, T.; Matsuzaki, T.; Nagai, J.; Murata, H. 110kW New High Enthaply Wind Tunnel Heated by Inductively-Coupled-Plasma. In Proceedings of the 12th AIAA International Space Planes and Hypersonic Systems and Technologies, Norfolk, VA, USA, 15–19 December 2003; p. 7023. [Google Scholar] [CrossRef]
- Yang, L.; Xiao, X.; Jing, L.; Zhang, J.; Liu, L.; Zhao, C.; Wang, G. Dynamic oxidation mechanism of SiC fiber reinforced SiC matrix composite in high-enthalpy plasmas. J. Eur. Ceram. Soc. 2021, 41, 5388–5393. [Google Scholar] [CrossRef]
- Marschall, J.; Pejaković, D.A.; Fahrenholtz, W.G.; Hilmas, G.E.; Panerai, F.; Chazot, O. Temperature jump phenomenon during plasmatron testing of ZrB2-SiC ultrahigh-temperature ceramics. J. Thermophys. Heat Transf. 2012, 26, 559–572. [Google Scholar] [CrossRef]
- Balat-Pichelin, M.; Charpentier, L.; Panerai, F.; Chazot, O.; Helber, B.; Nickel, K. Passive/active oxidation transition for CMC structural materials designed for the IXV vehicle re-entry phase. J. Eur. Ceram. Soc. 2015, 35, 487–502. [Google Scholar] [CrossRef]
- Levet, C.; Helber, B.; Couzi, J.; Mathiaud, J.; Gouriet, J.B.; Chazot, O.; Vignoles, G. Microstructure and gas-surface interaction studies of a 3D carbon/carbon composite in atmospheric entry plasma. Carbon 2017, 114, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Uhl, J.; Owens, W.; Dougherty, M.; Lutz, A.; Meyers, J.; Fletcher, D. Pyrolysis simulation in an icp torch facility. In Proceedings of the 42nd AIAA Thermophysics Conference, Honolulu, HI, USA, 27–30 June 2011; p. 3618. [Google Scholar] [CrossRef] [Green Version]
- Auweter-Kurtz, M.; Hilfer, G.; Habiger, H.; Yamawaki, K.; Yoshinaka, T.; Speckmann, H.D. Investigation of oxidation protected C/C heat shield material in different plasma wind tunnels. Acta Astronaut. 1999, 45, 93–108. [Google Scholar] [CrossRef]
- Fletcher, D.; Meyers, J. Surface catalyzed reaction efficiencies in oxygen plasmas from laser-induced fluorescence measurements. J. Thermophys. Heat Transf. 2017, 31, 410–420. [Google Scholar] [CrossRef]
- Kolesnikov, A.F.; Gordeev, A.N.; Vasil’evskii, S.A. Effects of catalytic recombination on the surface of metals and quartz for the conditions of entry into the Martian atmosphere. High Temp. 2016, 54, 29–37. [Google Scholar] [CrossRef]
- Massuti-Ballester, B.; Pidan, S.; Herdrich, G.; Fertig, M. Recent catalysis measurements at IRS. Adv. Space Res. 2015, 56, 742–765. [Google Scholar] [CrossRef]
- Chazot, O.; Krassilchikoff, H.W.; Thoemel, J. TPS ground testing in plasma wind tunnel for catalytic properties determination. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 7–10 January 2008; p. 1252. [Google Scholar] [CrossRef]
- Kolesnikov, A. The aerothermodynamic simulation in-and supersonic high-enthalpy jets: Experiment and theory. In Proceedings of the Aerothermodynamics for Space Vehicles, Noordwijk, The Netherlands, 21–25 November 1995; Volume 367, p. 583. [Google Scholar]
- Vasil’evskii, S.; Gordeev, A.; Kolesnikov, A. Local modeling of the aerodynamic heating of the blunt body surface in subsonic high-enthalpy air flow. Theory and experiment on a high-frequency plasmatron. Fluid Dyn. 2017, 52, 158–164. [Google Scholar] [CrossRef]
- Balter-Peterson, A.; Nichols, F.; Mifsud, B.; Love, W. Arc jet testing in NASA Ames Research Center thermophysics facilities. In Proceedings of the AlAA 4th International Aerospace Planes Conference, Orlando, FL, USA, 1–4 December 1992; p. 5041. [Google Scholar] [CrossRef]
- Terrazas-Salinas, I.; Cornelison, C. Test Planning Guide for NASA Ames Research Center Arc Jet Complex and Range Complex; Space Technology Division, NASA Ames Research Center: Moffett Field, CA, USA, 2009; Volume 94035, pp. 20–21.
- Gülhan, A.; Esser, B. Arc-heated facilities as a tool to study aerothermodynamic problems of reentry vehicles. Prog. Astronaut. Aeronaut. 2002, 198, 375–403. [Google Scholar]
- Russo, G.; De Filippist, F.; Borrellit, S.; Marinit, M.; Caristia, S. A New Hypersonic Capability. Adv. Hypersonic Test Facil. 2002, 198, 315. [Google Scholar]
- Vennemann, D. Hypersonic test facilities available in Western Europe for aerodynamic/aerothermal and structure/material investigations. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 1999, 357, 2227–2248. [Google Scholar] [CrossRef]
- Du, B.; Hong, C.; Zhang, X.; Wang, A.; Sun, Y. Ablation behavior of advanced TaSi2-based coating on carbon-bonded carbon fiber composite/ceramic insulation tile in plasma wind tunnel. Ceram. Int. 2018, 44, 3505–3510. [Google Scholar] [CrossRef]
- Laub, B.; Venkatapathy, E. Thermal protection system technology and facility needs for demanding future planetary missions. In Proceedings of the Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science, Lisbon, Portugal, 6–9 October 2003; Volume 544, pp. 239–247. [Google Scholar]
- Bouilly, J.M. Thermal protection of the Huygens Probe during Titan entry: Last questions. In Proceedings of the 2nd International Planetary Probe Workshop, Moffett Field, CA, USA, 23–27 August 2004. [Google Scholar]
- Venkatapathy, E.; Laub, B.; Hartman, G.; Arnold, J.; Wright, M.; Allen, G. Thermal protection system development, testing, and qualification for atmospheric probes and sample return missions. Adv. Space Res. 2009, 44, 138–150. [Google Scholar] [CrossRef]
- Carandente, V.; Savino, R.; Esposito, A.; Zuppardi, G.; Caso, V. Experimental and numerical simulation, by an arc-jet facility, of hypersonic flow in Titan’s atmosphere. Exp. Therm. Fluid Sci. 2013, 48, 97–101. [Google Scholar] [CrossRef]
- Venkatapathy, E.; Ellerby, D.; Gage, P.; Prabhu, D.; Gasch, M.; Kazemba, C.; Kellerman, C.; Langston, S.; Libben, B.; Mahzari, M.; et al. Entry system technology readiness for ice-giant probe missions. Space Sci. Rev. 2020, 216, 22. [Google Scholar] [CrossRef]
- MacDonald, M.; Balboni, J.; Cornelison, C.; Hartman, J.; Haw, M.; Fretter, E.; Cruden, B.; Wilder, M.; Hwang, H. NASA Ames Thermophysics Ground Test Facilities Supporting Future Planetary Atmospheric Entry. Bull. Am. Astron. Soc. 2020, 53, 424. [Google Scholar]
- Paterna, D.; Monti, R.; Savino, R.; Esposito, A. Experimental and Numerical Investigation of Martian Atmosphere Entry. J. Spacecr. Rocket. 2002, 39, 227–236. [Google Scholar] [CrossRef]
- Verant, J.L.; Perron, N.; Gerasimova, O.; Balat-Pichelin, M.; Sakharov, V.; Kolesnikov, A.; Chazot, O.; Omaly, P. Microscopic and macroscopic analysis for TPS SiC material under earth and mars reentry conditions. In Proceedings of the 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, Canberra, Australia, 6–9 November 2006; p. 7947. [Google Scholar] [CrossRef]
- Löhle, S.; Vacher, D.; Menecier, S.; Dudeck, M.; Liebhart, H.; Marynowski, T.; Herdrich, G.; Fasoulas, S.; André, P. Measurement campaigns on Mars entry plasmas using ICP torches. Characterization by emission spectroscopy and probes techniques. In Proceedings of the 4th International Workshop on Radiation and High Temperature Gases in Atmospheric Entry, Lausanne, Switzerland, 12–15 October 2010. [Google Scholar]
- Bugel, M.; Reynier, P.; Smith, A. Survey of European and major ISC facilities for supporting Mars and sample return mission aerothermodynamics and tests required for thermal protection system and dynamic stability. Int. J. Aerosp. Eng. 2011, 2011, 937629. [Google Scholar] [CrossRef] [Green Version]
- Dougherty, M.; Owens, W.; Meyers, J.; Fletcher, D. Investigations of Surface-Catalyzed Recombination Reactions in the Mars Atmosphere. In Proceedings of the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2011; p. 1326. [Google Scholar] [CrossRef]
- Dougherty, M.; Owens, W.; Meyers, J.; Fletcher, D. Investigations of Surface-Catalyzed Reactions in a Mars Mixture. In Proceedings of the ESA 7th European Aerothermodynamics Symposium, Brugges, Belgium, 9–12 May 2011. [Google Scholar]
- Cushman, G.; Alunni, A.; Balboni, J.; Zell, P.; Hartman, J.; Empey, D. The Laser Enhanced Arc-Jet Facility (LEAF-Lite): Simulating Convective and Radiative Heating with Arc-jets and Multiple 50-kW CW Lasers. In Proceedings of the 2018 Joint Thermophysics and Heat Transfer Conference. American Institute of Aeronautics and Astronautics, Atlanta, GE, USA, 25–29 June 2018. [Google Scholar] [CrossRef] [Green Version]
- Venkatapathy, E.; Cushman, G.; Alunni, A.; Zell, P.; Hartman, J. Testing with the Laser-Enhanced Arc Jet Facility (LEAF) at NASA Ames Research Center. Presented at the 2018 National Space and Missiles Materials Symposium, Madison, WI, USA, 25 June 2018. [Google Scholar]
- Gokcen, T.; Alunni, A. CFD Simulations of the IHF Arc-Jet Flow: 9-Inch Nozzle, Flow Surveys, LEAF Wedge Calibration Data. In Proceedings of the AIAA Aviation 2019 Forum, American Institute of Aeronautics and Astronautics, Dallas, Texas, USA, 17–21 June 2019. [Google Scholar] [CrossRef]
- Alunni, A.I.; Gokcen, T.; Boghozian, T. Laser-Enhanced Arc-Jet Facility Wedge Tests: Avcoat Material Performance Under Convective and Radiative Heating Environments. In Proceedings of the Joint Thermophysics and Heat Transfer Conference, Colorado Springs, CO, USA, 20–23 June 2019. number ARC-E-DAA-TN62912. [Google Scholar]
- Momozawa, A.; Yokote, N.; Terutsuki, D.; Komurasaki, K. Dynamic oxidation of SiC with arc-heated plasma wind tunnel and laser heating. Vacuum 2021, 185, 109899. [Google Scholar] [CrossRef]
- Chen, J.; An, Q.; Ming, W.; Chen, M. Investigations on continuous-wave laser and pulsed laser induced controllable ablation of SiCf/SiC composites. J. Eur. Ceram. Soc. 2021, 41, 5835–5849. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, B.; Koo, J.H. Aerothermal Testing of Ablatives for Material Performance. In Proceedings of the AIAA Scitech 2020 Forum. American Institute of Aeronautics and Astronautics, Orlando, FL, USA, 6–10 January 2020. [Google Scholar] [CrossRef]
- Chaplygin, A.; Vasil’evskii, S.; Galkin, S.; Kolesnikov, A. Thermal state of uncooled quartz discharge channel of powerful high-frequency induction plasmatron. Phys. Chem. Kinet. Gas Dyn. 2022, 23, 38–56. [Google Scholar] [CrossRef]
- Shchetanov, B. Tile material for the external high-temperature heat-resistant coating for the Buran orbiter. Aviats. Mater. Tekhnol. 2013, 41–50. [Google Scholar]
- Shchetanov, B.; Ivakhnenko, Y.A.; Babashov, V. Heat shield materials. Russ. J. Gen. Chem. 2011, 81, 978–985. [Google Scholar] [CrossRef]
- Alifanov, O.; Budnik, S.; Nenarokomov, A.; Netelev, A.; Okhapkin, A. Thermophysical characteristics of fibrous thermoprotective materials at high temperatures. J. Eng. Phys. Thermophys. 2021, 94, 1052–1062. [Google Scholar] [CrossRef]
- Mironov, R.; Gaidenko, V.; Zabezhailov, M.; Tomchani, O.; Cherepanov, V.; Alifanov, O. Radiative-Optical and Thermophysical Characteristics of Fibrous Silica-Based Heat Insulation. J. Eng. Phys. Thermophys. 2021, 94, 1600–1608. [Google Scholar] [CrossRef]
- Cherepanov, V.V.; Alifanov, O.M.; Morzhukhina, A.V.; Budnik, S.A. Highly porous thermal protection materials: Modelling and prediction of the methodical experimental errors. Acta Astronaut. 2016, 128, 392–400. [Google Scholar] [CrossRef]
- Anfimov, N.; Rumynskii, A. Problems of heat transfer and thermal protection of entry vehicles for an unmanned mission to mars. Fluid Dyn. 2006, 41, 680–688. [Google Scholar] [CrossRef]
- Pasichnyi, V.; Berezhetskaya, V.Y.; Goryachev, A.; Gofin, M.Y.; Frolov, G. Investigation of the serviceability of the heat shield of the orbital aircraft “Buran” under the conditions of radiant heating on solar plants. J. Eng. Phys. Thermophys. 2001, 74, 1396–1398. [Google Scholar] [CrossRef]
- Dozhdikov, V.; Petrov, V. Radiation characteristics of heat protective materials of the Buran orbital spacecraft. J. Eng. Phys. Thermophys. 2000, 73, 25–28. [Google Scholar] [CrossRef]
- Magunov, A. Spectral pyrometry. Instruments Exp. Tech. 2009, 52, 451–472. [Google Scholar] [CrossRef]
- Vanden Abeele, D.; Vasil’evskii, S.; Kolesnikov, A.; Degrez, G.; Bottin, B. Code-to-code validation of inductive plasma computations. In Progress in Plasma Processing of Materials, 1999; Begell House: Danbury, CT, USA, 1999. [Google Scholar]
- Utyuzhnikov, S.; Konyukhov, A.; Rudenko, D.; Vasil’evskii, S.; Kolesnikov, A.; Chazot, O. Simulation of subsonic and supersonic flows in inductive plasmatrons. AIAA J. 2004, 42, 1871–1877. [Google Scholar] [CrossRef] [Green Version]
- Kolesnikov, A.F.; Gordeev, A.N.; Vasil’evskii, S.A. Heat transfer in subsonic flows of dissociated nitrogen: HF plasmatron experiment and numerical simulation. High Temp. 2018, 56, 398–403. [Google Scholar] [CrossRef]
- Surzhikov, S.T. Radiative-collisional models in non-equilibrium aerothermodynamics of entry probes. J. Heat Transf. 2012, 134, 031002. [Google Scholar] [CrossRef]
- Shang, J.; Surzhikov, S. Nonequilibrium radiative hypersonic flow simulation. Prog. Aerosp. Sci. 2012, 53, 46–65. [Google Scholar] [CrossRef]
- Park, C. Calculation of stagnation-point heating rates associated with stardust vehicle. J. Spacecr. Rocket. 2007, 44, 24–32. [Google Scholar] [CrossRef]
- Dikalyuk, A.; Kozlov, P.; Romanenko, Y.; Shatalov, O.; Surzhikov, S. Nonequilibrium spectral radiation behind the shock waves in Martian and Earth atmospheres. In Proceedings of the 44th AIAA Thermophysics Conference, San Diego, CA, USA, 24–27 June 2013; p. 2505. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Electric power supplied to plasmatron, kW | 100 |
Generator anode power supply, kW | 72 |
Frequency, MHz | 1.76 |
Discharge channel diameter, mm | 80 |
Stagnation pressure, hPa | |
Gas mass flow rate, g/s | |
Working gases | Air, N, CO, Ar |
Property | Value |
---|---|
Density, kg/m | |
Thermal conductivity, W/m·C | 0.05 (at 20 C and p = 1 atm.) |
0.22 (at 800 C and p = 1 atm.) | |
Heat capacity, kJ/kg·C | 0.8 (at 20 C) |
Total emissivity | |
Operating temperature, C | 1100 C (long time) |
1250 C (short time) |
Parameter | Description |
---|---|
Configuration | Laser head with control unit (separate) |
Technology | Ytterbium fiber laser |
Operation mode | Repetitively pulsed laser |
Wavelength | 1.064 (infrared) |
Maximum power (time average) | 200 W |
Maximum pulse energy | 1 mJ |
Pulse width | 100 ns |
Repetition rate | 1000 kHz |
Test | Time, s | Laser Incident Power, W | HF-Generator Anode Power, kW | Total Heat Flux in the Central Area of the Specimen, W/cm |
---|---|---|---|---|
22-181-1 | 68 | 31 | 0 | 13.4 |
129 | 47 | 22.5 | ||
22-181-2 | 60 | 0 | 22 | 12.6 |
171 | 15 | 13.4 | ||
297 | 31 | 24.1 | ||
416 | 39 | 28.0 | ||
503 | 47 | 32.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaplygin, A.; Kotov, M.; Yakimov, M.; Lukomskii, I.; Galkin, S.; Kolesnikov, A.; Shemyakin, A.; Solovyov, N. Combined Surface Heating by Laser Beam and Subsonic Nitrogen Plasma Jet. Fluids 2023, 8, 11. https://doi.org/10.3390/fluids8010011
Chaplygin A, Kotov M, Yakimov M, Lukomskii I, Galkin S, Kolesnikov A, Shemyakin A, Solovyov N. Combined Surface Heating by Laser Beam and Subsonic Nitrogen Plasma Jet. Fluids. 2023; 8(1):11. https://doi.org/10.3390/fluids8010011
Chicago/Turabian StyleChaplygin, Aleksey, Mikhail Kotov, Mikhail Yakimov, Ilya Lukomskii, Semen Galkin, Anatoly Kolesnikov, Andrey Shemyakin, and Nikolay Solovyov. 2023. "Combined Surface Heating by Laser Beam and Subsonic Nitrogen Plasma Jet" Fluids 8, no. 1: 11. https://doi.org/10.3390/fluids8010011
APA StyleChaplygin, A., Kotov, M., Yakimov, M., Lukomskii, I., Galkin, S., Kolesnikov, A., Shemyakin, A., & Solovyov, N. (2023). Combined Surface Heating by Laser Beam and Subsonic Nitrogen Plasma Jet. Fluids, 8(1), 11. https://doi.org/10.3390/fluids8010011