Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (176)

Search Parameters:
Keywords = plasma chemical etching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 4006 KiB  
Review
Solvent-Driven Electroless Nickel Coatings on Polymers: Interface Engineering, Microstructure, and Applications
by Chenyao Wang, Heng Zhai, David Lewis, Hugh Gong, Xuqing Liu and Anura Fernando
Coatings 2025, 15(8), 898; https://doi.org/10.3390/coatings15080898 (registering DOI) - 1 Aug 2025
Viewed by 273
Abstract
Electroless nickel deposition (ELD) is an autocatalytic technique extensively used to impart conductive, protective, and mechanical functionalities to inherently non-conductive synthetic substrates. This review systematically explores the fundamental mechanisms of electroless nickel deposition, emphasising recent advancements in surface activation methods, solvent systems, and [...] Read more.
Electroless nickel deposition (ELD) is an autocatalytic technique extensively used to impart conductive, protective, and mechanical functionalities to inherently non-conductive synthetic substrates. This review systematically explores the fundamental mechanisms of electroless nickel deposition, emphasising recent advancements in surface activation methods, solvent systems, and microstructural control. Critical analysis reveals that bio-inspired activation methods, such as polydopamine (PDA) and tannic acid (TA), significantly enhance coating adhesion and durability compared to traditional chemical etching and plasma treatments. Additionally, solvent engineering, particularly using polar aprotic solvents like dimethyl sulfoxide (DMSO) and ethanol-based systems, emerges as a key strategy for achieving uniform, dense, and flexible coatings, overcoming limitations associated with traditional aqueous baths. The review also highlights that microstructural tailoring, specifically the development of amorphous-nanocrystalline hybrid nickel coatings, effectively balances mechanical robustness (hardness exceeding 800 HV), flexibility, and corrosion resistance, making these coatings particularly suitable for wearable electronic textiles and smart materials. Furthermore, commercial examples demonstrate the real-world applicability and market readiness of nickel-coated synthetic fibres. Despite significant progress, persistent challenges remain, including reliable long-term adhesion, internal stress management, and environmental sustainability. Future research should prioritise environmentally benign plating baths, standardised surface activation protocols, and scalable deposition processes to fully realise the industrial potential of electroless nickel coatings. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

15 pages, 3262 KiB  
Article
Optimization of Diamond Polishing Process for Sub-Nanometer Roughness Using Ar/O2/SF6 Plasma
by Lei Zhao, Xiangbing Wang, Minxing Jiang, Chao Zhao, Nan Jiang, Kazhihito Nishimura, Jian Yi and Shuangquan Fang
Materials 2025, 18(11), 2615; https://doi.org/10.3390/ma18112615 - 3 Jun 2025
Viewed by 585
Abstract
Diamond, known for its exceptional physical and chemical properties, shows great potential in advanced fields such as medicine, semiconductors, and optics. However, reducing surface roughness is critical for enhancing its performance. This study employs inductively coupled plasma (ICP) polishing to etch single-crystal diamond [...] Read more.
Diamond, known for its exceptional physical and chemical properties, shows great potential in advanced fields such as medicine, semiconductors, and optics. However, reducing surface roughness is critical for enhancing its performance. This study employs inductively coupled plasma (ICP) polishing to etch single-crystal diamond and analyzes the impact of different etching parameters on surface roughness using atomic force microscopy (AFM). Using the change in surface roughness before and after etching as the main evaluation metric, the optimal etching parameters were determined: Ar/O2/SF6 gas flow ratio of 40/50/10 sccm, ICP power of 200 W, RF bias power of 40 W, chamber pressure of 20 mTorr, and etching time of 10 min. Results show that increased etching time and SF6 flow rate raise surface roughness; although higher ICP and RF power reduce roughness, they also cause nanostructure formation, affecting surface quality. Lower chamber pressure results in smaller roughness increases, while higher pressure significantly worsens it. Based on the optimized process parameters, the pristine single-crystal diamond was further etched in this study, resulting in a significant reduction of the surface roughness from 2.22 nm to 0.562 nm, representing a 74.7% decrease. These improvements in surface roughness demonstrate the effectiveness of the optimized process, enhancing the diamond’s suitability for high-precision optical applications. Full article
Show Figures

Figure 1

15 pages, 5200 KiB  
Article
Designing Superhydrophilic 3D Porous Surfaces on Polyetherketoneketone Surfaces to Promote Biocompatibility
by Hui-Ching Lin, Chiang-Sang Chen, Kai-Yi Lin, Ya-Lin Huang, Hao-Hsiang Hsu, Yu-Lin Kuo, Wei-Cheng Chen and Her-Hsiung Huang
J. Funct. Biomater. 2025, 16(3), 106; https://doi.org/10.3390/jfb16030106 - 14 Mar 2025
Viewed by 1024
Abstract
Polyetherketoneketone (PEKK) exhibits satisfactory mechanical properties and biocompatibility, with an elastic modulus closely resembling that of natural bone. This property reduces the stress-shielding effect associated with bone implants. However, the biological inertness of the PEKK surface remains a significant limitation for its application [...] Read more.
Polyetherketoneketone (PEKK) exhibits satisfactory mechanical properties and biocompatibility, with an elastic modulus closely resembling that of natural bone. This property reduces the stress-shielding effect associated with bone implants. However, the biological inertness of the PEKK surface remains a significant limitation for its application in bone tissue engineering. The objective of this study was to create a superhydrophilic 3D porous structure on the surface of PEKK to enhance biocompatibility, in terms of vascularization and bone remodeling. A combination of mechanical, chemical, and physical surface treatments was employed to modify the PEKK surface. Initially, mechanical sandblasting was used to create a rough surface to promote mechanical interlocking with bone tissue. Subsequently, chemical acid etching and physical low-temperature atmospheric plasma cleaning were applied to develop a superhydrophilic 3D porous surface. The modified surfaces were characterized for morphology, roughness, hydrophilicity, and functional groups. Cellular responses, including vascularization and bone remodeling, were evaluated to assess the potential for improved biocompatibility. The combination of acid etching and low-temperature atmospheric plasma cleaning, with or without prior sandblasting, successfully created a superhydrophilic 3D porous structure on the PEKK surface. This modified surface enhanced the tube formation in human umbilical vein endothelial cells. It also promoted the adhesion and mineralization of human bone marrow mesenchymal stem cells and slightly reduced tartrate-resistant acid phosphatase expression and F-actin ring size in mouse macrophage cells. This study introduces an innovative and effective surface modification strategy for PEKK surface, combining mechanical, chemical, and physical treatments to enhance biocompatibility. The modified PEKK surface promotes angiogenic and osteogenic responses while slightly inhibiting osteoclastic activity, making it a potential alternative for dental and orthopedic PEKK implant applications. Full article
(This article belongs to the Collection Feature Papers in Bone Biomaterials)
Show Figures

Figure 1

23 pages, 7941 KiB  
Article
Adaptability of Electrospun PVDF Nanofibers in Bone Tissue Engineering
by Tereza Havlíková, Nikola Papež, Zdenka Fohlerová, Pavel Kaspar, Rashid Dallaev, Klára Častková and Ştefan Ţălu
Polymers 2025, 17(3), 330; https://doi.org/10.3390/polym17030330 - 25 Jan 2025
Cited by 2 | Viewed by 1302
Abstract
This study focused on the development of a suitable synthetic polymer scaffold for bone tissue engineering applications within the biomedical field. The investigation centered on electrospun polyvinylidene fluoride (PVDF) nanofibers, examining their intrinsic properties and biocompatibility with the human osteosarcoma cell line Saos-2. [...] Read more.
This study focused on the development of a suitable synthetic polymer scaffold for bone tissue engineering applications within the biomedical field. The investigation centered on electrospun polyvinylidene fluoride (PVDF) nanofibers, examining their intrinsic properties and biocompatibility with the human osteosarcoma cell line Saos-2. The influence of oxygen, argon, or combined plasma treatment on the scaffold’s characteristics was explored. A comprehensive design strategy is outlined for the fabrication of a suitable PVDF scaffold, encompassing the optimization of electrospinning parameters with rotating collector and plasma etching conditions to facilitate a subsequent osteoblast cell culture. The proposed methodology involves the fabrication of the PVDF tissue scaffold, followed by a rigorous series of fundamental analyses encompassing the structural integrity, chemical composition, wettability, crystalline phase content, and cell adhesion properties. Full article
(This article belongs to the Special Issue Polymer Composites for Biomedical Applications)
Show Figures

Graphical abstract

12 pages, 16546 KiB  
Article
Silica Waveguide Thermo-Optic Mode Switch with Bimodal S-Bend
by Zhentao Yao, Manzhuo Wang, Yue Zhang, Zhaoyang Sun, Xiaoqiang Sun, Yuanda Wu and Daming Zhang
Nanomaterials 2024, 14(24), 1991; https://doi.org/10.3390/nano14241991 (registering DOI) - 12 Dec 2024
Viewed by 812
Abstract
A silica waveguide thermo-optic mode switch with small radius bimodal S-bends is demonstrated in this study. The cascaded multimode interference coupler is adopted to implement the E11 and E21 mode selective output. The beam propagation method is used in design optimization. [...] Read more.
A silica waveguide thermo-optic mode switch with small radius bimodal S-bends is demonstrated in this study. The cascaded multimode interference coupler is adopted to implement the E11 and E21 mode selective output. The beam propagation method is used in design optimization. Standard CMOS processing of ultraviolet photolithography, chemical vapor deposition, and plasma etching are adopted in fabrication. Detailed characterizations on the prepared switch are performed to confirm the precise fabrication. The measurement results show that within the wavelength range from 1530 to 1575 nm, for the E11 mode input, the switch exhibits an extinction ratio of ≥13.1 dB and a crosstalk ≤−22.8 dB at an electrical driving power of 284.8 mW, while for the E21 mode input, the extinction ratio is ≥15.5 dB and the crosstalk is ≤−18.1 dB at an electrical driving power of 282.4 mW. These results prove the feasibility of multimode S-bends in mode switching. The favorable performance of the demonstrated switch promises good potential for on-chip mode routing. Full article
Show Figures

Figure 1

21 pages, 32765 KiB  
Article
Sustainable Synthesis of Diamond-like Carbon and Giant Carbon Allotropes from Hyperbaric Methanol–Water Mixtures Through the Critical Point
by Mohamad E. Alabdulkarim, Vibhor Thapliyal and James L. Maxwell
J. Manuf. Mater. Process. 2024, 8(6), 286; https://doi.org/10.3390/jmmp8060286 - 9 Dec 2024
Cited by 2 | Viewed by 1303
Abstract
Freeform carbon fibres were 3D-printed from CH3OH:H2O mixtures using hyperbaric-pressure laser chemical vapour deposition (HP-LCVD). The experiment overlapped a region of known diamond growth, with the objective of depositing diamond-like carbon without the use of plasmas or hot filaments. [...] Read more.
Freeform carbon fibres were 3D-printed from CH3OH:H2O mixtures using hyperbaric-pressure laser chemical vapour deposition (HP-LCVD). The experiment overlapped a region of known diamond growth, with the objective of depositing diamond-like carbon without the use of plasmas or hot filaments. A high-pressure regime was investigated for the first time through the precursor’s critical point. Seventy-two C-fibres were grown from 13 different CH3OH:H2O mixtures at total pressures between 7.8 and 180 bar. Maximum steady-state axial growth rates of 14 µm/s were observed. Growth near the critical point was suppressed, ostensibly due to thermal diffusion and selective etching. In addition to nanostructured graphite, various carbon allotropes were synthesised at/within the outer surface of the fibres, including diamond-like carbon, graphite polyhedral crystal, and tubular graphite cones. Several allotropes were oversized compared to structures previously reported. Raman spectral pressure–temperature (P-T) maps and a pictorial P-T phase diagram were compiled over a broad range of process conditions. Trends in the Raman ID/IG and I2D/IG intensity ratios were observed and regions of optimal growth for specific allotropes were identified. It is intended that this work provide a basis for others in optimising the growth of specific carbon allotropes from methanol using HP-LCVD and similar CVD processes. Full article
Show Figures

Figure 1

40 pages, 16582 KiB  
Review
Cold Plasma Techniques for Sustainable Material Synthesis and Climate Change Mitigation: A Review
by Nitesh Joshi and Sivachandiran Loganathan
Catalysts 2024, 14(11), 802; https://doi.org/10.3390/catal14110802 - 8 Nov 2024
Cited by 4 | Viewed by 2549
Abstract
In recent years, the emission of greenhouse gases (GHGs) has increased significantly, contributing to global warming. Among these GHGs, CH4, CO2, and CO are particularly potent contributors. Remediation techniques primarily rely on materials capable of capturing, storing, and converting [...] Read more.
In recent years, the emission of greenhouse gases (GHGs) has increased significantly, contributing to global warming. Among these GHGs, CH4, CO2, and CO are particularly potent contributors. Remediation techniques primarily rely on materials capable of capturing, storing, and converting these gases. Catalytic processes, particularly heterogeneous catalysis, are essential to chemical and petrochemical industries as well as environmental remediation. Due to the growing demand for catalysts, efforts are being made to reduce energy consumption and make technologies more environmentally friendly. Green chemistry emphasizes minimizing the use of hazardous reactants and harmful solvents in chemical processes. Achieving these principles should be paired with processes that reduce time and costs in catalyst preparation while improving their efficiency. Non-thermal plasma (NTP) has been widely used for the preparation of supported metal catalysts. NTP has attracted significant attention for its ability to improve the physicochemical properties of catalysts, enhancing process efficiency through low-temperature operation and shorter processing times. NTP has been applied to various catalyst synthesis techniques, including reduction, oxidation, metal oxide doping, surface etching, coating, alloy formation, surface treatment, and surface cleaning. Plasma-prepared transition-metal catalysts offer advantages over conventionally prepared catalysts due to their unique material properties. These properties enhance catalytic activity by lowering the activation energy barrier, improving stability, and increasing conversion and selectivity compared to untreated samples. This review demonstrates how plasma activation modifies material properties and, based on extensive literature, illustrates its potential to combat climate change by converting CO2, CH4, CO, and other gases, showcasing the benefits of plasma-treated materials and catalysts. A succinct introduction to this review outlines the advantages of plasma-based synthesis and modification over traditional synthesis techniques. The introduction also highlights the various types of plasma and their physical characteristics across different factors. Additionally, this review addresses methods by which materials are synthesized and modified using plasma. The latter section of this review discusses the use of non-thermal plasma for greenhouse gas mitigation, covering applications such as the dry reforming of CH4, CO and CH4 oxidation, CO2 reduction, and other uses of plasma-modified catalysts. Full article
Show Figures

Graphical abstract

10 pages, 6340 KiB  
Article
Application of Graphene in Acoustoelectronics
by Dmitry Roshchupkin, Oleg Kononenko, Viktor Matveev, Kirill Pundikov and Evgenii Emelin
Nanomaterials 2024, 14(21), 1720; https://doi.org/10.3390/nano14211720 - 28 Oct 2024
Viewed by 1073
Abstract
An interdigital transducer structure was fabricated from multilayer graphene on the surface of the YZ-cut of a LiNbO3 ferroelectric crystal. The multilayer graphene was prepared by CVD method and transferred onto the surface of the LiNbO3 substrate. The properties [...] Read more.
An interdigital transducer structure was fabricated from multilayer graphene on the surface of the YZ-cut of a LiNbO3 ferroelectric crystal. The multilayer graphene was prepared by CVD method and transferred onto the surface of the LiNbO3 substrate. The properties of the multilayer graphene film were studied by Raman spectroscopy. A multilayer graphene (MLG) interdigital transducer (IDT) structure for surface acoustic wave (SAW) excitation with a wavelength of Λ=60 μm was fabricated on the surface of the LiNbO3 crystal using electron beam lithography (EBL) and plasma chemical etching. The amplitude–frequency response of the SAW delay time line was measured. The process of SAW excitation by graphene IDT was visualized by scanning electron microscopy. It was demonstrated that the increase in the SAW velocity using graphene was related to the minimization of the IDT mass. Full article
Show Figures

Figure 1

23 pages, 3089 KiB  
Review
Recent Advances in Black Silicon Surface Modification for Enhanced Light Trapping in Photodetectors
by Abdulrahman Alsolami, Hadba Hussain, Radwan Noor, Nourah AlAdi, Nada Almalki, Abdulaziz Kurdi, Thamer Tabbakh, Adnan Zaman, Salman Alfihed and Jing Wang
Appl. Sci. 2024, 14(21), 9841; https://doi.org/10.3390/app14219841 - 28 Oct 2024
Cited by 5 | Viewed by 2285
Abstract
The intricate nanostructured surface of black silicon (BSi) has advanced photodetector technology by enhancing light absorption. Herein, we delve into the latest advancements in BSi surface modification techniques, specifically focusing on their profound impact on light trapping and resultant photodetector performance improvement. Established [...] Read more.
The intricate nanostructured surface of black silicon (BSi) has advanced photodetector technology by enhancing light absorption. Herein, we delve into the latest advancements in BSi surface modification techniques, specifically focusing on their profound impact on light trapping and resultant photodetector performance improvement. Established methods such as metal-assisted chemical etching, electrochemical etching, reactive ion etching, plasma etching, and laser ablation are comprehensively analyzed, delving into their mechanisms and highlighting their respective advantages and limitations. We also explore the impact of BSi on the emerging applications in silicon (Si)-based photodetectors, showcasing their potential for pushing the boundaries of light-trapping efficiency. Throughout this review, we critically evaluate the trade-offs between fabrication complexity and performance enhancement, providing valuable insights for future development in this rapidly evolving field. This knowledge on the BSi surface modification and its applications in photodetectors can play a crucial role in future implementations to substantially boost light trapping and the performance of Si-based optical detection devices consequently. Full article
Show Figures

Figure 1

11 pages, 3489 KiB  
Article
Corrosion of Steels in Liquid Bismuth–Lithium Alloy
by Aleksander V. Abramov, Ruslan R. Alimgulov, Anastasia I. Trubcheninova, Vladimir A. Volkovich and Ilya B. Polovov
Metals 2024, 14(11), 1215; https://doi.org/10.3390/met14111215 - 25 Oct 2024
Viewed by 1135
Abstract
The corrosion resistance of several types of steel (AISI 410, 321, 316L, 904L) was determined in a liquid Bi-Li (5 mol.%) alloy (BLA) medium at 650 °C combining gravimetric analysis of steel samples and chemical analysis of corrosion products’ content accumulating in the [...] Read more.
The corrosion resistance of several types of steel (AISI 410, 321, 316L, 904L) was determined in a liquid Bi-Li (5 mol.%) alloy (BLA) medium at 650 °C combining gravimetric analysis of steel samples and chemical analysis of corrosion products’ content accumulating in the BLA phase. Energy dispersive X-ray spectrometry, scanning electron microscopy, X-ray fluorescence and inductively coupled plasma–atomic emission spectrometry analysis were employed for characterizing steel structure and alloy composition. AISI 321, 316L and 904L nickel-containing corrosion-resistant steels underwent severe corrosion in BLA, and their corrosion rates depended on the nickel content in the material. AISI 410 steel exhibited the lowest corrosion rate of all the materials investigated, and this type of steel can be considered as a reasonable structural material for work in BLA environments. The corrosion rates of AISI 410, 321, 316L and 904L steels in BLA at 650 °C were 77, 244, 252 and 280 µm/year, respectively. It was also found that chromium was etched more intensively than iron from the surface of steel samples. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

14 pages, 6492 KiB  
Article
Alternative Treatments for Zirconium Oxide to Compare Commonly Used Surface Treatments to Determine Which Has the Least Effect on the Phase Transformation
by Beata Śmielak and Leszek Klimek
Materials 2024, 17(21), 5175; https://doi.org/10.3390/ma17215175 - 24 Oct 2024
Viewed by 1133
Abstract
Traditional mechanical processing of zirconium leads to an unfavorable transformation, from a metastable tetragonal phase to a monoclinic phase (t→m), which weakens the structure of the material and subsequently leads to damage to the prosthetic restoration. The aim of this research is to [...] Read more.
Traditional mechanical processing of zirconium leads to an unfavorable transformation, from a metastable tetragonal phase to a monoclinic phase (t→m), which weakens the structure of the material and subsequently leads to damage to the prosthetic restoration. The aim of this research is to compare commonly used surface treatments to determine which has the least effect on t→m. Thirty cylindrical samples made of sintered zirconium were divided into six groups based on the following treatments: polishing, grinding, sandblasting, chemical etching, laser structuring or dry plasma etching. After surface treatment, the samples were subjected to the following tests: X-Ray Diffraction, microscopic examination, surface wettability and surface roughness measurements. Chemical etching, laser structuring and plasma etching significantly reduce the content of the monoclinic phase. All surface treatments significantly reduced the final amount of the monoclinic phase. However, chemical etching did not provide sufficient surface roughness. Both laser and plasma processing offer the advantage of creating structural patterns on the surface of elements. However, as plasma etching requires a mask to obtain the appropriate pattern on the surface, it seems that laser processing offers more and varied structuring possibilities. Laser structuring is easier to control and more economical than the other methods. Full article
(This article belongs to the Special Issue Advanced Materials for Oral Application (3rd Edition))
Show Figures

Figure 1

21 pages, 19406 KiB  
Article
Optimizing Surface Characteristics of Stainless Steel (SUS) for Enhanced Adhesion in Heterojunction Bilayer SUS/Polyamide 66 Composites
by Sang-Seok Yun, Wanjun Yoon and Keon-Soo Jang
Polymers 2024, 16(19), 2737; https://doi.org/10.3390/polym16192737 - 27 Sep 2024
Cited by 2 | Viewed by 1057
Abstract
The increasing environmental concerns and stringent regulations targeting emissions and energy efficiency necessitate innovative material solutions that not only comply with these standards but also enhance performance and sustainability. This study investigates the potential of heterojunction bilayer composites comprising stainless steel (SUS) and [...] Read more.
The increasing environmental concerns and stringent regulations targeting emissions and energy efficiency necessitate innovative material solutions that not only comply with these standards but also enhance performance and sustainability. This study investigates the potential of heterojunction bilayer composites comprising stainless steel (SUS) and polyamide 66 (PA66), aiming to improve fuel efficiency and reduce harmful emissions by achieving lightweight materials. Joining a polymer to SUS is challenging due to the differing physical and chemical properties of each material. To address this, various surface treatment techniques such as blasting, plasma, annealing, and etching were systematically studied to determine their effects on the microstructural, chemical, and mechanical properties of the SUS surface, thereby identifying mechanisms that improve adhesion. Chemical etching using HNO3/HCl and CuSO4/HCl increased surface roughness and mechanical properties, but these properties decreased after annealing. In contrast, K3Fe(CN)6/NaOH treatment increased the lap shear strength after annealing. Blasting increased surface roughness and toughness with increasing spray pressure and further enhanced these properties after annealing. Contact angle measurements indicated that the hydrophilicity of the SUS surface improved with surface treatment and further improved due to microstructure formation after annealing. This study demonstrates that customized surface treatments can significantly enhance the interfacial adhesion and mechanical properties of SUS/polymer heterojunction bilayer composites, and further research is recommended to explore the long-term stability and durability of these treatments under various environmental conditions. Full article
(This article belongs to the Special Issue Functional Hybrid Polymeric Composites, 2nd Edition)
Show Figures

Figure 1

18 pages, 3680 KiB  
Article
Innovative PEEK in Dentistry of Enhanced Adhesion and Sustainability through AI-Driven Surface Treatments
by Mattew A. Olawumi, Francis T. Omigbodun, Bankole I. Oladapo, Temitope Olumide Olugbade and David B. Olawade
Bioengineering 2024, 11(9), 924; https://doi.org/10.3390/bioengineering11090924 - 14 Sep 2024
Cited by 2 | Viewed by 3002
Abstract
This research investigates using Polyether ether ketone (PEEK) in dental prosthetics, focusing on enhancing the mechanical properties, adhesion capabilities, and environmental sustainability through AI-driven data analysis and advanced surface treatments. The objectives include improving PEEK’s adhesion to dental types of cement, assessing its [...] Read more.
This research investigates using Polyether ether ketone (PEEK) in dental prosthetics, focusing on enhancing the mechanical properties, adhesion capabilities, and environmental sustainability through AI-driven data analysis and advanced surface treatments. The objectives include improving PEEK’s adhesion to dental types of cement, assessing its biocompatibility, and evaluating its environmental impact compared to traditional materials. The methodologies employed involve surface treatments such as plasma treatment and chemical etching, mechanical testing under ASTM standards, biocompatibility assessments, and lifecycle analysis. AI models predict and optimize mechanical properties based on extensive data. Significant findings indicate that surface-treated PEEK exhibits superior adhesion properties, maintaining robust mechanical integrity with no cytotoxic effects and supporting its use in direct contact with human tissues. Lifecycle analysis suggests PEEK offers a reduced environmental footprint due to lower energy-intensive production processes and recyclability. AI-driven analysis further enhances the material’s performance prediction and optimization, ensuring better clinical outcomes. The study concludes that with improved surface treatments and AI optimization, PEEK is a promising alternative to conventional dental materials, combining enhanced performance with environmental sustainability, paving the way for broader acceptance in dental applications. Full article
Show Figures

Figure 1

9 pages, 1472 KiB  
Article
Effect of Discharge Gas Composition on SiC Etching in an HFE-347mmy/O2/Ar Plasma
by Sanghyun You, Eunjae Sun, Heeyeop Chae and Chang-Koo Kim
Materials 2024, 17(16), 3917; https://doi.org/10.3390/ma17163917 - 7 Aug 2024
Viewed by 3095
Abstract
This study explores the impact of varying discharge gas compositions on the etching performance of silicon carbide (SiC) in a heptafluoroisopropyl methyl ether (HFE-347mmy)/O2/Ar plasma. SiC is increasingly favored for high-temperature and high-power applications due to its wide bandgap and high [...] Read more.
This study explores the impact of varying discharge gas compositions on the etching performance of silicon carbide (SiC) in a heptafluoroisopropyl methyl ether (HFE-347mmy)/O2/Ar plasma. SiC is increasingly favored for high-temperature and high-power applications due to its wide bandgap and high dielectric strength, but its chemical stability makes it challenging to etch. This research explores the use of HFE-347mmy as a low-global-warming-potential (GWP) alternative to the conventional high-GWP fluorinated gasses that are typically used in plasma etching. By examining the behavior of SiC etch rates and analyzing the formation of fluorocarbon films and Si-O bonds, this study provides insights into optimizing plasma conditions for effective SiC etching, while addressing environmental concerns associated with high-GWP gasses. Full article
Show Figures

Figure 1

8 pages, 2224 KiB  
Communication
Improvement of Laser Damage Resistance of Fused Silica Using Oxygen-Aided Reactive Ion Etching
by Ting Shao, Jun Zhang, Zhaohua Shi, Weihua Li, Ping Li, Laixi Sun and Wanguo Zheng
Photonics 2024, 11(8), 726; https://doi.org/10.3390/photonics11080726 - 4 Aug 2024
Cited by 1 | Viewed by 1379
Abstract
Reactive ion etching (RIE) with fluorocarbon plasma is a facile method to tracelessly remove the subsurface damage layer of fused silica but has the drawback of unsatisfactory improvement in laser damage resistance due to the induction of secondary defects. This work proposes to [...] Read more.
Reactive ion etching (RIE) with fluorocarbon plasma is a facile method to tracelessly remove the subsurface damage layer of fused silica but has the drawback of unsatisfactory improvement in laser damage resistance due to the induction of secondary defects. This work proposes to incorporate O2 into the CHF3/Ar feedstock of RIE to suppress the formation of secondary defects during the etching process. Experimental results confirm that both the chemical structural defects, such as oxygen-deficient center (ODC) and non-bridging oxygen hole center (NBOHC) defects, and the impurity element defects, such as fluorine, are significantly reduced with this method. Laser-induced damage resistance is consequently greatly improved, with the 0% probability damage threshold increasing by 121% compared to the originally polished sample and by 41% compared to the sample treated with conventional RIE. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

Back to TopTop