Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = plasma RONS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5123 KiB  
Article
Tailored Effects of Plasma-Activated Water on Hair Structure Through Comparative Analysis of Nitrate-Rich and Peroxide-Rich Formulations Across Different Hair Types
by Antonia de Souza Leal, Michaela Shiotani Marcondes, Ariane Leite, Douglas Leite, Clodomiro Alves Junior, Laurita dos Santos and Rodrigo Pessoa
Appl. Sci. 2025, 15(15), 8573; https://doi.org/10.3390/app15158573 (registering DOI) - 1 Aug 2025
Viewed by 201
Abstract
Plasma-activated water (PAW), enriched with reactive oxygen and nitrogen species (RONS), presents oxidative and antimicrobial characteristics with potential in cosmetic applications. This study examined the effects of two PAW formulations—nitrate-rich (PAW-N) and peroxide-rich (PAW-P)—on human hair types classified as straight (Type 1), wavy [...] Read more.
Plasma-activated water (PAW), enriched with reactive oxygen and nitrogen species (RONS), presents oxidative and antimicrobial characteristics with potential in cosmetic applications. This study examined the effects of two PAW formulations—nitrate-rich (PAW-N) and peroxide-rich (PAW-P)—on human hair types classified as straight (Type 1), wavy (Type 2), and coily/kinky (Type 4). The impact of PAW on hair structure and chemistry was evaluated using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV–Vis spectrophotometry, and physicochemical analyses of the liquids (pH, ORP, conductivity, and TDS). PAW-N, with high nitrate content (~500 mg/L), low pH (2.15), and elevated conductivity (6244 µS/cm), induced significant damage to porous hair types, including disulfide bond cleavage, protein oxidation, and lipid degradation, as indicated by FTIR and EDS data. SEM confirmed severe cuticle disruption. In contrast, PAW-P, containing >25 mg/L of hydrogen peroxide and exhibiting milder acidity and lower ionic strength, caused more localized and controlled oxidation with minimal morphological damage. Straight hair showed greater resistance to both treatments, while coily and wavy hair were more susceptible, particularly to PAW-N. These findings suggest that the formulation and ionic profile of PAW should be matched to hair porosity for safe oxidative treatments, supporting the use of PAW-P as a gentler alternative in hair care technologies. Full article
Show Figures

Figure 1

28 pages, 8047 KiB  
Article
Hybrid Dielectric Barrier Discharge Reactor: Production of Reactive Oxygen–Nitrogen Species in Humid Air
by Dariusz Korzec, Florian Freund, Christian Bäuml, Patrik Penzkofer, Oliver Beier, Andreas Pfuch, Klaus Vogelsang, Frank Froehlich and Stefan Nettesheim
Plasma 2025, 8(3), 27; https://doi.org/10.3390/plasma8030027 - 6 Jul 2025
Viewed by 624
Abstract
Reactive oxygen–nitrogen species (RONS) production in a Peltier-cooled hybrid dielectric barrier discharge (HDBD) reactor operated with humid air is characterized. Fourier-transform infrared spectroscopy (FTIR) is used to determine the RONS in the HDBD-produced gases. The presence of molecules O3, NO2 [...] Read more.
Reactive oxygen–nitrogen species (RONS) production in a Peltier-cooled hybrid dielectric barrier discharge (HDBD) reactor operated with humid air is characterized. Fourier-transform infrared spectroscopy (FTIR) is used to determine the RONS in the HDBD-produced gases. The presence of molecules O3, NO2, N2O, N2O5, and HNO3 is evaluated. The influence of HDBD reactor operation parameters on the FTIR result is discussed. The strongest influence of Peltier cooling on RONS chemistry is reached at conditions related to a high specific energy input (SEI): high voltage and duty cycle of plasma width modulation (PWM), and low gas flow. Both PWM and Peltier cooling can achieve a change in the chemistry from oxygen-based to nitrogen-based. N2O5 and HNO3 are detected at a low humidity of 7% in the reactor input air but not at humidity exceeding 90%. In addition to the FTIR analysis, the plasma-activated water (PAW) is investigated. PAW is produced by bubbling the HDBD plasma gas through 12.5 mL of distilled water in a closed-loop circulation at a high SEI. Despite the absence of N2O5 and HNO3 in the gas phase, the acidity of the PAW is increased. The pH value decreases on average by 0.12 per minute. Full article
(This article belongs to the Special Issue Processes in Atmospheric-Pressure Plasmas—2nd Edition)
Show Figures

Figure 1

16 pages, 2976 KiB  
Article
Extending the Vase Life of Vanda Orchid Cut Flowers Using Plasma Technology
by Choncharoen Sawangrat, Soraya Ruamrungsri, Dheerawan Boonyawan, Takron Opassuwan, Sa-nguansak Thanapornpoonpong, Suchanuch Jaipinta, Chaiartid Inkham and Kanokwan Panjama
Horticulturae 2025, 11(6), 669; https://doi.org/10.3390/horticulturae11060669 - 11 Jun 2025
Viewed by 705
Abstract
Flower senescence during transport is a major concern for exporters, as physiological disorders reduce quality and price. Extending vase life is crucial, and while 1-MCP is widely used, it requires low temperatures and is less effective in disease control. Cold plasma generated by [...] Read more.
Flower senescence during transport is a major concern for exporters, as physiological disorders reduce quality and price. Extending vase life is crucial, and while 1-MCP is widely used, it requires low temperatures and is less effective in disease control. Cold plasma generated by dielectric barrier discharge produces reactive oxygen and nitrogen species (RONS), offering an alternative method for preserving cut flowers. This study compared the effectiveness of cold plasma and 1-MCP treatments on the vase life of Vanda ‘Pachara Blue’ orchids. Flowers were treated with T1 (control at 25 °C), T2 (1-MCP), and T3 (cold plasma). Both 1-MCP and cold plasma significantly reduced ethylene production (26.15 and 25.20 µL C2H4/kg/hr, respectively) and respiration rate (63.92 and 57.44 mg CO2/kg/hr, respectively) compared to the control (40.93 µL C2H4/kg/hr and 118.21 mg CO2/kg/hr). Vase life was extended to 19.33 days in both treatments, an 87.12% increase over the control (10.33 days). Additionally, cold plasma slightly improved water uptake and reduced petal discoloration. These findings indicate that cold plasma is a promising alternative to 1-MCP, offering effective flower preservation without the need for low-temperature conditions and potential additional benefits in floral quality. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

24 pages, 11315 KiB  
Article
Enhancing Ferroptosis in Lung Adenocarcinoma Cells via the Synergistic Action of Nonthermal Biocompatible Plasma and a Bioactive Phenolic Compound
by Sabnaj Khanam, Young June Hong, Youngsun Kim, Eun Ha Choi and Ihn Han
Biomolecules 2025, 15(5), 691; https://doi.org/10.3390/biom15050691 - 9 May 2025
Cited by 1 | Viewed by 1336
Abstract
Para-coumaric acid (p-CA) is a phenolic compound that has antioxidant, anti-inflammatory, and anticancer properties which make it potential for cancer treatment. However, its effectiveness has been limited by poor solubility, rapid metabolism, and poor absorptivity. Nonthermal biocompatible pressure plasma (NBP) has gained attention [...] Read more.
Para-coumaric acid (p-CA) is a phenolic compound that has antioxidant, anti-inflammatory, and anticancer properties which make it potential for cancer treatment. However, its effectiveness has been limited by poor solubility, rapid metabolism, and poor absorptivity. Nonthermal biocompatible pressure plasma (NBP) has gained attention as a cancer treatment due to its ability to generate reactive oxygen and nitrogen species (RONS), inducing oxidative stress that damages cancer cells. This study aimed to investigate the combined effect of NBP and p-CA on the induction of ferroptosis in lung adenocarcinoma via the GPX4, xCT, and NRF2 pathways. H460 and A549 lung adenocarcinoma cells as well as normal lung cells (MRC5) were treated with p-CA, NBP, and their combination. Cell movement, intracellular RONS levels, and lipid peroxidation, along with apoptosis and ferroptosis-related gene expression, were evaluated by co-treatment. Co-treatment also significantly elevated NO2, NO3, and H2O2 levels and reduced cancer cell (H460, A549) viability (26, 31%) without affecting normal cells MRC5 (7%). Elevated MDA levels and changed expression of ferroptotic proteins indicated mitochondrial dysfunction, oxidative damage, lipid peroxidation, and DNA damage, which resulted in the induction of ferroptosis. These findings reveal a novel ferroptosis mechanism, emphasizing co-treatment for delivering bioavailable natural anticancer drugs. Full article
(This article belongs to the Special Issue Signaling Pathways as Therapeutic Targets for Cancer)
Show Figures

Figure 1

20 pages, 5848 KiB  
Article
Exploring the Role of Microplasma for Controlling Cellular Senescence in Saccharomyces cerevisiae
by Farhana Begum, Jaroslav Kristof, Md Jahangir Alam, Abubakar Hamza Sadiq, Mahedi Hasan, Kinoshita Soichiro and Kazuo Shimizu
Molecules 2025, 30(9), 1970; https://doi.org/10.3390/molecules30091970 - 29 Apr 2025
Cited by 1 | Viewed by 551
Abstract
Cellular senescence plays a pivotal role in aging and stress response mechanisms. Controlling cellular senescence is essential for developing novel techniques to prevent aging or aging-related diseases and promote a healthy lifespan. This study explores the efficiency of cold atmospheric microplasma (CAM) for [...] Read more.
Cellular senescence plays a pivotal role in aging and stress response mechanisms. Controlling cellular senescence is essential for developing novel techniques to prevent aging or aging-related diseases and promote a healthy lifespan. This study explores the efficiency of cold atmospheric microplasma (CAM) for controlling cellular senescence in yeast Saccharomyces cerevisiae. Reactive oxygen and nitrogen species (RONS) generated by CAM influence key processes, such as the regulation of oxidative stress, alterations in membrane potential, and senescence-related epigenetic modifications. As a marker of cellular senescence, the expression of β-galactosidase was assessed in response to different plasma treatments. At a frequency of 1 kHz and a discharge voltage of 5 kVp-p, a significant reduction in β-galactosidase activity was observed in cells treated for 10 s and 30 s compared to the control, indicating a reduction in cellular senescence. Additionally, cell viability, metabolic activity, and plasma membrane potential were also found to be higher for the treated cells compared to the control under the same conditions. This study confirms that a physiologically tolerable level of ROS and RNS is sufficient for cellular signaling, but not for damage induction. The findings from this study provide insights on the potential of microplasma as a tool for controlling cellular senescence and the development of therapeutic innovations involving eukaryotic cells. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

15 pages, 4340 KiB  
Article
Voltage Dependent Effect of Spiral Wound Plasma Discharge on DBC1.2 Cellular Integrity
by Abubakar Hamza Sadiq, Md Jahangir Alam, Mahedi Hasan, Farhana Begum, Tomoki Yamano, Jaroslav Kristof and Kazuo Shimizu
Plasma 2025, 8(2), 15; https://doi.org/10.3390/plasma8020015 - 12 Apr 2025
Viewed by 1079
Abstract
Low temperature plasmas (LTPs) generated at atmospheric pressure and room temperature have gained increasing attention in biomedical research due to their ability to control cellular behavior through the production of reactive oxygen and nitrogen species (RONS), electric fields, and UV radiation. Among several [...] Read more.
Low temperature plasmas (LTPs) generated at atmospheric pressure and room temperature have gained increasing attention in biomedical research due to their ability to control cellular behavior through the production of reactive oxygen and nitrogen species (RONS), electric fields, and UV radiation. Among several LTP configurations, dielectric barrier discharge (DBD) plasma has been extensively studied for its ability to stimulate controlled biological effects while maintaining low gas temperature, making it suitable for cell-based applications. This study designed a novel spiral-wound DBD plasma device to investigate the voltage-dependent effects of plasma discharge on DBC1.2 epithelial cells. Plasma was applied at 2 kVp-p, 3 kVp-p, and 4 kVp-p to evaluate its effect on cellular permeability, mitochondrial activity, viability, and apoptosis. FITC-dextran-70 (FD-70, MW: 70 kDa) was used as a model permeation marker to assess cellular uptake. The results showed a voltage-dependent increase in FD-70 uptake, suggesting improved plasma-assisted drug delivery. The cell mitochondrial activity, evaluated with a MT-1 MitoMP detection kit, revealed that plasma exposure at 2 kVp-p and 3 kVp-p slightly enhanced mitochondrial membrane potential (MMP), signifying increased metabolic and mitochondrial activity, whereas exposure at 4 kVp-p led to a reduction in MMP, suggesting oxidative stress and early apoptosis. Early and late apoptosis was further assessed using FITC Annexin-V and propidium iodide (PI). The results showed enhanced cell viability and a reduced apoptotic cell at 2 kVp-p and 3 kVp-p plasma exposure when compared to the control. However, at 4 kV, there was a decline in cell viability and an increase in apoptosis, suggesting a shift towards plasma-induced cytotoxicity. This study established a safe plasma exposure threshold for DBC1.2 cells and explored the potential use of a spiral-wound DBD plasma device for biomedical applications, particularly in drug delivery and cell modulation. Full article
(This article belongs to the Special Issue Recent Advances of Dielectric Barrier Discharges)
Show Figures

Graphical abstract

19 pages, 888 KiB  
Review
Cold Atmospheric Plasma in Oncology: A Review and Perspectives on Its Application in Veterinary Oncology
by André Gustavo Alves Holanda, Luiz Emanuel Campos Francelino, Carlos Eduardo Bezerra de Moura, Clodomiro Alves Junior, Julia Maria Matera and Genilson Fernandes de Queiroz
Animals 2025, 15(7), 968; https://doi.org/10.3390/ani15070968 - 27 Mar 2025
Viewed by 977
Abstract
Cold atmospheric plasma (CAP) is emerging as an innovative approach for cancer treatment because of its selectivity for malignant cells and absence of significant adverse effects. While modern oncological therapies face challenges such as tumor heterogeneity and treatment resistance, CAP presents itself as [...] Read more.
Cold atmospheric plasma (CAP) is emerging as an innovative approach for cancer treatment because of its selectivity for malignant cells and absence of significant adverse effects. While modern oncological therapies face challenges such as tumor heterogeneity and treatment resistance, CAP presents itself as a low-cost and environmentally sustainable alternative. Its mechanisms of action involve reactive oxygen and nitrogen species (RONS), UV radiation, and electromagnetic fields, which induce cell death. Preclinical and clinical studies have demonstrated the efficacy of CAP, with devices such as dielectric barrier discharge (DBD) and the plasma jet developed to minimize damage to healthy cells. Some CAP devices are already approved for clinical use, showing safety and efficacy. However, the standardization of treatments remains a challenge due to the variety of devices and parameters used. Although CAP has shown promising cytotoxic effects in vitro and in animal models, especially in different cancer cell lines, further research, particularly in vivo and in veterinary medicine, is needed to optimize its clinical use and maximize its efficacy in combating cancer. Full article
Show Figures

Figure 1

34 pages, 4325 KiB  
Review
Boosting Aeroponic System Development with Plasma and High-Efficiency Tools: AI and IoT—A Review
by Waqar Ahmed Qureshi, Jianmin Gao, Osama Elsherbiny, Abdallah Harold Mosha, Mazhar Hussain Tunio and Junaid Ahmed Qureshi
Agronomy 2025, 15(3), 546; https://doi.org/10.3390/agronomy15030546 - 23 Feb 2025
Cited by 5 | Viewed by 3703
Abstract
Sustainable agriculture faces major issues with resource efficiency, nutrient distribution, and plant health. Traditional soil-based and soilless farming systems encounter issues including excessive water use, insufficient nutrient uptake, nitrogen deficiency, and restricted plant development. According to the previous literature, aeroponic systems accelerate plant [...] Read more.
Sustainable agriculture faces major issues with resource efficiency, nutrient distribution, and plant health. Traditional soil-based and soilless farming systems encounter issues including excessive water use, insufficient nutrient uptake, nitrogen deficiency, and restricted plant development. According to the previous literature, aeroponic systems accelerate plant growth rates, improve root oxygenation, and significantly enhance water use efficiency, particularly when paired with both low- and high-pressure misting systems. However, despite these advantages, they also present certain challenges. A major drawback is the inefficiency of nitrogen fixation, resulting in insufficient nutrient availability and heightened plant stress from uncontrolled misting, which ultimately reduces yield. Many studies have investigated plasma uses in both soil-based and soilless plant cultures; nevertheless, however, its function in aeroponics remains unexplored. Therefore, the present work aims to thoroughly investigate and review the integration of plasma-activated water (PAW) and plasma-activated mist (PAM) in aeroponics systems to solve important problems. A review of the current literature discloses that PAW and PAM expand nitrogen fixation, promote nutrient efficiency, and modulate microbial populations, resulting in elevated crop yields and enhanced plant health, akin to soil-based and other soilless systems. Reactive oxygen and nitrogen species (RONS) produced by plasma treatments improve nutrient bioavailability, root development, and microbial equilibrium, alleviating critical challenges in aeroponics, especially within fine-mist settings. This review further examines artificial intelligence (AI) and the Internet of Things (IoT) in aeroponics. Models driven by AI enable the accurate regulation of fertilizer concentrations, misting cycles, temperature, and humidity, as well as real-time monitoring and predictive analytics. IoT-enabled smart farming systems employ sensors for continuous nutrient monitoring and gas detection (e.g., NO2, O3, NH3), providing automated modifications to enhance aeroponic efficiency. Based on a brief review of the current literature, this study concludes that the future integration of plasma technology with AI and IoT may address the limitations of aeroponics. The integration of plasma technology with intelligent misting and data-driven control systems can enhance aeroponic systems for sustainable and efficient agricultural production. This research supports the existing body of research that advocates for plasma-based innovations and intelligent agricultural solutions in precision farming. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

11 pages, 3338 KiB  
Technical Note
Chemical Analysis of Plasma-Activated Culture Media by Ion Chromatography
by Marcello Locatelli, Miryam Perrucci, Marwa Balaha, Tirtha-Raj Acharya, Nagendra-Kumar Kaushik, Eun-Ha Choi, Monica Rapino and Vittoria Perrotti
Pharmaceuticals 2025, 18(2), 199; https://doi.org/10.3390/ph18020199 - 1 Feb 2025
Cited by 1 | Viewed by 1146
Abstract
Background: Currently, the procedures and methods applied in biological and medical fields for the determination of reactive oxygen and nitrogen species (RONS), primarily rely on spectrophotometric techniques, which involve the use of colorimetric reagents. While these methods are widely accepted, they exhibit [...] Read more.
Background: Currently, the procedures and methods applied in biological and medical fields for the determination of reactive oxygen and nitrogen species (RONS), primarily rely on spectrophotometric techniques, which involve the use of colorimetric reagents. While these methods are widely accepted, they exhibit significant limitations from an analytical standpoint, particularly due to potential inaccuracies, artifacts, and pronounced susceptibility to matrix effects. The purpose of this Technical Note is to demonstrate the application of ion chromatography—a robust and well-established analytical technique—for the quantification of RONS produced in cell culture media through the exposure to cold atmospheric plasma (CAP), an innovative therapeutic approach for cancer treatment, known as CAP indirect treatment. In addition, the present protocol proposes to apply the pharmacokinetics principles to the RONS generated in plasma-treated liquids (PTLs) following CAP exposure. Methods: The strategy involves elucidating the kinetic profiles of certain characteristic species by evaluating their half-life in the specific media used for cell cultures and investigating their “pharmacokinetic” (PK) profile. In this approach the drug dose is represented by the plasma power and the infusion time corresponds to the exposure time of the culture medium to CAP. Volume-dependent results were shown, focusing on nitrites and nitrates activities, justifying cellular inhibition. Results: This methodology enables the correlation of the PTL biological effects on different cell lines with the PK profiles (dose/time) obtained via ion chromatography. Conclusions: In conclusion, being a simple and green method, it could be used as an alternative to toxic reactions and analytical techniques with higher detection limits, while achieving good resolution. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

12 pages, 1090 KiB  
Article
On the Synergistic Effects of Cold Atmospheric Pressure Plasma Irradiation and Electroporation on Cytotoxicity of HeLa Cells
by Nao Kitajima, Kosuke Makihara and Hirofumi Kurita
Int. J. Mol. Sci. 2025, 26(3), 1093; https://doi.org/10.3390/ijms26031093 - 27 Jan 2025
Cited by 1 | Viewed by 1057
Abstract
Cold atmospheric plasma (CAP) treatment induces cancer cell death through the generation of reactive oxygen and nitrogen species (RONS). However, the efficacy of RONS delivery into cells remains limited by membrane permeability. Here, we investigated whether combining CAP with pulsed electric fields (PEFs) [...] Read more.
Cold atmospheric plasma (CAP) treatment induces cancer cell death through the generation of reactive oxygen and nitrogen species (RONS). However, the efficacy of RONS delivery into cells remains limited by membrane permeability. Here, we investigated whether combining CAP with pulsed electric fields (PEFs) could enhance cancer cell death through increased intracellular RONS uptake. HeLa cells were treated with argon atmospheric pressure plasma jet (Ar-APPJ), PEF, or their combination. The combined treatment showed significantly enhanced cell death compared to single treatments. While PEF treatment alone induced membrane permeabilization, the combination with Ar-APPJ resulted in more pronounced and sustained membrane disruption, as evidenced by increased calcein leakage. This enhanced effect was attributed to Ar-APPJ-induced lipid peroxidation interfering with membrane resealing after PEF-induced electroporation. We also demonstrated that PEF-induced membrane electroporation facilitates the intracellular uptake of CAP-generated RONS. These findings provide mechanistic insights into the synergistic effects of combined CAP and PEF treatments, suggesting enhanced cell death via multiple pathways. Full article
(This article belongs to the Special Issue Advances and Current Challenges in Plasma Medicine)
Show Figures

Figure 1

23 pages, 4365 KiB  
Article
The Genetic Expression Difference of A2058 Cells Treated by Plasma Direct Exposure and Plasma-Treated Medium and the Appropriate Treatment Strategy
by Chao-Yu Chen, Chung-Hsien Chou and Yun-Chien Cheng
Biomedicines 2025, 13(1), 184; https://doi.org/10.3390/biomedicines13010184 - 13 Jan 2025
Viewed by 898
Abstract
Background/Objectives: Cold atmospheric plasma (CAP) has been demonstrated as an adjustable device to generate various combinations of short-lived reactive oxygen and nitrogen species (RONS) and as a promising appliance for cancer therapy. This study investigated the effects of direct and indirect treatments [...] Read more.
Background/Objectives: Cold atmospheric plasma (CAP) has been demonstrated as an adjustable device to generate various combinations of short-lived reactive oxygen and nitrogen species (RONS) and as a promising appliance for cancer therapy. This study investigated the effects of direct and indirect treatments of Argon-based CAP to cancer cells (A2058, A549, U2OS and BCC) and fibroblasts (NIH3T3 and L929) on cell viability. We also aimed to understand whether plasma-generated RONS were involved in this process using genetic evidence. Methods: The intensity of reactive species in the plasma gas and the concentrations of RONS in phosphate-buffered saline (PBS) and cell culture medium were measured. A viability assay was performed after the cells were treated by plasma in PBS and medium with various volumes to realize the lethal effects of plasma under different conditions. Diverse cells were treated in the same solution to compare the sensitivities of different cells to plasma treatments. The gene expression profiles of A2058 cells after the direct and indirect treatments were analyzed by next generation gene sequencing. Accordingly, we discovered the advantages of sequential treatments on cancer therapy. Results: The cumulative concentration of hydroxyterephthalic acid (HTA) revealed that the pre-existing OH radical (•OH) in PBS increased with the treatment durations. However, there was no significant increase in the concentration of HTA in culture medium. HTA was detected in the treatment interface of PBS but not medium, showing the penetration of •OH through PBS. The concentrations of H2O2 and NO2 increased with the treatment durations, but that of NO3 was low. The direct treatments caused stronger lethal effects on cancer cells under certain conditions. The fibroblasts showed higher tolerance to plasma treatments. From gene expression analysis, the initial observations showed that both treatments influenced transcription-related pathways and exhibited shared or unique cellular stress responses. The pre-treatments, especially of direct exposure, revealed better cancer inhibition. Conclusions: The anti-cancer efficiency of plasma could be enhanced by pre-treatments and by adjusting the liquid interfaces to avoid the rapid consumption of short-lived RONS in the medium. To achieve better therapeutic effects and selectivity, more evidence is necessary to find optional plasma treatments. Full article
Show Figures

Figure 1

21 pages, 3732 KiB  
Article
Cellular Response of Immune Cells in the Upper Respiratory Tract After Treatment with Cold Atmospheric Plasma In Vitro
by Leonardo Zamorano Reichold, Michael Gruber, Petra Unger, Tim Maisch, Regina Lindner, Lisa Gebhardt, Robert Schober, Sigrid Karrer and Stephanie Arndt
Int. J. Mol. Sci. 2025, 26(1), 255; https://doi.org/10.3390/ijms26010255 - 30 Dec 2024
Viewed by 1224
Abstract
Cold atmospheric plasma (CAP) has antimicrobial properties and is also known to stimulate the immune system. These properties could be useful for the development of a novel therapeutic or preventive strategy against respiratory infections in the upper respiratory tract (URT) such as ventilator-associated [...] Read more.
Cold atmospheric plasma (CAP) has antimicrobial properties and is also known to stimulate the immune system. These properties could be useful for the development of a novel therapeutic or preventive strategy against respiratory infections in the upper respiratory tract (URT) such as ventilator-associated pneumonia (VAP) without inducing an immune overreaction. This study investigated the cellular responses of polymorphonuclear neutrophils (PMNs) after exposure to CAP in a three-dimensional (3D) model of the URT. In vitro experiments were conducted using PMNs isolated from human blood to assess cell migration, intracellular production of reactive oxygen species (ROS), NETosis, surface marker expression (CD11b, CD62L, and CD66b), and cell death with live cell imaging and flow cytometry. CAP was applied for 5 min using two distinct modalities: pressurized air plasma with a plasma intensive care (PIC) device and nebulized air plasma (NP) with a new humidity resistent surface microdischarge (SMD) plasma source, both developed by Terraplasma Medical GmbH. There were no significant signs of cell damage or overstimulation with either device under the conditions tested. However, the NP device caused milder effects on PMN functionality compared to the PIC device, but also demonstrated reduced antibacterial efficacy and reactive oxygen/nitrogen species (RONS) production, as analyzed with colorimetric/fluorimetric assay kits. These findings highlight a trade-off between the two CAP modalities, each with distinct advantages and limitations. Further studies are necessary to investigate these effects in the clinical setting and evaluate the long-term safety and efficacy of CAP treatment in the URT. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Biological Effects and Transport Processes)
Show Figures

Figure 1

20 pages, 3801 KiB  
Review
Studies of Applications of Cold Plasma Systems in Cancer Treatment: Mechanisms of Oxidant Stress and Pathway Signaling
by David Durán Martínez, Adriana Valladares Méndez, Jesús Rivera Islas and Jessica Nayelli Sánchez-Carranza
Stresses 2024, 4(4), 896-915; https://doi.org/10.3390/stresses4040060 - 12 Dec 2024
Viewed by 2538
Abstract
Cold atmospheric plasma (CAP) has gained attention as a non-invasive therapeutic option in oncology due to its selective cytotoxicity against cancer cells. CAP produces a complex mixture of reactive oxygen and nitrogen species (RONS), which induce oxidative stress, leading to various forms of [...] Read more.
Cold atmospheric plasma (CAP) has gained attention as a non-invasive therapeutic option in oncology due to its selective cytotoxicity against cancer cells. CAP produces a complex mixture of reactive oxygen and nitrogen species (RONS), which induce oxidative stress, leading to various forms of cell death, including apoptosis, necrosis, autophagy, and ferroptosis. These mechanisms allow CAP to target cancer cells effectively while sparing healthy tissue, making it a versatile tool in cancer treatment. This review explores the molecular pathways modulated by CAP, including PI3K/AKT, MAPK/ERK, and p53, which are crucial in the regulation of cell survival and proliferation. Additionally, in vivo, in vitro, and clinical studies supporting the efficacy of CAP are collected, providing additional evidence on its potential in oncological therapy. Full article
(This article belongs to the Collection Feature Papers in Human and Animal Stresses)
Show Figures

Figure 1

18 pages, 4217 KiB  
Article
Sustainable Degradation of Methyl Violet by Plasma Bubbling Array: Performance, Degradation Pathway, and Potential Toxicity
by Jun Huang, Yujun Xiao, Lei Fu, Qiuting Yu, Teng Gong, Menghao Tan, Qianqian Luo, Mengchao Li, Yuan Tao, Wenyuan Xu, Xingquan Wang and Wei Chen
Sustainability 2024, 16(23), 10568; https://doi.org/10.3390/su162310568 - 2 Dec 2024
Cited by 2 | Viewed by 1091
Abstract
A plasma bubbling array (PBA) reactor was used to degrade methyl violet (MV) dye, and the effects of input voltage, frequency, and treatment time on MV removal were investigated. Through experimental methods and response surface methodology (RSM), the interactional influences between three parameters [...] Read more.
A plasma bubbling array (PBA) reactor was used to degrade methyl violet (MV) dye, and the effects of input voltage, frequency, and treatment time on MV removal were investigated. Through experimental methods and response surface methodology (RSM), the interactional influences between three parameters were examined. In the actual experiments, when the discharge voltage was set to 4.0 kV and the treatment time was 12 min, the PBA reactor exhibited a high degradation rate (96.15%) and notable energy efficiency (3.16 g/kWh). Under the optimal simulation parameters, the predicted degradation rate of MV is maximized at 98.32%, with only a 2.17% deviation from the actual value. Subsequently, the results of reactive oxygen and nitrogen species (RONS) analysis indicate that superoxide radicals (·O2) and ozone (O3) have the greatest impact on MV degradation. The degradation pathway analysis and toxicity evaluation experiments of the solution before and after treatment showed that the toxicity of the solution decreased with the extension of reaction time, and the treated solution may be beneficial to seed germination. Overall, these findings provide valuable insights into the use of plasma technology for the efficient, economical, and sustainable removal of dyes from water. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

8 pages, 2842 KiB  
Article
A Study of Reverse Characteristics of GaN-on-Si Quasi-Vertical PiN Diode with Beveled Sidewall and Fluorine Plasma Treatment
by Fuchun Jia, Qingyuan Chang, Mengdi Li, Yungang Liu, Ziyan Lu, Jifan Zhang, Jinming Lai, Hao Lu, Yang Lu, Bin Hou, Ling Yang and Xiaohua Ma
Micromachines 2024, 15(12), 1448; https://doi.org/10.3390/mi15121448 - 29 Nov 2024
Viewed by 978
Abstract
In this work, we show a high-performance GaN-on-Si quasi-vertical PiN diode based on the combination of beveled sidewall and fluorine plasma treatment (BSFP) by an inductively coupled plasma (ICP) system. The leakage current and breakdown voltage of the diode are systematically studied. Due [...] Read more.
In this work, we show a high-performance GaN-on-Si quasi-vertical PiN diode based on the combination of beveled sidewall and fluorine plasma treatment (BSFP) by an inductively coupled plasma (ICP) system. The leakage current and breakdown voltage of the diode are systematically studied. Due to the beveled sidewall treated by the fluorine plasma, the diodes achieve an excellent breakdown voltage (VBR) of 790 V and a low reverse leakage current. In addition, the GaN-on-Si quasi-vertical PiN diode achieves a low specific on-resistance (Ron,sp) of 0.51 mΩ·cm2 and a high Baliga’s figure of merit (BFOM) of 1.22 GW/cm2. The relationship between the total leakage current and the device diameter shows that the sidewall leakage is the main leakage path of the device. Afterwards, the TCAD simulations based on electric field and electric potential reveal that the fluorine plasma treatment is a major factor in suppressing the leakage current and increasing the VBR for a diode with BSFP. This work systematically analyzes the effects of beveled sidewall and fluorine plasma treatment based on the reverse characteristics of the GaN-on-Si quasi-vertical PiN diode and highlights the great potential of the GaN-on-Si PiN diode for various power applications. Full article
(This article belongs to the Special Issue Advances in GaN- and SiC-Based Electronics: Design and Applications)
Show Figures

Figure 1

Back to TopTop