ijms-logo

Journal Browser

Journal Browser

Molecular Mechanisms of Biological Effects and Transport Processes

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Biology".

Deadline for manuscript submissions: 20 June 2025 | Viewed by 3889

Special Issue Editors

Special Issue Information

Dear Colleagues,

We invite you to submit research or review papers to our new Special Issue focused on molecular mechanisms of biological effects and transport processes. The Special Issue covers the elucidation of various events in biology and physiology at the molecular level. In the context of pharmacology, the elucidation of mechanisms in pharmacodynamics or pharmacokinetics is of interest. We also welcome results on novel bioactive compounds, drug candidates, targets, and novel mechanisms of previously published molecules. The Special Issue is not restricted to human biology; it also covers molecular mechanisms of effects and transport in other species. The submission of experimental or theoretical results (or their combination) is encouraged.

Dr. Csaba Hetényi
Dr. Uko Maran
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • interaction
  • enzyme
  • receptor
  • ligand
  • drug
  • ADMETox
  • QSAR
  • permeability
  • half-life
  • channel

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 3732 KiB  
Article
Cellular Response of Immune Cells in the Upper Respiratory Tract After Treatment with Cold Atmospheric Plasma In Vitro
by Leonardo Zamorano Reichold, Michael Gruber, Petra Unger, Tim Maisch, Regina Lindner, Lisa Gebhardt, Robert Schober, Sigrid Karrer and Stephanie Arndt
Int. J. Mol. Sci. 2025, 26(1), 255; https://doi.org/10.3390/ijms26010255 - 30 Dec 2024
Viewed by 1000
Abstract
Cold atmospheric plasma (CAP) has antimicrobial properties and is also known to stimulate the immune system. These properties could be useful for the development of a novel therapeutic or preventive strategy against respiratory infections in the upper respiratory tract (URT) such as ventilator-associated [...] Read more.
Cold atmospheric plasma (CAP) has antimicrobial properties and is also known to stimulate the immune system. These properties could be useful for the development of a novel therapeutic or preventive strategy against respiratory infections in the upper respiratory tract (URT) such as ventilator-associated pneumonia (VAP) without inducing an immune overreaction. This study investigated the cellular responses of polymorphonuclear neutrophils (PMNs) after exposure to CAP in a three-dimensional (3D) model of the URT. In vitro experiments were conducted using PMNs isolated from human blood to assess cell migration, intracellular production of reactive oxygen species (ROS), NETosis, surface marker expression (CD11b, CD62L, and CD66b), and cell death with live cell imaging and flow cytometry. CAP was applied for 5 min using two distinct modalities: pressurized air plasma with a plasma intensive care (PIC) device and nebulized air plasma (NP) with a new humidity resistent surface microdischarge (SMD) plasma source, both developed by Terraplasma Medical GmbH. There were no significant signs of cell damage or overstimulation with either device under the conditions tested. However, the NP device caused milder effects on PMN functionality compared to the PIC device, but also demonstrated reduced antibacterial efficacy and reactive oxygen/nitrogen species (RONS) production, as analyzed with colorimetric/fluorimetric assay kits. These findings highlight a trade-off between the two CAP modalities, each with distinct advantages and limitations. Further studies are necessary to investigate these effects in the clinical setting and evaluate the long-term safety and efficacy of CAP treatment in the URT. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Biological Effects and Transport Processes)
Show Figures

Figure 1

Review

Jump to: Research

22 pages, 1494 KiB  
Review
Unveiling the Role of Exosomes in the Pathophysiology of Sepsis: Insights into Organ Dysfunction and Potential Biomarkers
by Gizaw Mamo Gebeyehu, Shima Rashidiani, Benjámin Farkas, András Szabadi, Barbara Brandt, Marianna Pap and Tibor A. Rauch
Int. J. Mol. Sci. 2024, 25(9), 4898; https://doi.org/10.3390/ijms25094898 - 30 Apr 2024
Cited by 1 | Viewed by 2068
Abstract
Extracellular vesicles (EVs) are tools for intercellular communication, mediating molecular transport processes. Emerging studies have revealed that EVs are significantly involved in immune processes, including sepsis. Sepsis, a dysregulated immune response to infection, triggers systemic inflammation and multi-organ dysfunction, posing a life-threatening condition. [...] Read more.
Extracellular vesicles (EVs) are tools for intercellular communication, mediating molecular transport processes. Emerging studies have revealed that EVs are significantly involved in immune processes, including sepsis. Sepsis, a dysregulated immune response to infection, triggers systemic inflammation and multi-organ dysfunction, posing a life-threatening condition. Although extensive research has been conducted on animals, the complex inflammatory mechanisms that cause sepsis-induced organ failure in humans are still not fully understood. Recent studies have focused on secreted exosomes, which are small extracellular vesicles from various body cells, and have shed light on their involvement in the pathophysiology of sepsis. During sepsis, exosomes undergo changes in content, concentration, and function, which significantly affect the metabolism of endothelia, cardiovascular functions, and coagulation. Investigating the role of exosome content in the pathogenesis of sepsis shows promise for understanding the molecular basis of human sepsis. This review explores the contributions of activated immune cells and diverse body cells’ secreted exosomes to vital organ dysfunction in sepsis, providing insights into potential molecular biomarkers for predicting organ failure in septic shock. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Biological Effects and Transport Processes)
Show Figures

Figure 1

Back to TopTop