Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,221)

Search Parameters:
Keywords = plants cultivation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 330 KiB  
Article
Bacterial Isolates from Avocado Orchards with Different Agronomic Management Systems with Potential for Promoting Plant Growth in Tomate and Phytopathogen Control
by Adilene Velázquez-Medina, Evangelina Esmeralda Quiñones-Aguilar, Ernestina Gutiérrez-Vázquez, Nuria Gómez-Dorantes, Gabriel Rincón-Enríquez and Luis López-Pérez
Microorganisms 2025, 13(9), 1974; https://doi.org/10.3390/microorganisms13091974 (registering DOI) - 23 Aug 2025
Abstract
The bacterial diversity of soils cultivated with avocado (Persea americana M.) is influenced by different factors, perhaps the most decisive being the type of agronomic management used by farmers. In conventional agronomic management (CM), high doses of agrochemicals are applied, in contrast [...] Read more.
The bacterial diversity of soils cultivated with avocado (Persea americana M.) is influenced by different factors, perhaps the most decisive being the type of agronomic management used by farmers. In conventional agronomic management (CM), high doses of agrochemicals are applied, in contrast to organic agronomic management (OM), where organic fertilizers are used. This alters the diversity and abundance of soil microorganism populations, which in turn affects crop health. This study aimed to isolate and morphologically characterize rhizospheric bacteria from avocado trees under different agronomic management systems (CM and OM). For the bacterial isolates, their ability to promote plant growth in vitro was determined through biochemical tests for phosphorus and calcium solubilization and nitrogen fixation. In addition, their in vivo effect on tomato (S. lycopersicum) growth was evaluated, and their antagonistic capacity against Fusarium sp. was assessed. The results showed differences in the quantity, diversity, and morphologies of bacterial isolates depending on the type of agronomic management. A higher Shannon diversity index was found in OM (2.44) compared to CM (1.75). A total of 35 bacterial isolates were obtained from both management types. A greater number of isolates from OM soils exhibited in vitro PGP activity; notably, eight isolates from OM plots showed phosphate-solubilizing activity, compared to only one from CM plots. Furthermore, although all isolates demonstrated nitrogen fixing capacity, those from OM orchards produced significantly higher nitrate levels than the control (Azospirillum vinelandii). On the other hand, inoculation of tomato plants with bacterial isolates from OM soils increased plant height, root length, and total fresh and dry biomass compared to isolates from CM soils. Likewise, OM isolates exhibited greater antagonistic activity against Fusarium sp. These findings demonstrate the impact of agronomic management on soil bacterial populations and its effect on plant growth and protection against pathogens. Full article
(This article belongs to the Special Issue Advances in Plant–Soil–Microbe Interactions)
27 pages, 2187 KiB  
Review
Microorganisms as Potential Accelerators of Speed Breeding: Mechanisms and Knowledge Gaps
by Sergey A. Bursakov, Gennady I. Karlov, Pavel Yu. Kroupin and Mikhail G. Divashuk
Plants 2025, 14(17), 2628; https://doi.org/10.3390/plants14172628 (registering DOI) - 23 Aug 2025
Abstract
The rapid and widespread development of technology is in line with global trends of population growth and increasing demand for food. Significant breakthroughs in science have not yet fully met the needs of agriculture for increased food production and higher yields. The aim [...] Read more.
The rapid and widespread development of technology is in line with global trends of population growth and increasing demand for food. Significant breakthroughs in science have not yet fully met the needs of agriculture for increased food production and higher yields. The aim of this work is to discuss the current advancements in the application of beneficial microorganisms for crop cultivation and their integration into speed breeding technology to create optimal growing conditions and achieve the ultimate goal of developing new plant varieties. New breeding techniques, such as speed breeding—now a critical component of the breeding process—allow multiple plant generations to be produced in a much shorter time, facilitating the development of new plant varieties. By reducing the time required to obtain new generations, breeders and geneticists can optimize their efforts to obtain the required crop genotypes for both agriculture and industry. This helps to meet the demand for food, animal feed and plant raw materials for industrial use. One potential aspect of speed breeding technology is the incorporation of effective beneficial microorganisms that inhabit both the above-ground and below-ground parts of plants. These microorganisms have the potential to enhance the speed breeding method. Microorganisms can stimulate growth and development, promote overall fitness and rapid maturation, prevent disease, and impart stress resistance in speed breeding plants. Utilizing the positive effects of beneficial microorganisms offers a pathway to enhance speed breeding technology, an approach not yet explored in the literature. The controlled practical use of microorganisms under speed breeding conditions should contribute to producing programmable results. The use of beneficial microorganisms in speed breeding technology is considered an indispensable part of future precision agriculture. Drawing attention to their practical and effective utilization is an urgent task in modern research. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
22 pages, 6792 KiB  
Article
Silicon Accumulation and Photosynthetic Capacity of Dendrocalamus brandisii in Response to Sodium Silicate Foliar Application Across Vegetative Phenological Stages
by Yuntao Yang, Lei Huang, Lixia Yu, Fangwei Zhu, Ju Chang, Maobiao Li, Shuguang Wang, Changming Wang and Hui Zhan
Plants 2025, 14(17), 2624; https://doi.org/10.3390/plants14172624 (registering DOI) - 23 Aug 2025
Abstract
Silicon plays a positive role in plant growth and physiological activities; however, silicon fertilizer application in bamboo remains limited. This study explored the silicon accumulation and photosynthetic capacity of Dendrocalamus brandisii in response to sodium silicate (SS) foliar application across vegetative phenological stages. [...] Read more.
Silicon plays a positive role in plant growth and physiological activities; however, silicon fertilizer application in bamboo remains limited. This study explored the silicon accumulation and photosynthetic capacity of Dendrocalamus brandisii in response to sodium silicate (SS) foliar application across vegetative phenological stages. The results showed that August (shooting stage) and May (branching and leafing stage) were the critical periods for silicon accumulation. SS significantly enhanced the net photosynthetic rate (Pn), chlorophyll content, and photosystem activity (Fv/Fm, Fv′/Fm′), particularly in August and May. Correlation analysis revealed that silicon content was significantly positively correlated with photosynthetic parameters (Pn, chlorophyll a/b) and photoassimilate accumulation (soluble sugar, starch), confirming that silicon optimized leaf light capture and carbon assimilation capacity by promoting phytolith formation. This research provides a theoretical foundation for the application of silicon fertilizers in bamboo forest cultivation. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

19 pages, 2830 KiB  
Article
Community Structure Diversity of Endophytic Fungi in Cissampelos pareira from Different Habitats and Their α-Glucosidase Inhibitory Activity
by Jing Yu, Cuiyun Yin, Zhaoyou Deng, Yin Yuan, Deying Tang, Xuanchao Shi, Yihang Li and Lixia Zhang
J. Fungi 2025, 11(9), 615; https://doi.org/10.3390/jof11090615 (registering DOI) - 22 Aug 2025
Abstract
Cissampelos pareira is a medicinal plant with the potential effect of treating diabetes, commonly used by the Dai people in southern Yunnan Province. However, the wild resources of C. pareira are currently scarce. Endophytic fungi are a natural component of medicinal plants, while [...] Read more.
Cissampelos pareira is a medicinal plant with the potential effect of treating diabetes, commonly used by the Dai people in southern Yunnan Province. However, the wild resources of C. pareira are currently scarce. Endophytic fungi are a natural component of medicinal plants, while also serving as important repositories for discovering active natural products. In this study, we focused on 2-year-old C. pareira plants cultivated in potted and non-potted conditions. The community structure of endophytic fungi in the roots, stems, leaves, and flowers of two cultivation methods of C. pareira was investigated by using high-throughput sequencing (HTS) and traditional culture methods. Through HTS, we discover that the richness and diversity of endophytic fungi in C. pareira are associated with its growth environment and plant tissues. The endophytic fungi richness of C. pareira showed significant differences between the two habitats. And significant differences existed in the diversity of root endophytic fungi of C. pareira compared to those in the stems, leaves, and flowers. Additionally, the richness of endophytic fungi in the stems showed significant differences from that in the roots, leaves, and flowers. The results obtained using traditional culture methods revealed 69 endophytic fungi strains, classified into 2 phylum, 4 classes, 11 orders, 23 families, and 69 genera. The fermentation products of the obtained strains were evaluated for in vitro α-glucosidase inhibitory activity, and the results demonstrated that 11 endophytic fungi strains exhibited an inhibition rate exceeding 80%. The above-mentioned study can provide a theoretical basis for a comprehensive understanding of the community composition and diversity of endophytic fungi in C. pareira. Full article
Show Figures

Figure 1

20 pages, 4993 KiB  
Article
Automated IoT-Based Monitoring of Industrial Hemp in Greenhouses Using Open-Source Systems and Computer Vision
by Carmen Rocamora-Osorio, Fernando Aragon-Rodriguez, Ana María Codes-Alcaraz and Francisco-Javier Ferrández-Pastor
AgriEngineering 2025, 7(9), 272; https://doi.org/10.3390/agriengineering7090272 - 22 Aug 2025
Abstract
Monitoring the development of greenhouse crops is essential for optimising yield and ensuring the efficient use of resources. A system for monitoring hemp (Cannabis sativa L.) cultivation under greenhouse conditions using computer vision has been developed. This system is based on open-source [...] Read more.
Monitoring the development of greenhouse crops is essential for optimising yield and ensuring the efficient use of resources. A system for monitoring hemp (Cannabis sativa L.) cultivation under greenhouse conditions using computer vision has been developed. This system is based on open-source automation software installed on a single-board computer. It integrates various temperature and humidity sensors and surveillance cameras, automating image capture. Hemp seeds of the Tiborszallasi variety were sown. After germination, plants were transplanted into pots. Five specimens were selected for growth monitoring by image analysis. A surveillance camera was placed in front of each plant. Different approaches were applied to analyse growth during the early stages: two traditional computer vision techniques and a deep learning algorithm. An average growth rate of 2.9 cm/day was determined, corresponding to 1.43 mm/°C day. A mean MAE value of 1.36 cm was obtained, and the results of the three approaches were very similar. After the first growth stage, the plants were subjected to water stress. An algorithm successfully identified healthy and stressed plants and also detected different stress levels, with an accuracy of 97%. These results demonstrate the system’s potential to provide objective and quantitative information on plant growth and physiological status. Full article
20 pages, 1257 KiB  
Article
Effects of Nitrogen–Phosphorus Co-Application on Biomass Allocation and Accumulation in Two-Year-Old Pinus yunnanensis Seedlings
by Jianzhen Liao, Yaqi Li, Boning Yang, Chiyu Zhou, Zixing Pan, Lin Chen, Nianhui Cai and Yulan Xu
Biology 2025, 14(9), 1115; https://doi.org/10.3390/biology14091115 - 22 Aug 2025
Abstract
Pinus yunnanensis is a significant native tree species in southwestern China, contributing substantially to the area’s ecological stability and economic growth. However, its growth rate tends to be relatively slow during the seedling stage, and fertilization is crucial to promote seedling growth. This [...] Read more.
Pinus yunnanensis is a significant native tree species in southwestern China, contributing substantially to the area’s ecological stability and economic growth. However, its growth rate tends to be relatively slow during the seedling stage, and fertilization is crucial to promote seedling growth. This study used two-year-old P. yunnanensis seedlings as experimental materials and applied a 3 × 3 factorial design, combining three nitrogen (N) levels (0, 0.4, and 0.8 g·plant−1) supplied in the form of urea with three levels of phosphorus (P) (0, 0.8, and 1.6 g·plant−1) supplied in the form of superphosphate to form nine treatments, denoted as T1 to T9. This study was carried out in the open-air nursery of Southwest Forestry University, with fertilization beginning in July and observations continuing until December of the same year. Using allometric growth analysis and constructing the fertilizer response regression equation, we investigated the effects of fertilization on biomass accumulation in P. yunnanensis. The findings revealed that fertilization significantly increased the biomass allocation ratio to roots but decreased the allocation to needles and aboveground parts (p < 0.05). Allometric growth analysis showed that root growth was more rapid than stem and needle growth, and the growth rate of belowground parts exceeded that of aboveground parts. Allometric growth between organs differed among treatments, whereas the allometric growth relationship between aboveground and belowground biomass showed no significant difference across treatments. Moderate N and P fertilizer application promoted biomass accumulation in all organs, with T5 (N: 0.4 g·plant−1; P: 0.8 g·plant−1) exhibiting the highest biomass accumulation. Based on the comprehensive analysis of optimal N and P fertilizer requirements for biomass accumulation across different organs, the recommended fertilizer application rates are as follows: N 0.5–0.6 g·plant−1 and P 0.5–0.9 g·plant−1, with an optimal N:P ratio ranging from 1:0.8 to 1:1.8. The results establish a scientific rationale for enhancing fertilization methods in P. yunnanensis seedling cultivation, contributing to the slow growth issue during the seedling stage. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
16 pages, 4138 KiB  
Article
Clonal Micropropagation of Promising Genotypes of Amygdalus communis L. for Population Restoration and Gene Pool Conservation
by Timur Turdiyev, Kumissay Duisenova, Irina Kovalchuk, Aigul Madenova, Saule Baizhumanova, Kamila Yemesheva, Natalya Mikhailenko and Zakir Tuigunov
Horticulturae 2025, 11(9), 999; https://doi.org/10.3390/horticulturae11090999 - 22 Aug 2025
Abstract
The southern region of Kazakhstan represents the northernmost boundary of the natural habitat of five wild almond species, among which Amygdalus communis L. is of particular interest due to a range of favorable traits for use in breeding programs and cultivation in the [...] Read more.
The southern region of Kazakhstan represents the northernmost boundary of the natural habitat of five wild almond species, among which Amygdalus communis L. is of particular interest due to a range of favorable traits for use in breeding programs and cultivation in the region. The current distribution range of common almond growth was clarified using GPS to determine precise coordinates, and a schematic map was developed. Monitoring revealed a significant reduction in population size. In the surveyed areas, 54 trees were selected and described. Seed material was collected from 34 genotypes and characterized according to a descriptor. Genotypes A3, A8, and A15 were identified as having favorable trait combinations. To restore populations and preserve the gene pool of Amygdalus communis L., a method of clonal micropropagation was employed. The composition of the nutrient medium was optimized for establishment, multiplication, and rhizogenesis. It was determined that Murashige and Skoog (MS) medium without phytohormones is effective for in vitro establishment (70% regeneration rate). For multiplication, MS medium with 0.5 mg/L BAP (6-benzylaminopurine) was used (with a multiplication rate of 3.5 per explant). For rhizogenesis, MS medium with 0.5 mg/L BAP, 0.02 mg/L gibberellic acid (GA), and 0.1 mg/L IBA (indole-3-butyric acid) was used. A total of 340 clonal Amygdalus communis L. plants with closed root systems were grown for field collection. The research results can be applied for the restoration, propagation, and conservation of populations both in vitro and in situ, as well as for the inclusion of selected high-performing genotypes in breeding programs. Full article
Show Figures

Figure 1

11 pages, 915 KiB  
Article
Identification of Daphnane Diterpenoids from Flower Buds and Blooming Flowers of Daphne odora Using UHPLC-Q-Exactive-Orbitrap MS
by Kouharu Otsuki, Kousei Miyamoto, Mami Goto, Mi Zhang, Takashi Kikuchi and Wei Li
Plants 2025, 14(17), 2616; https://doi.org/10.3390/plants14172616 - 22 Aug 2025
Abstract
Daphne odora is an evergreen shrub belonging to the Thymelaeaceae family that is widely cultivated as an ornamental garden plant. Its roots, leaves, and flowers have traditionally been used in Chinese medicine to treat pain, skin diseases, and rheumatism. While previous phytochemical studies [...] Read more.
Daphne odora is an evergreen shrub belonging to the Thymelaeaceae family that is widely cultivated as an ornamental garden plant. Its roots, leaves, and flowers have traditionally been used in Chinese medicine to treat pain, skin diseases, and rheumatism. While previous phytochemical studies have reported the presence of phenols, coumarins, biflavonoids, lignans, and daphnane diterpenoids in D. odora, its flowers remain largely unexplored. In the present study, the first comprehensive investigation of daphnane diterpenoids contained in the flower buds and blooming flowers of D. odora was conducted using ultra-high-performance liquid chromatography coupled with Q-Exactive-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Exactive-Orbitrap MS). A total of 30 daphnane diterpenoids were identified, including 12 previously unreported compounds, through detailed analysis of their retention times and MS/MS fragmentation patterns. Comparative profiling revealed that flower buds contained a higher abundance and greater diversity of daphnane diterpenoids than flowers. Furthermore, LC–MS-guided isolation enabled the purification of a novel compound, daphneodorin I (16), and its structure was elucidated through extensive physicochemical and spectroscopic analyses. Compound 16 represents the first daphnane diterpenoid with a Z-configured phenolic acyl moiety isolated from plants of the Thymelaeaceae family. Full article
(This article belongs to the Special Issue Mass Spectrometry-Based Approaches in Natural Products Research)
25 pages, 3282 KiB  
Review
Mulching for Weed Management in Medicinal and Aromatic Cropping Systems
by Ana Dragumilo, Tatjana Marković, Sava Vrbničanin, Stefan Gordanić, Milan Lukić, Miloš Rajković, Željana Prijić and Dragana Božić
Horticulturae 2025, 11(9), 998; https://doi.org/10.3390/horticulturae11090998 - 22 Aug 2025
Abstract
Weeds are one of the main problems in cultivation of medicinal and aromatic plants (MAPs); they negatively affect yield (herba and essential oil), and the overall quantity and quality of biomass, flowers, roots, seeds, and secondary metabolites. This review evaluates mulching as a [...] Read more.
Weeds are one of the main problems in cultivation of medicinal and aromatic plants (MAPs); they negatively affect yield (herba and essential oil), and the overall quantity and quality of biomass, flowers, roots, seeds, and secondary metabolites. This review evaluates mulching as a sustainable, non-chemical method for weed management in the cultivation of MAPs and examines how effectively organic, synthetic, and living mulches reduce weeds and increase yields. Regarding different mulch materials such as straw, sawdust, bark, needles, compost, polyethylene, and biodegradable films, the basic processes of mulch activity, including light interception, physical suppression, and microclimate adjustment, are examined. The review further analyzes the impact of mulching on soil parameters (moisture, temperature, pH, chlorophyll content) and the biosynthesis of secondary metabolites. The findings consistently indicate that mulching substantially reduces weed biomass, improves crop performance, and supports organic farming practices. However, there are still issues with cost, material availability, and possible soil changes, and the efficacy is affected by variables including cultivated plant species, mulch type, and application thickness. The review highlights the importance of further research to optimize the selection of mulch and MAPs and their application across various agroecological conditions, and indicates that mulching is a potential, environmentally friendly technique for weed control in MAP cultivations. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
20 pages, 3338 KiB  
Article
Discovery and Functional Characterization of Novel Aquaporins in Tomato (Solanum lycopersicum): Implications for Ion Transport and Salinity Tolerance
by Newton Chandra Paul, Shahin Imran, Anri Mitsumoto, Izumi C. Mori and Maki Katsuhara
Cells 2025, 14(17), 1305; https://doi.org/10.3390/cells14171305 - 22 Aug 2025
Abstract
Aquaporins (AQPs) are membrane proteins that facilitate the transport of water and solutes. Among AQPs, plasma membrane intrinsic proteins (PIPs) play a critical role in maintaining water balance between the internal and external cell environments. This study focuses on the tomato due to [...] Read more.
Aquaporins (AQPs) are membrane proteins that facilitate the transport of water and solutes. Among AQPs, plasma membrane intrinsic proteins (PIPs) play a critical role in maintaining water balance between the internal and external cell environments. This study focuses on the tomato due to its economic importance and cultivation under moderate salinity conditions in Japan. A swelling assay using X. laevis oocyte confirmed that all five examined tomato SlPIP2 isoforms showed water transport activity. Among them, two-electrode voltage clamp (TEVC) experiments showed that only SlPIP2;1, SlPIP2;4, and SlPIP2;8 transport Na+ and K+, with no transport activity for Cs+, Rb+, Li+, or Cl. CaCl2 (1.8 mM) reduced ionic currents by approximately 45% compared to 30 µM free-Ca2+. These isoforms function as very low-affinity Na+ and K+ transporters. Expression analysis showed that SlPIP2;4 and SlPIP2;8 had low, stable expression, while SlPIP2;1 was strongly upregulated in roots NaCl treatment (200 mM, 17days), suggesting distinct physiological roles for these ion-conducting AQPs (icAQPs). These data hypothesized that tomato icAQPs play a critical role in ion homeostasis, particularly under salinity stress. In conclusion, the first icAQPs have been identified in the dicotyledonous crop. These icAQPs are essential for plant resilience under salt stress. Full article
(This article belongs to the Special Issue Membrane Dynamics and the Role of Aquaporins in Plant Cells)
15 pages, 2619 KiB  
Article
Oxidative Stress in Wheat Caused by Ampicillin and Amoxicillin and Their Mixture Applied to the Soil
by Robert Biczak, Arkadiusz Telesiński, Marcin Sysa, Agnieszka Godela and Barbara Pawłowska
Int. J. Mol. Sci. 2025, 26(17), 8156; https://doi.org/10.3390/ijms26178156 - 22 Aug 2025
Abstract
Ampicillin (AMP) and amoxicillin (AMX) are widely used penicillin antibiotics. After administration to humans and animals, they are largely excreted in unchanged or metabolized forms, leading to their release into wastewater. In surface waters, their concentrations usually reach the ng∙L−1 range and [...] Read more.
Ampicillin (AMP) and amoxicillin (AMX) are widely used penicillin antibiotics. After administration to humans and animals, they are largely excreted in unchanged or metabolized forms, leading to their release into wastewater. In surface waters, their concentrations usually reach the ng∙L−1 range and rarely exceed µg∙L−1, although in India AMX levels above mg∙L−1 were detected in hospital effluents. The limited efficiency of wastewater treatment plants allows these compounds to enter aquatic and terrestrial environments, where they affect various organisms. The aim of this study was to assess the effects of AMP, AMX, and their mixture on wheat, one of the most extensively cultivated cereals. Determinations were carried out using standardized methodologies. The results showed that antibiotics induce oxidative stress in plants, with symptoms observed only at concentrations of 1000 mg∙kg−1 of soil DW. At this level, changes included altered antioxidant enzyme activity (APX, SOD, POD, and CAT), increased proline and H2O2 content, and reduced MDA levels. By contrast, antibiotics had minimal influence on glutathione and ascorbate and caused only slight changes in photosynthetic pigments and chlorophyll fluorescence. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 556 KiB  
Article
The Impact of Cultivars and Biostimulants on the Compounds Contained in Glycine max (L.) Merr. Seeds
by Katarzyna Rymuza, Elżbieta Radzka and Joanna Cała
Agriculture 2025, 15(17), 1796; https://doi.org/10.3390/agriculture15171796 - 22 Aug 2025
Abstract
Background: Soybean (Glycine max (L.) Merr.), a nutrient-rich leguminous crop high in protein, lipids, and minerals, is extensively cultivated worldwide. The chemical composition of soybean seeds depends not only on the genetic characteristics of the cultivar but also on environmental conditions and [...] Read more.
Background: Soybean (Glycine max (L.) Merr.), a nutrient-rich leguminous crop high in protein, lipids, and minerals, is extensively cultivated worldwide. The chemical composition of soybean seeds depends not only on the genetic characteristics of the cultivar but also on environmental conditions and agricultural practices. In recent years, biostimulants have gained increasing importance in crop production due to their ability to enhance physiological processes in plants and potentially influence nutrient accumulation. This study aimed to investigate how cultivar and biostimulant type influence the chemical composition of soybean seeds under varying weather conditions in Central Europe. Methods: A three-year field experiment (2017–2019) was conducted in eastern Poland (Central Europe) using a split-plot design. The experimental factors included three non-GMO soybean cultivars (Abelina, Merlin, and SG Anser) and two foliar biostimulants (Asahi SL and Improver). In addition to classical ANOVA, the multivariate analysis of the impact of the investigated factors included principal component analysis (PCA). Results: The applied factors significantly affected seed contents of fat, protein, dry matter, ash, fibre, and macronutrients (N, P, K). Cv. Merlin had the highest fat (22.65%) and fibre content (9.33%), while Abelina showed the highest protein (37.06%) and dry matter content (94.42%). Biostimulant application increased the accumulation of several seed components. Asahi SL significantly enhanced fat content (by 0.69%), protein content (by over 1.5%), and dry matter content (by nearly 0.2%) compared to the control. Improver was more effective in increasing nitrogen (by 0.24%), phosphorus (by 0.5%), and potassium (by 0.15%) contents. Weather conditions throughout the growing seasons significantly altered the impact of the biostimulants. The PCA analysis revealed distinct relationships among the chemical properties of seeds, meteorological factors, and the applied biostimulants. Full article
(This article belongs to the Special Issue Sustainable Management of Legume Crops)
Show Figures

Figure 1

14 pages, 1998 KiB  
Article
Verification of Agricultural Practices for Winter Pea–Cereals Intercropping
by Agnieszka Klimek-Kopyra, Ewa Hanus-Fajerska, Iwona Kamińska, Tomasz Głąb, Reinhard W. Neugschwandtner and Wiktor Chudzik
Agronomy 2025, 15(9), 2017; https://doi.org/10.3390/agronomy15092017 - 22 Aug 2025
Abstract
Recently, an urgent need has been identified to increase the biodiversity of the cereal crops that dominate European farmlands. In this aspect, the addition of pea as a component of winter cereals seems justified, but the appropriate selection of the cultivars to create [...] Read more.
Recently, an urgent need has been identified to increase the biodiversity of the cereal crops that dominate European farmlands. In this aspect, the addition of pea as a component of winter cereals seems justified, but the appropriate selection of the cultivars to create a mixture suitable for agricultural practice is probably essential. Therefore, arbitrarily selected winter pea cultivars were intercropped with some chosen cereals in order to assess certain yield parameters using a two-factorial field experiment conducted on brown soil. The studied factors were the cultivar of pea (Pisum sativum), ‘Pandora’ and ‘E.F.B. 33′ respectively, and the cropping system: single crop vs. cereal/legume intercropping mixture. Cereals used were rye (Secale cereale L.) ‘Amber’ and triticale (× Triticosecale) ‘Borwo’. To assess the potential of winter pea in this cultivation system, the yield level, some plant parameters (above- and belowground), and LER and CR indices were applied. Additionally, to demonstrate the effect of intercropping on pea, the root system, root nodulation, and nitrogen uptake efficiency were assessed. It was shown that yield and plant indices were closely related to the intercropping variant used. The key element determining the potential of the cultivated crops was the selection of cultivars. The most productive one was proved pea ‘E.F.B. 33’, which formed the largest number of nodules when intercropped with triticale. Moreover, it was ascertained that the drought period during the formation of nodules negatively affected their structure, which had a rather negative impact on the pea yield. Full article
Show Figures

Figure 1

14 pages, 1719 KiB  
Article
Optimizing Transplanting Practices for Potted Tree Peony Based on Non-Structural Carbohydrates Accumulation
by Shuaiying Shi, Kun Hu, Shiqi Li, Tian Shi, Shuangcheng Gao, Muhammad Shaaban and Guoan Shi
Horticulturae 2025, 11(8), 995; https://doi.org/10.3390/horticulturae11080995 - 21 Aug 2025
Abstract
Potted cultivation serves as a vital strategy for industrialized production of standardized tree peonies, engineering seedlings capable of year-round and off-site transplantation. However, the limited root zone in potted conditions restricts root development, resulting in suboptimal seedling quality and hindering commercial-scale production. This [...] Read more.
Potted cultivation serves as a vital strategy for industrialized production of standardized tree peonies, engineering seedlings capable of year-round and off-site transplantation. However, the limited root zone in potted conditions restricts root development, resulting in suboptimal seedling quality and hindering commercial-scale production. This study aimed to investigate the relationship between the accumulation characteristics of non-structural carbohydrates (NSCs) and growth performance in potted tree peonies, while also optimizing the transplantation technologies for potted cultivation. Using two-year-old grafted seedlings of ‘Luoyanghong’ as experimental material, the effects of root pruning, rooting agent, and Metarhizium anisopliae application on morphological development and NSCs accumulation in potted tree peony seedlings were investigated. The results showed that old roots serve as the primary storage organs for NSCs in the potted tree peony. Slight root pruning (25%) was beneficial for fibrous root growth, whereas excessive root pruning (50%) resulted in reduced biomass and NSCs accumulation. The application of a high concentration of rooting agents effectively promoted root growth and mitigated the adverse effects of root pruning. Furthermore, Metarhizium anisopliae significantly increased the stem number in potted tree peonies. The optimal protocol identified through range analysis involved 25% root pruning, followed by irrigation with a solution containing 750 mg·L−1 rooting agent and 20 million spores·mL−1 of Metarhizium anisopliae. The rational distribution of NSCs and coordinated growth across different organs enhanced NSCs accumulation in potted tree peonies. These results demonstrate that combining root pruning with the application of rooting agent and Metarhizium anisopliae can effectively increase NSCs accumulation, optimize plant morphology, and ultimately improve the quality of potted tree peony seedlings. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

20 pages, 2000 KiB  
Review
Active Chlorophyll Fluorescence Technologies in Precision Weed Management: Overview and Perspectives
by Jin Hu, Yuwen Xie, Xingyu Ban, Liyuan Zhang, Zhenjiang Zhou, Zhao Zhang, Aichen Wang and Toby Waine
Agriculture 2025, 15(16), 1787; https://doi.org/10.3390/agriculture15161787 - 21 Aug 2025
Abstract
Weeds are among the primary factors that adversely affect crop yields. Chlorophyll fluorescence, as a sensitive indicator of photosynthetic activity in green plants, provides direct insight into photosynthetic efficiency and the functional status of the photosynthetic apparatus. This makes it a valuable tool [...] Read more.
Weeds are among the primary factors that adversely affect crop yields. Chlorophyll fluorescence, as a sensitive indicator of photosynthetic activity in green plants, provides direct insight into photosynthetic efficiency and the functional status of the photosynthetic apparatus. This makes it a valuable tool for assessing plant health and stress responses. Active chlorophyll fluorescence technology uses an external light source to excite plant leaves, enabling the rapid acquisition of fluorescence signals for real-time monitoring of vegetation in the field. This technology shows great potential for weed detection, as it allows for accurate discrimination between crops and weeds. Furthermore, since weed-induced stress affects the photosynthetic process of plants, resulting in changes in fluorescence characteristics, chlorophyll fluorescence can also be used to detect herbicide resistance in weeds. This paper reviews the progress in using active chlorophyll fluorescence sensor technology for weed detection. It specifically outlines the principles and structure of active fluorescence sensors and their applications at different stages of field operations, including rapid classification of soil and weeds during the seedling stage, identification of in-row weeds during cultivation, and assessment of herbicide efficacy after application. By monitoring changes in fluorescence parameters, herbicide-resistant weeds can be detected early, providing a scientific basis for precision herbicide application. Full article
Show Figures

Figure 1

Back to TopTop