Community Structure Diversity of Endophytic Fungi in Cissampelos pareira from Different Habitats and Their α-Glucosidase Inhibitory Activity
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Pre-Processing of Samples
2.2. DNA Extraction, and HTS
2.3. Analysis and Processing the Date of HTS
2.4. Isolation and Identification of Endophytic Fungi Based on Culture Medium Methods
2.5. Alpha-Glucosidase Inhibitory Activity of Endophytic Fungi Fermentation Products
2.6. Statistical Analysis
3. Results
3.1. Analysis of the Endophytic Fungi Community Structure of C. Pareira Based on the HTS Method
3.1.1. Sequencing Results and Alpha Diversity Analysis
3.1.2. Beta Diversity Index
3.1.3. Analysis of Endophytic Fungi Species Composition
3.2. Analysis of the Endophytic Fungi Community Structure of C. Pareira Based on the Traditional Culture Methods
3.3. Analysis of C. Pareira Endophytic Fungi Diversity Based on HTS and Traditional Culture Methods
3.4. α-glucosidase Inhibitory Activity of Isolated Endophytic Fungi
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patchett, A.; Newman, J.A. Comparison of plant metabolites in root exudates of Lolium perenne infected with different strains of the fungal endophyte Epichloe festucae var. Lolii. J. Fungi 2021, 7, 148. [Google Scholar] [CrossRef] [PubMed]
- Nisa, H.; Kamili, A.N.; Nawchoo, I.A.; Shafi, S.; Shameem, N.; Bandh, S.A. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. Microb. Pathog. 2015, 82, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.Y.; Ma, Y.S.; Xiao, L.T.; Yang, H.L.; Zhu, D. Diversity of endophytic fungi in Huperzia serrata and their acetylcholinesterase inhibitory activity. Sustainability 2021, 13, 12073. [Google Scholar] [CrossRef]
- Shen, K.Z.; Xiong, Y.; Liu, Y.F.; Fan, X.W.; Zhu, R.; Hu, Z.M.; Li, C.Y.; Hua, Y. Community structure and diversity of endophytic fungi in cultivated Polygala crotalarioides at two different growth stages based on culture-independent and culture-based methods. J. Fungi 2024, 10, 195. [Google Scholar] [CrossRef]
- Shen, Z.H.; Liu, X.B.; Yang, J.; Wang, Y.L.; Yao, K.; Huo, Q.M.; Fu, Y.P.; Wei, Y.H.; Guo, B. The temporal and spatial endophytic fungal community of Huperzia serrata: Diversity and relevance to huperzine A production by the host. BMC Microbiol. 2022, 22, 281. [Google Scholar] [CrossRef]
- Wang, J.J.; Zhou, Y.P.; Lin, W.H.; Li, M.M.; Wang, M.N.; Wang, Z.G.; Kuang, Y.; Tian, P. Effect of an Epichloe endophyte on adaptability to water stress in Festuca sinensis. Fungal Ecol. 2017, 30, 39–47. [Google Scholar] [CrossRef]
- Lu, Z.W.; Liu, H.Y.; Wang, C.L.; Chen, X.; Huang, Y.X.; Zhang, M.M.; Huang, Q.L.; Zhang, G.F. Isolation of endophytic fungi from Cotoneaster multiflorus and screening of drought-tolerant fungi and evaluation of their growth-promoting effects. Front. Microbiol. 2023, 14, 1267404. [Google Scholar] [CrossRef]
- Nadarajah, K.K. ROS homeostasis in abiotic stress tolerance in plants. Int. J. Mol. Sci. 2020, 21, 5208. [Google Scholar] [CrossRef]
- Bastias, D.A.; Balestrini, R.; Pollmann, S.; Gundel, P.E. Environmental interference of plant-microbe interactions. Plant Cell Environ. 2022, 45, 3387–3398. [Google Scholar] [CrossRef]
- Caruso, D.J.; Palombo, E.A.; Moulton, S.E.; Zaferanloo, B. Exploring the promise of endophytic fungi: A review of novel antimicrobial compounds. Microorganisms 2022, 10, 1990. [Google Scholar] [CrossRef]
- Ravi, P.; Somu, P.; Acharya, D.; Gomez, L.A.; Thathapudi, J.J.; Ramachandra, Y.L.; Rudraiah, S.B.; Isaq, M.; Karua, C.S.; Arifullah, M. Isolation and phytochemical screening of endophytic fungi isolated from medicinal plant Mappia foetida and evaluation of its in vitro cytotoxicity in cancer. Appl. Biochem. Biotechnol. 2022, 194, 4570–4586. [Google Scholar] [CrossRef] [PubMed]
- Mahlangu, S.G.; Tai, S.L. Morphological and molecular characterization of bacterial endophytes from Centella asiatica leaves. J. Genet. Eng. Biotechnol. 2022, 20, 171. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.T.; Zhao, Q.M.; Wang, J.N.; Wang, J.H.; Wang, Y.; Song, Y.M.; Geng, G.X.; Li, Q.F. Swainsonine-producing fungal endophytes from major locoweed species in China. Toxicon 2010, 56, 330–338. [Google Scholar] [CrossRef]
- Gill, H.; Vasundhara, M. Isolation of taxol producing endophytic fungus Alternaria brassicicola from non-Taxus medicinal plant Terminalia arjuna. World J. Microbiol. Biotechnol. 2019, 35, 74. [Google Scholar] [CrossRef]
- Semwal, D.K.; Semwal, R.B.; Vermaak, I.; Viljoen, A. From arrow poison to herbal medicine-the ethnobotanical, phytochemical and pharmacological significance of Cissampelos (Menispermaceae). J. Ethnopharmacol. 2014, 155, 1011–1028. [Google Scholar] [CrossRef]
- Bora, U.; Sahu, A.; Saikia, A.P.; Ryakala, V.K.; Goswami, P. Medicinal plants used by the people of Northeast India for curing malaria. Phytother. Res. 2007, 21, 800–804. [Google Scholar] [CrossRef]
- Sudhakaran, M.V. Histo-morphological, fluorescent and powder microscopic characterization of Cissampelos pareira Linn. Phcog. J. 2012, 4, 57–68. [Google Scholar] [CrossRef]
- Pan, R.Y.; Sun, Y.J.; Chen, H.J.; Li, M.; Si, Y.Y.; Feng, W.S. Terpenoids and alkaloids from Cissampelos pareira var. Hirsuta. Chin. Tradit. Herbal Drugs. 2022, 53, 5607–5612. (In Chinese) [Google Scholar]
- Reza, H.M.; Shohel, M.; Aziz, S.B.; Pinaz, F.I.; Uddin, M.F.; Al-Amin, M.; Khan, I.N.; Jian, P. Phytochemical and pharmacological investigation of ethanol extract of Cissampelos pareira. Indian J. Pharm. Sci. 2014, 76, 455–458. [Google Scholar]
- Amresh, G.; Zeashan, H.; Rao, C.V.; Singh, P.N. Prostaglandin mediated anti-inflammatory and analgesic activity of Cissampelos pareira. Acta Pharm. Sci. 2007, 49, 153–160. [Google Scholar]
- Amresh; Reddy, G.D.; Rao, C.V.; Shirwaikar, A. Ethnomedical value of Cissampelos pareira extract in experimentally induced diarrhoea. Acta Pharm. 2004, 54, 27–35. [Google Scholar]
- Kumar, K.A.; Satyanarayana, T.; Mathwes, A.; Rao, Y.S.; Kiran, K.R. Antihyperglycemic activity of methanolic extract of Cissampelos pareira Linn roots on blood glucose levels of streptozotocin-induced diabetic rats. J. Pharm. Res. 2011, 4, 3399–3401. [Google Scholar]
- Thavamani, B.S.; Mathew, M.; Dhanabal, S.P. Anticancer activity of Cissampelos pareira against dalton’s lymphoma ascites bearing mice. Pharmacogn. Mag. 2014, 10, 200–206. [Google Scholar] [PubMed]
- Sood, R.; Raut, R.; Tyagi, P.; Pareek, P.K.; Barman, T.K.; Singhal, S.; Shirumalla, R.K.; Kanoje, V.; Subbarayan, R.; Rajerethinam, R.; et al. Cissampelos pareira Linn: Natural source of potent antiviral activity against all four dengue virus serotypes. PLoS Negl. Trop. Dis. 2015, 9, e0004255. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, M.; Borthakur, M.K.; Devi, N.; Mahanta, R. Antifertility activity of the methanolic leaf extract of Cissampelos pareira in female albino mice. J. Ethnopharmacol. 2007, 111, 688–691. [Google Scholar] [CrossRef]
- Amresh, G.; Rao, C.V.; Singh, P.N. Evaluation of Cissampelos pareira against gastric cancer and enzymes associated with carcinogen metabolism. Pharm. Biol. 2007, 45, 595–603. [Google Scholar] [CrossRef]
- Bafna, A.R.; Mishra, S.H. Immunomodulatory activity of methanol extract of roots of Cissampelos pareira Linn. Ars Pharm. 2005, 46, 253–262. [Google Scholar]
- Thukham-Mee, W.; Wattanathorn, J. Evaluation of safety and protective effect of combined extract of Cissampelos pareira and Anethum graveolens (PM52) against age-related cognitive impairment. Evid. Based Complement. Alternat. Med. 2012, 2012, 674101. [Google Scholar] [CrossRef]
- Surendran, S.; Eswaran, M.B.; Vijayakumar, M.; Rao, C.V. In vitro and in vivo hepatoprotective activity of Cissampelos pareira against carbon-tetrachloride induced hepatic damage. Indian J. Exp. Biol. 2011, 49, 939–945. [Google Scholar]
- Kumar, A.; Negi, A.S.; Chauhan, A.; Semwal, R.; Kumar, R.; Semwal, R.B.; Singh, R.; Joshi, T.; Chandra, S.; Joshi, S.K.; et al. Formulation and evaluation of SGLT2 inhibitory effect of a polyherbal mixture inspired from Ayurvedic system of medicine. J. Tradit. Complement. Med. 2022, 12, 477–487. [Google Scholar] [CrossRef]
- Piero, N.M.; Eliud, N.N.M.; Susan, K.N.; George, O.O.; Murugi, N.J.; David, M.; Sakyi, A.D.; Peter, G.K.; Stanley, K.W.; Joseph, N.J.N. In vivo antidiabetic activity and safety in rats of Cissampelos pareira traditionally used in the management of diabetes mellitus in Embu County, Kenya. J. Drug Metab. Toxicol. 2015, 6, 1–11. [Google Scholar] [CrossRef]
- Orantes-Garcia, C.; Moreno-Moreno, R.A.; Caballero-Roque, A.; Farrera-Sarmiento, O. Plantas utilizadas en la medicina tradicional de comunidades campesinas e indil genas de la Selva Zoque, Chiapas, Meixico. Bol. Latinoam. Caribe Plantas Med. Aromat. 2018, 17, 503–521. [Google Scholar]
- Bielka, W.; Przezak, A.; Moleda, P.; Pius-Sadowsak, E.; Machalinski, B. Double diabetes-when type 1 diabetes meets type 2 diabetes: Definition, pathogenesis and recognition. Cardiovasc. Diabetol. 2024, 23, 62. [Google Scholar] [CrossRef]
- Jahandideh, F.; Bourque, S.L.; Wu, J.P. A comprehensive review on the glucoregulatory properties of food-derived bioactive peptides. Food Chem. X 2022, 13, 100222. [Google Scholar] [CrossRef]
- Deng, Y.T.; Lin-Shiau, S.Y.; Shyur, L.F.; Lin, J.K. Pu-erh tea polysaccharides decrease blood sugar by inhibition of α-glucosidase activity in vitro and in mice. Food Funct. 2015, 6, 1539–1546. [Google Scholar] [CrossRef]
- Fan, J.H.; Lv, C.Y.; Li, Z.Z.; Guo, M.R.; Yin, Y.C.; Wang, H.; Wang, W.; Sun, S.W. α-Glucosidase inhibitory effect of an anthraquinonoid produced by Fusarium incarnatum GDZZ-G2. J. Basic Microbiol. 2022, 62, 1360–1370. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.; Nazir, M.; Saleem, M.; Al-Harrasi, A.; Elizbit; Green, I.R. Fruitful decade of fungal metabolites as anti-diabetic agents from 2010 to 2019: Emphasis on α-glucosidase inhibitors. Phytochem. Rev. 2021, 20, 145–179. [Google Scholar] [CrossRef]
- Zheng, H.; Qiao, M.; Xu, J.P.; Yu, Z.F. Culture-based and culture-independent assessments of endophytic fungal diversity in aquatic plants in Southwest China. Front. Fungal Biol. 2021, 2, 692549. [Google Scholar] [CrossRef]
- Ren, F.; Dong, W.; Yan, D.H. Organs, cultivars, soil, and fruit properties affect structure of endophytic mycobiota of Pinggu peach trees. Microorganisms 2019, 7, 322. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Mills, D.A. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl. Environ. Microbiol. 2013, 79, 2519–2526. [Google Scholar] [CrossRef]
- Liu, L.; Xu, W.J.; Cui, C.D.; Wei, L.X.; Tian, Y.T.; Liu, H.L.; Zhang, Y.H.; Li, Y.L.; Yang, Z.Y.; Zhao, F.C.; et al. Endophytic fungi of Lycium barbarum: Isolation, determination, bioactivity and separation of compounds. World J. Microbiol. Biotechnol. 2023, 40, 26. [Google Scholar] [CrossRef]
- Yang, X.Y.; Wang, D.; Dai, Y.Y.; Zhao, L.P.; Wang, W.T.; Ding, X.Z. Identification and molecular binding mechanism of novel α-glucosidase inhibitory peptides from hot-pressed peanut meal protein hydrolysates. Foods 2023, 12, 663. [Google Scholar] [CrossRef]
- Bafna, A.; Mishra, S. Antioxidant and immunomodulatory activity of the alkaloidal fraction of Cissampelos pareira linn. Sci. Pharm. 2010, 78, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Adeleke, B.S.; Babalola, O.O. The plant endosphere-hidden treasures: A review of fungal endophytes. Biotechnol. Genet. Eng. Rev. 2021, 37, 154–177. [Google Scholar] [CrossRef] [PubMed]
- Bakker, M.G.; Schlatter, D.C.; Otto-Hanson, L.; Kinkel, L.L. Diffuse symbioses: Roles of plant-plant, plant-microbe and microbe-microbe interactions in structuring the soil microbiome. Mol. Ecol. 2014, 23, 1571–1583. [Google Scholar] [CrossRef] [PubMed]
- Giauque, H.; Hawkes, C.V. Historical and current climate drive spatial and temporal patterns in fungal endophyte diversity. Fungal Ecol. 2016, 20, 108–114. [Google Scholar] [CrossRef]
- Suryanarayanan, T.S.; Kumaresan, V. Endophytic fungi of some halophytes from an estuarine mangrove forest. Mycol. Res. 2000, 104, 1465–1467. [Google Scholar] [CrossRef]
- Lau, M.K.; Arnold, A.E.; Johnson, N.C. Factors influencing communities of foliar fungal endophytes in riparian woody plants. Fungal Ecol. 2013, 6, 365–378. [Google Scholar] [CrossRef]
- Pang, B.; Yin, D.P.; Zhai, Y.F.; He, A.G.; Qiu, L.L.; Liu, Q.; Ma, N.; Shen, H.J.; Jia, Q.J.; Liang, Z.S. Diversity of endophytic fungal community in Huperzia serrata from different ecological areas and their correlation with Hup A content. BMC Microbiol. 2022, 22, 191. [Google Scholar] [CrossRef]
- Mishra, A.; Gond, S.K.; Kumar, A.; Sharma, V.K.; Verma, S.K.; Kharwar, R.N.; Sieber, T.N. Season and tissue type affect fungal endophyte communities of the Indian medicinal plant Tinospora cordifolia more strongly than geographic location. Microb. Ecol. 2012, 64, 388–398. [Google Scholar] [CrossRef]
- Chutulo, E.C.; Chalannavar, R.K. Endophytic mycoflora and their bioactive compounds from Azadirachta Indica: A Comprehensive Review. J. Fungi 2018, 4, 42. [Google Scholar] [CrossRef] [PubMed]
- Sagita, R.; Quax, W.J.; Haslinger, K. Current sate and future directions of genetics and genomics of endophytic fungi for bioprospecting efforts. Front. Bioeng. Biotechnol. 2021, 9, 649906. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.F.; He, L.M.; Gao, X.Q.; Zhang, M.L.; Wang, J.S.; Hou, L.J. Diversity of endophytic fungal community in leaves of artemisia argyi based on High-throughput amplicon sequencing. Pol. J. Microbiol. 2021, 70, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.T.; Dai, J.; Song, X.W.; Jiang, X.P.; Zhao, Q.; Sun, C.B.; Chen, C.W.; Chen, N.F.; Han, B.X. Endophytic microbiota comparison of Dendrobium huoshanense root and stem in different growth years. Planta Med. 2020, 86, 967–975. [Google Scholar] [CrossRef]
- Chen, S.H.; Liu, Z.M.; Li, H.X.; Xia, G.P.; Lu, Y.J.; He, L.; Huang, S.D.; She, Z.G. β-Resorcylic acid derivatives with α-glucosidase inhibitory activity from Lasiodiplodia sp. ZJ-HQ1, an endophytic fungus in the medicinal plant Acanthus ilicifolius. Phytochem. Lett. 2015, 13, 141–146. [Google Scholar] [CrossRef]
- Centko, R.M.; Ratnaweera, P.B.; Tysoe, C.; Withers, S.G.; De Silva, E.D.; Andersen, R.J. Alpha-glucosidase and alpha-amylase inhibiting thiodiketopiperazines from the endophytic fungus Setosphaeria rostrata isolated from the medicinal plant Costus speciosus in Sri Lanka. Phytochem. Lett. 2017, 22, 76–80. [Google Scholar] [CrossRef]
- Huang, R.; Jiang, B.G.; Li, X.N.; Wang, Y.T.; Liu, S.S.; Zheng, K.X.; He, J.; Wu, S.H. Polyoxygenated cyclohexenoids with promising α-glycosidase inhibitory activity produced by Phomopsis sp. YE3250, an endophytic fungus derived from Paeonia delavayi. J. Argic Food Chem. 2018, 66, 1140–1146. [Google Scholar] [CrossRef]
- Mugaranja, K.P.; Kulal, A. Inhibition of alpha-glucosidase enzyme and antioxidant activity of the metabolites purified from an endophytic fungus of Simarouba glauca DC. S. Afr. J. Bot. 2022, 149, 134–144. [Google Scholar] [CrossRef]
Source | Strains | Closest Relatives in NCBI (Accession No.) | Max. Identity % | GenBank No. | Antiglucosidase Inhibitory % Activity (%) |
---|---|---|---|---|---|
Potted root | PXR1 | Trichoderma afroharzianum (MN644718) | 100.00 | PQ345005 | 9.55 ± 6.17 |
PXR2 | Aspergillus niger (OP861489) | 100.00 | PQ345006 | 91.86 ± 0.59 ▲ | |
PXR3 | Aspergillus fumigatus (OP103933) | 100.00 | PQ345007 | 53.91 ± 2.58 | |
PXR4 | Lasiodiplodia brasiliense (KC484814) | 100.00 | PQ345008 | 45.93 ± 3.99 | |
PXR5 | Fusarium solani (OP117297) | 100.00 | PQ345009 | 89.67 ± 3.05 ▲ | |
PXR6 | Fusarium nematophilum (LC317606) | 100.00 | PQ345010 | 51.56 ± 0.36 | |
PXR7 | Penicillium brefeldianum (MH864250) | 100.00 | PQ345011 | / | |
PXR8 | Colletotrichum sp. (OK030894) | 100.00 | PQ345012 | 36.62 ± 3.69 | |
PXR9 | Camarosporium sp. (KJ780771) | 100.00 | PQ345013 | 26.13 ± 9.13 | |
PXR10 | Pestalotiopsis sp. (HE608797) | 100.00 | PQ345014 | 87.87 ± 2.51 ▲ | |
Potted stem | PXS1 | Colletotrichum siamense (MN519187) | 100.00 | PQ345015 | 43.11 ± 2.59 |
PXS2 | Colletotrichum aenigma (OM663733) | 100.00 | PQ345016 | 31.92 ± 5.54 | |
PXS3 | Colletotrichum sp. (OK030894) | 100.00 | PQ345017 | 69.25 ± 0.62 | |
PXS4 | Colletotrichum liaoningense (MW349986) | 100.00 | PQ345018 | 32.71 ± 5.65 | |
PXS5 | Glomerella magna (HM163187) | 99.45 | PQ345019 | 51.96 ± 5.87 | |
PXS6 | Diaporthe rosae (OQ793617) | 100.00 | PQ345020 | 76.45 ± 1.56 | |
PXS7 | Diaporthe phaseolorum (MK448274) | 100.00 | PQ345021 | 64.40 ± 4.03 | |
PXS8 | Setophoma sp. (OP392554) | 99.62 | PQ345022 | 37.25 ± 6.48 | |
PXS9 | Fusarium sp. (KP006638) | 100.00 | PQ345023 | 67.06 ± 7.46 | |
PXS10 | Ilyonectria sp. (MZ374709) | 100.00 | PQ345024 | 20.89 ± 6.35 | |
Potted leaf | PXL1 | Colletotrichum karsti (LC494365) | 100.00 | PQ345025 | 23.32 ± 8.92 |
PXL2 | Colletotrichum gigasporum (OM397123) | 100.00 | PQ345026 | 6.26 ± 5.73 | |
PXL3 | Colletotrichum sp.(MT241882) | 100.00 | PQ345027 | 61.35 ± 2.70 | |
PXL4 | Colletotrichum plurivorum (MT318545) | 100.00 | PQ345028 | 0.94 ± 13.62 | |
PXL5 | Colletotrichum siamense (OL966214) | 100.00 | PQ345029 | 43.82 ± 2.90 | |
PXL6 | Colletotrichum brevisporum (MZ269314) | 100.00 | PQ345030 | 54.38 ± 1.56 | |
PXL7 | Phoma sp. (KX216732) | 100.00 | PQ345031 | 18.23 ± 1.11 | |
PXL8 | Epicoccum nigrum (MW081246) | 100.00 | PQ345032 | 43.51 ± 0.98 | |
Potted flower | PXF1 | Corynespora cassiicola (OM802573) | 100.00 | PQ345033 | 35.05 ± 1.91 |
PXF2 | Diaporthe sp. (MT822641) | 100.00 | PQ345034 | 76.13 ± 3.74 | |
PXF3 | Colletotrichum sp. (MW786244) | 100.00 | PQ345035 | 34.98 ± 1.64 | |
PXF4 | Phanerodontia chrysosporium (MW38799) | 100.00 | PQ345036 | 66.67 ± 3.61 | |
non-potted root | FPXR1 | Penicillium javanicum (MK450698) | 100.00 | PQ344968 | 29.11 ± 5.52 |
FPXR2 | Fusarium solani (MK336609) | 100.00 | PQ344969 | 82.08 ± 5.33 ▲ | |
FPXR3 | Fusarium nematophilum (MN540302) | 100.00 | PQ344970 | 89.28 ± 3.56 ▲ | |
FPXR4 | Fusarium keratoplasticum (MN326661) | 100.00 | PQ344971 | 26.45 ± 7.68 | |
FPXR5 | Scedosporium apiospermum (MN177623) | 100.00 | PQ344972 | 74.57 ± 2.53 | |
FPXR6 | Humicola sp. (KY069223) | 100.00 | PQ344973 | 52.66 ± 6.03 | |
FPXR7 | Aspergillus terreus (MN592939) | 100.00 | PQ344974 | 43.97 ± 5.17 | |
FPXR8 | Curvularia lunata (MG649266) | 100.00 | PQ344975 | 20.03 ± 1.43 | |
FPXR9 | Arthopyrenia salicis (LT796900) | 100.00 | PQ344976 | 79.81 ± 1.69 | |
FPXR10 | Montagnula graminicola (PP886946) | 100.00 | PQ344977 | 79.34 ± 1.64 | |
FPXS1 | Phoma sp. (MT251173) | 100.00 | PQ344978 | 79.26 ± 3.53 | |
FPXS2 | Plectosphaerella cucumerina (MN856305) | 100.00 | PQ344979 | 60.56 ± 5.31 | |
non-potted stem | FPXS3 | Phyllosticta rhizophorae (MT360030) | 100.00 | PQ344980 | 70.58 ± 2.23 |
FPXS4 | Colletotrichum sp. (MT476751) | 100.00 | PQ344981 | 16.35 ± 9.22 | |
FPXS5 | Fusarium oxysporum (MK752409) | 100.00 | PQ344982 | 51.25 ± 4.84 | |
FPXS6 | Penicillium citrinum (LC514694) | 100.00 | PQ344983 | 51.80 ± 0.89 | |
FPXS7 | Pestalotiopsis sp. (JF773654) | 99.82 | PQ344984 | 69.25 ± 3.69 | |
FPXS8 | Diaporthe tectonae (PP060674) | 100.00 | PQ344985 | 62.83 ± 3.26 | |
FPXS9 | Podospora sp. (OQ413591) | 99.79 | PQ344986 | 11.89 ± 11.07 | |
FPXS10 | Trichoderma harzianum (MT341774) | 100.00 | PQ344987 | 53.05 ± 5.74 | |
FPXS11 | Pestalotiopsis mangiferae (KM510409) | 100.00 | PQ344988 | 77.62 ± 1.79 | |
non-potted leaf | FPXL1 | Xylaria apoda (MZ423071) | 99.49 | PQ344989 | 86.93 ± 2.44 ▲ |
FPXL2 | Xylaria sp. (OR122882) | 99.82 | PQ344990 | 34.90 ± 2.28 | |
FPXL3 | Nigrospora sphaerica (MT305813) | 100.00 | PQ344991 | 84.04 ± 3.64 ▲ | |
FPXL4 | Aspergillus welwitschiae (MK450668) | 100.00 | PQ344992 | 52.19 ± 2.40 | |
FPXL5 | Phaeosphaeriopsis musae (MT071749) | 100.00 | PQ344993 | 88.26 ± 3.73 ▲ | |
FPXL6 | Corynespora cassiicola (FJ852574) | 100.00 | PQ344994 | 86.85 ± 5.92 ▲ | |
FPXL7 | Colletotrichum truncatum (MK298334) | 100.00 | PQ344995 | 78.25 ± 7.81 | |
FPXL8 | Colletotrichum cliviicola (MT351124) | 99.80 | PQ344996 | 73.24 ± 3.41 | |
FPXL9 | Colletotrichum siamense (MK404694) | 100.00 | PQ344997 | 44.99 ± 0.36 | |
FPXL10 | Cladosporium tenuissimum (MN700643) | 100.00 | PQ344998 | 91.39 ± 0.68 ▲ | |
FPXL11 | Triangularia sp. (OR825378) | 100.00 | PQ344999 | 76.21 ± 0.95 | |
non-potted flower | FPXF1 | Colletotrichum alienum (MK336495) | 100.00 | PQ345000 | 59.23 ± 1.18 |
FPXF2 | Colletotrichum sp. (MK351442) | 100.00 | PQ345001 | 60.72 ± 0.68 | |
FPXF3 | Colletotrichum karsti (MT319073) | 100.00 | PQ345002 | 54.38 ± 4.87 | |
FPXF4 | Diaporthe sp. (KC507214) | 99.59 | PQ345003 | 94.68 ±2.94 ▲ | |
FPXF5 | Diaporthe ternstroemia (NR147523) | 99.60 | PQ345004 | / | |
control | Acarbose | / | / | / | 93.43 ± 3.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Yin, C.; Deng, Z.; Yuan, Y.; Tang, D.; Shi, X.; Li, Y.; Zhang, L. Community Structure Diversity of Endophytic Fungi in Cissampelos pareira from Different Habitats and Their α-Glucosidase Inhibitory Activity. J. Fungi 2025, 11, 615. https://doi.org/10.3390/jof11090615
Yu J, Yin C, Deng Z, Yuan Y, Tang D, Shi X, Li Y, Zhang L. Community Structure Diversity of Endophytic Fungi in Cissampelos pareira from Different Habitats and Their α-Glucosidase Inhibitory Activity. Journal of Fungi. 2025; 11(9):615. https://doi.org/10.3390/jof11090615
Chicago/Turabian StyleYu, Jing, Cuiyun Yin, Zhaoyou Deng, Yin Yuan, Deying Tang, Xuanchao Shi, Yihang Li, and Lixia Zhang. 2025. "Community Structure Diversity of Endophytic Fungi in Cissampelos pareira from Different Habitats and Their α-Glucosidase Inhibitory Activity" Journal of Fungi 11, no. 9: 615. https://doi.org/10.3390/jof11090615
APA StyleYu, J., Yin, C., Deng, Z., Yuan, Y., Tang, D., Shi, X., Li, Y., & Zhang, L. (2025). Community Structure Diversity of Endophytic Fungi in Cissampelos pareira from Different Habitats and Their α-Glucosidase Inhibitory Activity. Journal of Fungi, 11(9), 615. https://doi.org/10.3390/jof11090615