Bacterial Isolates from Avocado Orchards with Different Agronomic Management Systems with Potential for Promoting Plant Growth in Tomate and Phytopathogen Control
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Areas and Soil Sampling
2.2. Isolation, Morphological Characterization, and Shannon Diversity Index of Bacterial Isolates
2.3. Plant Growth-Promoting Traits of Bacterial Isolates
2.3.1. Phosphate Solubilization
2.3.2. Acid and Alkaline Phosphatase Activity
2.3.3. Calcium Solubilization
2.3.4. Biological Nitrogen Fixation
2.4. Experiment to Evaluate the Effect of Bacterial Isolates on Tomato Plant Growth
Establishment and Inoculation
2.5. Experiment to Assess Antagonistic Activity of Isolates Against Fusarium sp.
2.6. Statistical Analysis of Experimental Data
3. Results
3.1. Physicochemical Characteristics of Soils and Bacterial Diversity
3.2. Morphological Characteristics of Bacterial Isolates
3.3. Plant Growth-Promoting Characteristics of Bacterial Isolates
3.3.1. Phosphate Solubilization
3.3.2. Acid and Alkaline Phosphatase Activity
3.3.3. Calcium Solubilization
3.3.4. Biological Nitrogen Fixation
3.4. Biological Effectiveness of Bacterial Isolates as Plant Growth Promoters in Tomato Plants (Solanum lycopersicum)
3.5. Biological Effectiveness of the Antagonistic Activity of Bacterial Isolates Against Fusarium sp.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CM | Conventional agronomic Management |
OM | Organic agronomic Management |
PGPB | Plant Growth-Promoting Bacteria |
IBC | Isolates Bacterial from Conventional plots |
IBO | Isolates Bacterial from Organic plots |
PS | Phosphate Solubilization |
CS | Calcium Solubilization |
NF | Nitrogen Fixation |
PH | Plant height |
RL | Root Length |
TFB | Total Fresh Biomass |
TDB | Total Dry Biomass |
References
- Apaza, W.; Quiroz, P.; Julca-Otiniano, A. Characterisation of avocado and asparagus farms in the Chavimochic irrigation project in La Libertad, Peru. Peruv. J. Agron. 2019, 3, 91–103. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, U.B.; Sahu, P.K.; Paul, S.; Kumar, A.; Malviya, D.; Saxena, A.K. Linking soil microbial diversity to modern agriculture practices: A review. Int. J. Environ. Res. Public Health 2022, 19, 3141. [Google Scholar] [CrossRef] [PubMed]
- Ondrasek, G.; Horvatinec, J.; Kovačić, M.B.; Reljić, M.; Vinceković, M.; Rathod, S.; Njavro, M. Land Resources in organic Agriculture: Trends and challenges in the twenty-first century from global to Croatian contexts. Agronomy 2023, 13, 1544. [Google Scholar] [CrossRef]
- Khan, M.T.; Aleinikovienė, J.; Butkevičienė, L.M. Innovative Organic Fertilizers and Cover Crops: Perspectives for Sustainable Agriculture in the Era of Climate Change and Organic Agriculture. Agronomy 2024, 14, 2871. [Google Scholar] [CrossRef]
- Gupta, R.; Noureldeen, A.; Darwish, H. Rhizosphere mediated growth enhancement using phosphate solubilizing rhizobacteria and their tri-calcium phosphate solubilization activity under pot culture assays in rice (Oryza sativa). Saudi J. Biol. Sci. 2021, 28, 3692–3700. [Google Scholar] [CrossRef]
- Skinner, C.; Gattinger, A.; Krauss, M.; Krause, H.M.; Mayer, J.; Van Der Heijden, M.G.; Mäder, P. The impact of long-term organic farming on soil-derived greenhouse gas emissions. Sci. Rep. 2019, 9, 1702. [Google Scholar] [CrossRef]
- Sylvia, S.; Rahim, H.; Surapati, U.; Rosmana, A.; Dewi, V.S. Diversity of microbes in organic and non-organic vegetable ecosystem. IOP Conf. Ser. Earth Environ. Sci. 2020, 486, 012086. [Google Scholar] [CrossRef]
- Ogawa, Y.; Tokunaga, E.; Kobayashi, O.; Hirai, K.; Shibata, N. Current contributions of organofluorine compounds to the agrochemical industry. Iscience 2020, 23, 101467. [Google Scholar] [CrossRef]
- Hartmann, M.; Frey, B.; Mayer, J.; Mäder, P.; Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 2015, 9, 1177–1194. [Google Scholar] [CrossRef]
- Fawzy, Z.F.; Shedeed, S.I.; Hassan, N.M. A review of organic agricultural of some vegetables crops. Am. J. Food Sci. Health 2016, 2, 25–31, ISSN: 2381-7224 (Online). [Google Scholar]
- Shahriar, S.A.; Islam, M.N.; Chun, C.N.W.; Kaur, P.; Rahim, M.A.; Islam, M.M.; Siddiquee, S. Microbial metabolomics interaction and ecological challenges of Trichoderma species as biocontrol inoculant in crop rhizosphere. Agronomy 2022, 12, 900. [Google Scholar] [CrossRef]
- Tan, X.; Hu, X.; Liu, X.; Zhang, P.; Yang, S.; Xia, F. Bioorganic Fertilizer Can Improve Potato Yield by Replacing Fertilizer with Isonitrogenous Content to Improve Microbial Community Composition. Agronomy 2024, 14, 2881. [Google Scholar] [CrossRef]
- Acharya, M.; Ashworth, A.J.; Yang, Y.; Burke, J.M.; Lee, J.A.; Acharya, R.S. Soil microbial diversity in organic and non-organic pasture systems. Peer J. 2024, 9, e11184. [Google Scholar] [CrossRef] [PubMed]
- Bebber, D.P.; Richards, V.R. A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. Appl. Soil Ecol. 2022, 175, 104450. [Google Scholar] [CrossRef]
- Melo, J.; Carolino, M.; Carvalho, L.; Correia, P.; Tenreiro, R.; Chaves, S.; Ramos, A.C. Crop management as a driving force of plant growth promoting rhizobacteria physiology. Springerplus 2016, 5, 1574. [Google Scholar] [CrossRef] [PubMed]
- Teherán-Sierra, L.G.; Funnicelli, M.I.G.; de Carvalho, L.A.L.; Ferro, M.I.T.; Soares, M.A.; Pinheiro, D.G. Bacterial communities associated with sugarcane under different agricultural management exhibit a diversity of plant growth-promoting traits and evidence of synergistic effect. Microbiol. Res. 2021, 247, 126729. [Google Scholar] [CrossRef]
- Corrales-Lozada, M.; Lumbres, V.; Iglesias-Osores, S.; Carreño-Farfán, C. Potencialidades de bacterias promotoras del crecimiento vegetal, aisladas de Portulaca oleracea L. en suelos con salinidad. Pastos Forrajes 2020, 43, 93–101. [Google Scholar]
- Sherpa, M.T.; Bag, N.; Das, S.; Haokip, P.; Sharma, L. Isolation and characterization of plant growth promoting rhizobacteria isolated from organically grown high yielding pole type native pea (Pisum sativum L.) variety Dentami of Sikkim, India. Microbiol. Curr. Res. 2021, 2, 100068. [Google Scholar] [CrossRef]
- Anaya, L.C.; Cordero, A.P.; Vergara, D.E.M. Identification of Plant Growth-Promoting Rhizobacteria Associated with Persea americana Plantations. J. Posit. Sch. Psychol. 2023, 7, 313–323. [Google Scholar]
- Amirahmadi, E.; Ghorbani, M.; Moudrý, J.; Konvalina, P.; Kopecký, M. Impacts of environmental factors and nutrients management on tomato grown under controlled and open field conditions. Agronomy 2023, 13, 916. [Google Scholar] [CrossRef]
- Muñoz, S.S.; Navarro, K.J.J.; Martin Frias Herrera, J.; Romero, H.E.; Ríos, J.A.S.; Alba, E.M.; Arciniega, J.N.L. Aislamiento de bacterias de suelo como fuente de péptidos antimicrobianos contra cepas patógenas. Rev. Latinoam. Ambiente Cienc. 2018, 9, 821–830. [Google Scholar]
- Alcarraz Curi, M.; Heredia Jiménez, V.; Julian Ibarra, J.P. Cepas bacterianas nativas con actividades promotoras del crecimiento vegetal aisladas de la rizósfera de Coffea spp. en Pichanaqui, Perú. Biotecnol. Veg. 2019, 19, 285–295. [Google Scholar]
- Pla, L. Biodiversidad: Inferencia basada en el índice de Shannon y la riqueza. Interciencia 2006, 31, 583–590. [Google Scholar]
- Nautiyal, C.S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Corrales Ramirez, L.C.; Arevalo Galvez, Z.Y.; Moreno Burbano, V.E. Solubilización de fosfatos: Una función microbiana importante en el desarrollo vegetal. Nova 2014, 12, 68–79. [Google Scholar] [CrossRef]
- Gómez-Guiñan, Y. Actividad de las fosfatasas ácidas y alcalinas (extracelulares e intracelulares) en hongos de la rizosfera de Arachis hypogaea (Papiloneaceae). Rev. Biol. Tropical. 2004, 52, 287–295. [Google Scholar] [CrossRef]
- Torres, M.V.; Lizarazo, L.M. Evaluación de grupos funcionales (ciclo del C, N, P) y actividad de la fosfatasa ácida en dos suelos agrícolas del departamento de Boyacá (Colombia). Agron. Colomb. 2006, 24, 317–325. [Google Scholar]
- Argüello-Navarro, A.Z.; Moreno-Rozo, L.Y. Evaluación del potencial biofertilizante de bacterias diazótrofas aisladas de suelos con cultivo de cacao (Theobroma cacao L.). Acta Agron. 2014, 63, 238–245. [Google Scholar] [CrossRef]
- Gutiérrez-Calvo, A.E.; Estrada, A.G.; Miceli-Méndez, C.L.; López-Miceli, M.A. Efectos de Bacillus subtilis cepas GBO3 y IN937b en el crecimiento de maíz (Zea mays L.). Polibotánica 2022, 53, 211–218. [Google Scholar] [CrossRef]
- Bolívar, K.; Sanabria, M.E.; Rodríguez, D.; de Camacaro, M.P.; Ulacio, D.; Cumana, L.J.; Crescente, O. Potencial efecto fungicida de extractos vegetales en el desarrollo in vitro del hongo Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. y de la antracnosis en frutos de mango. Rev. Científica UDO Agrícola 2009, 9, 175–181. [Google Scholar]
- Trinidad-Cruz, J.R.; Rincón-Enríquez, G.; Evangelista-Martínez, Z.; Guízar-González, C.; Enríquez-Vara, J.N.; López-Pérez, L.; Quiñones-Aguilar, E.E. Actinobacteria from avocado rhizosphere: Antagonistic activity against Colletotrichum gloeosporioides and Xanthomonas sp. Terra Latinoam. 2021; 39, 1–9. e802. [Google Scholar] [CrossRef]
- Moreno-Limón, S.; González-Solís, L.N.; Salcedo-Martínez, S.M.; Cárdenas-Avila, M.L.; Perales-Ramírez, A. Efecto antifúngico de extractos de gobernadora (Larrea tridentata L.) sobre la inhibición in vitro de Aspergillus flavus y Penicillium sp. Polibotanica 2011, 32, 193–205. [Google Scholar]
- Vásquez-Polo, J.R.; Baena-Garcia, D.; Menjivar-Flores, J.C. Variabilidad espacial de propiedades físicas y químicas en suelos de la granja experimental de la Universidad del Magdalena (Santa Marta, Colombia). Acta Agron. 2010, 59, 449–456. [Google Scholar]
- Al-Shammary, A.A.G.; Al-Shihmani, L.S.S.; Fernández-Gálvez, J.; Caballero-Calvo, A. Optimizing sustainable agriculture: A comprehensive review of agronomic practices and their impacts on soil attributes. J. Environ. Manag. 2024, 364, 121487. [Google Scholar] [CrossRef]
- Siedt, M.; Schäffer, A.; Smith, K.E.; Nabel, M.; Roß-Nickoll, M.; Van Dongen, J.T. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci. Total Environ. 2021, 751, 141607. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, X.; Hu, Y.; Zhao, Y. Effects of different proportions of organic fertilizer in place of chemical fertilizer on microbial diversity and community structure of pineapple rhizosphere soil. Agronomy 2023, 14, 59. [Google Scholar] [CrossRef]
- Beriot, N.; Zornoza, R.; Lwanga, E.H.; Zomer, P.; van Schothorst, B.; Ozbolat, O.; Geissen, V. Intensive vegetable production under plastic mulch: A field study on soil plastic and pesticide residues and their effects on the soil microbiome. Sci. Total Environ. 2023, 900, 165179. [Google Scholar] [CrossRef] [PubMed]
- Jost, L.; González-Oreja, J. Midiendo la diversidad biológica: Más allá del índice de Shannon. Acta Zoológica Lilloana 2012, 56, 3–14. [Google Scholar]
- Lozada, A.E.; Lagarda, G.G.; Jiménez, A.M.; Zapata, F.B. Diversidad bacteriana del suelo: Métodos de estudio no dependientes del cultivo microbiano e implicaciones biotecnológicas. Agrociencia 2004, 38, 583–592. [Google Scholar]
- Hernández-Flores, L.; Munive-Hernández, J.A.; Sandoval-Castro, E.; Martínez-Carrera, D.; Villegas-Hernández, M.C. Efecto de las prácticas agrícolas sobre las poblaciones bacterianas del suelo en sistemas de cultivo en Chihuahua, México. Rev. Mexicana Cienc. Agric. 2013, 4, 353–365. [Google Scholar]
- Joshi, R.; Singh, J.; Vig, A.P. Vermicompost as an effective organic fertilizer and biocontrol agent: Effect on growth, yield and quality of plants. Rev. Environ. Sci. Bio 2015, 14, 137–159. [Google Scholar] [CrossRef]
- Fiore-Donno, A.M.; Human, Z.R.; Štursová, M.; Mundra, S.; Morgado, L.; Kauserud, H.; Bonkowski, M. Soil compartments (bulk soil, litter, root and rhizosphere) as main drivers of soil protistan communities distribution in forests with different nitrogen deposition. Soil Biol. Biochem. 2022, 168, 108628. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, X.; Liu, Y.; Hou, L.; Geng, Z.; Hu, F.; Xu, C. Impact of Organic Fertilizer Substitution and Chemical Nitrogen Fertilizer Reduction on Soil Enzyme Activity and Microbial Communities in an Apple Orchard. Agronomy 2024, 14, 2917. [Google Scholar] [CrossRef]
- Orr, C.H.; Stewart, C.J.; Leifert, C.; Cooper, J.M.; Cummings, S.P. Effect of crop management and sample year on abundance of soil bacterial communities in organic and conventional cropping systems. J. Appl. Microbiol. 2015, 119, 208–214. [Google Scholar] [CrossRef]
- Agegnehu, G.; Amede, T.; Desta, G.; Erkossa, T.; Legesse, G.; Gashaw, T.; Schulz, S. Improving fertilizer response of crop yield through liming and targeting to landscape positions in tropical agricultural soils. Heliyon 2023, 9, e17421. [Google Scholar] [CrossRef]
- Hemkemeyer, M.; Schwalb, S.A.; Heinze, S.; Joergensen, R.G.; Wichern, F. Functions of elements in soil microorganisms. Microbiol. Res. 2021, 252, 126832. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.F.; Murphy, C.D. Cunninghamella spp. produce mammalian-equivalent metabolites from fluorinated pyrethroid pesticides. AMB Express 2021, 11, 101. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.F.; Liao, J.; Liu, Z.; Chugh, G. Bacterial cytochrome P450 involvement in the biodegradation of fluorinated pyrethroids. J. Xenobiot. 2025, 15, 58. [Google Scholar] [CrossRef]
- Kuramae, E.E.; Yergeau, E.; Wong, L.C.; Pijl, A.S.; Van Veen, J.A.; Kowalchuk, G.A. Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiol. Ecol. 2012, 79, 12–24. [Google Scholar] [CrossRef]
- Pírez, M.; Mota, M. Morfología y estructura bacteriana. Temas Bacteriol. Virol. Médica 2006, 23–42. Available online: https://d1wqtxts1xzle7.cloudfront.net/39779542/MorfologiayEstructuraBacteriana-1-libre.pdf?1446926252=&response-content-disposition=inline%3B+filename%3DMorfologiay_Estructura_Bacteriana_1.pdf&Expires=1755834649&Signature=GK7OTaqGKxpbKlHIUoWulRvZ2KHbb0KG-sFfq4hll89CbZjEK1WdY6uRYAnQ5jtxYD-3AXpEHR09LmCR420Yl0tCkuZgrmMRxs9MImo12Snf6W-p4tSo25EIo9eEyC~1B8-IvP3-~i84B3JTgKNSQsIIEmK518o4NyB~pzmEw6JL45ZO4CwtSafImofSm3LZMHw0RReVOMfZrV8sRz3A8DqOHaLMLyLTsnsftJXIzZyYIbB9ZLZpS-t6KVmWYY5NNo-88AeY2G-ltBzV4YgcHAHsycidpMMpbdLGwIz7xC2GXPgCYfmb4FNbWKw1F-tpDnIgPUlVbnpaH1pPKFVWAA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (accessed on 17 August 2025).
- Feijoo, M.A.L. Microorganismos eficientes y sus beneficios para los agricultores. Rev. Científica Agroecosist. 2016, 4, 31–40. [Google Scholar]
- Cazorla, F.M.; Duckett, S.B.; Berstrom, E.T.; Noreen, S.; Odijk, R.; Lugtenberg, B.J.J.; Thomas-Oates, J.E.; Bloemberg, G.V. Biocontrol of avocado Demathophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Mol. Plant-Microbe Interact. 2006, 19, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Pliego, C.; Cazorla, F.M.; González-Sánchez, M.A.; Pérez-Jiménez, R.M.; de Vicente, A.; Ramos, C. Selection for biocontrol bacteria antagonistic toward Rosellinia necatrix by enrichment of competitive avocado root tip colonizers. Res. Microbiol. 2007, 158, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Al-Kahtani, M.D.; Fouda, A.; Attia, K.A.; Al-Otaibi, F.; Eid, A.M.; Ewais, E.E.D.; Abdelaal, K.A. Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture. Agronomy 2020, 10, 1325. [Google Scholar] [CrossRef]
- Solórzano-Acosta, R.A.; Quispe, K.R. Assessing the role of field isolated Pseudomonas and Bacillus as growth-promoting rizobacteria on avocado (Persea americana) seedlings. J. Sustain. Agric. Environ. 2024, 3, e12114. [Google Scholar] [CrossRef]
- Molina-Romero, D.; del Rocío Bustillos, M.; Rodríguez-Andrade, Y.E.; Morales-García, Y.; Santiago-Saenz, M.; Castañeda-Lucio, M.; Muñoz-Rojas, J. Mecanismos de fitoestimulación por rizobacterias, aislamientos en América y potencial biotecnológico. Biológicas 2015, 17, 24–34. [Google Scholar]
- Oteino, N.; Lally, R.D.; Kiwanuka, S.; Lloyd, A.; Ryan, D.; Germaine, K.J.; Dowling, D.N. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front. Microbiol. 2015, 6, 745. [Google Scholar] [CrossRef]
- Walpola, B.C.; Hettiarachchi, R.H.A.N. Organic manure amended with phosphate solubilizing bacteria on soil phosphorous availability. J. Agric. Sci. 2020, 15, 142–153. [Google Scholar] [CrossRef]
- Beltrán Pineda, M.E. La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Cienc. Tecnol. Agropecu. 2014, 15, 101–113. [Google Scholar] [CrossRef]
- Torres, Ó.G.V. Importancia de los fosfatos y fosfitos en la nutrición de cultivos. Acta Agrícola Pecu. 2016, 2, 55–61. [Google Scholar]
- Luo, G.; Sun, B.; Li, L.; Li, M.; Liu, M.; Zhu, Y.; Shen, Q. Understanding how long-term organic amendments increase soil phosphatase activities: Insight into phoD-and phoC-harboring functional microbial populations. Soil Biol. Biochem. 2019, 139, 107632. [Google Scholar] [CrossRef]
- López, F.M.; Duval, M.; Martínez, J.M.; Gabbarini, L.; Galantini, J. Condicionantes de la disponibilidad de fósforo en suelos bajo siembra directa del sudoeste bonaerense. Cienc. Suelo 2019, 37, 158–163. [Google Scholar]
- Ma, W.; Luo, P.; Ahmed, S.; Hayat, H.S.; Anjum, S.A.; Nian, L.; Cai, L. Synergistic Effect of Biochar, Phosphate Fertilizer, and Phosphorous Solubilizing Bacteria for Mitigating Cadmium (Cd) Stress and Improving Maize Growth in Cd-Contaminated Soil. Plants 2024, 13, 3333. [Google Scholar] [CrossRef] [PubMed]
- Paredes-Mendoza, M.; Espinosa-Victoria, D. Ácidos orgánicos producidos por rizobacterias que solubilizan fosfato: Una revisión crítica. Terra Latinoam. 2010, 28, 61–70. [Google Scholar]
- Rana, G.; Mandal, T.; Mandal, N.K.; Sakha, D.; Meikap, B.C. Calcite solubilization by bacteria: A novel method of environment pollution control. Geomicrobiol. J. 2015, 32, 846–852. [Google Scholar] [CrossRef]
- Bellenger, J.P.; Darnajoux, R.; Zhang, X.; Kraepiel, A.M.L. Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: A review. Biogeochemistry 2020, 149, 53–73. [Google Scholar] [CrossRef]
- Sepp, S.K.; Vasar, M.; Davison, J.; Oja, J.; Anslan, S.; Al-Quraishy, S.; Zobel, M. Global diversity and distribution of nitrogen-fixing bacteria in the soil. Front. Plant Sci. 2023, 14, 1100235. [Google Scholar] [CrossRef]
- Igiehon, N.O.; Babalola, O.O. Rhizosphere microbiome modulators: Contributions of nitrogen fixing bacteria towards sustainable agriculture. Int. J. Environ. Res. Public Health 2018, 15, 574. [Google Scholar] [CrossRef]
- Wolińska, A.; Kuźniar, A.; Zielenkiewicz, U.; Izak, D.; Szafranek-Nakonieczna, A.; Banach, A.; Błaszczyk, M. Bacteroidetes as a sensitive biological indicator of agricultural soil usage revealed by a culture-independent approach. Appl. Soil Ecol. 2017, 119, 128–137. [Google Scholar] [CrossRef]
- Liao, H.; Li, Y.; Yao, H. Fertilization with inorganic and organic nutrients changes diazotroph community composition and N-fixation rates. J. Soils Sediments 2018, 18, 1076–1086. [Google Scholar] [CrossRef]
- Li, X.; Geng, X.; Xie, R.; Fu, L.; Jiang, J.; Gao, L.; Sun, J. The endophytic bacteria isolated from elephant grass (Pennisetum purpureum Schumach) promote plant growth and enhance salt tolerance of hybrid Pennisetum. Biotechnol. Biofuels Bioprod. 2016, 9, 190. [Google Scholar] [CrossRef] [PubMed]
- Banik, A.; Dash, G.K.; Swain, P.; Kumar, U.; Mukhopadhyay, S.K.; Dangar, T.K. Application of rice (Oryza sativa L.) root endophytic diazotrophic Azotobacter sp. strain Avi2 (MCC 3432) can increase rice yield under green house and field condition. Microbiol. Res. 2019, 219, 56–65. [Google Scholar] [CrossRef]
- Rodrigues, A.A.; Forzani, M.V.; Soares, R.; Sibov, S.T.; Vieira, J. Isolation and selection of plant growth-promoting bacteria associated with sugarcane. Pesqui. Agropecu. Trop. 2016, 46, 149–158. [Google Scholar] [CrossRef]
- Renganathan, P.; Andrade-Bustamante, G.; Martínez-Ruiz, F.E.; Puente, E.O.R. Microbial Diversity and Functional Profiles of Three Commercial Biofertilizers and Impacts on the Bacterial Communities of Avocado’s Soil Rhizosphere. Cienc. Tecnol. Agropecu. 2024, 25, 2. [Google Scholar] [CrossRef]
- Lin, L.; Zhengyi, L.; Chunjin, H.; Zhang, X.; Chang, S.; Yang, L.; Yangrui, L.; Qianli, A. Plant growth-promoting nitrogen-fixing Enterobacteria are in association with sugarcane plants growing in Guangxi, China. Microbes Environ. 2012, 27, 391–398. [Google Scholar] [CrossRef]
- Gyaneshwar, P.; Naresh, K.G.; Parekh, L.J.; Poole, P.S. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 2022, 245, 83–93. [Google Scholar] [CrossRef]
- del Carmen Orozco-Mosqueda, M.; del Carmen Rocha-Granados, M.; Glick, B.R.; Santoyo, G. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol. Res. 2018, 208, 25–31. [Google Scholar] [CrossRef]
- Vurukonda, S.S.K.P.; Giovanadri, D.; Stefani, E. Growth Promotion and Biocontrol Activity of Endophytic Streptomyces spp. In Prime Archives in Molecular Sciences, 2nd ed.; Vide Leaf: Hyderabad, India, 2021; Volume 1, pp. 1–55. [Google Scholar]
- Tzec-Interián, J.A.; Desgarennes, D.; Carrión, G.; Monribot-Villanueva, J.L.; Guerrero-Analco, J.A.; Ferrera-Rodríguez, O.; Ortiz-Castro, R. Characterization of plant growth-promoting bacteria associated with avocado trees (Persea americana Miller) and their potential use in the biocontrol of Scirtothrips perseae (avocado thrips). PLoS ONE 2020, 15, e0231215. [Google Scholar] [CrossRef]
- Chow, Y.Y.; Rahman, S.; Ting, A.S.Y. Understanding colonization and proliferation potential of endophytes and pathogen in planta via plating, polymerase chain reaction, and ergosterol assay. J. Adv. Res. 2017, 8, 13–21. [Google Scholar] [CrossRef]
- Khan, N.; Zandi, P.; Ali, S.; Mehmood, A.; Adnan Shahid, M.; Yang, J. Impact of salicylic acid and PGPR on the drought tolerance and phytoremediation potential of Helianthus annus. Front. Microbiol. 2018, 9, 2507. [Google Scholar] [CrossRef] [PubMed]
- González-Sánchez, M.Á.; Pérez-Jiménez, R.M.; Pliego, C.; Ramos, C.; De Vicente, A.; Cazorla, F.M. Biocontrol bacteria selected by a direct plant protection strategy against avocado white root rot show antagonism as a prevalent trait. J. Appl. Microbiol. 2010, 109, 65–78. [Google Scholar] [CrossRef]
- Weller, D.M. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 1988, 26, 379–407. [Google Scholar] [CrossRef]
- Whipps, J.M. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 2001, 52, 487–511. [Google Scholar] [CrossRef] [PubMed]
- Cortazar-Murillo, E.M.; Méndez-Bravo, A.; Monribot-Villanueva, J.L.; Garay-Serrano, E.; Kiel-Martínez, A.L.; Ramírez-Vázquez, M.; Guevara-Avendaño, E.; Méndez-Bravo, A.; Guerrero-Analco, J.A.; Reverchon, F. Biocontrol and plant growth promoting traits of two avocado rhizobacteria are orchestrated by the emission of diffusible and volatile compounds. Front. Microbiol. 2023, 14, 1152597. [Google Scholar] [CrossRef] [PubMed]
- Ruano-Rosa, D.; Cazorla, F.M.; Bonilla, N.; Martín-Pérez, R.; De Vicente, A.; López-Herrera, C.J. Biological control of avocado white root rot with combined applications of Trichoderma spp. and rhizobacteria. Eur. J. Plant Pathol. 2014, 138, 751–762. [Google Scholar] [CrossRef]
- Joo, J.H.; Khalid, A.H. Biological control and plant growth promotion properties of volatile organic compound-producing antagonistic Trichoderma spp. Front. Plant Sci. 2022, 13, 897668. [Google Scholar] [CrossRef]
- Srikamwang, C.; Onsa, N.; Sunanta, P.; Sangta, J.; Chanway, C.; Thanakkasaranee, S.; Sommano, S. Role of microbial volatile organic compounds in promoting plant growth and disease resistance in horticultural production. Plant Signal. Behav. 2023, 18, 2227440. [Google Scholar] [CrossRef]
Physicochemical and Biological Parameters | Orchards with Conventional Management | Orchards with Organic Management |
---|---|---|
Textual Class | Sandy clay loam | Sandy loam |
Bulk Density (g cm−3) | 0.85 | 2 |
Porosity (%) | 61.3 | 57.7 |
pH (H2O) 1:2 | 5.94 | 7.08 |
EC (dSm−1) | 0.8 | 0.5 |
Organic Matter (%) | 5.87 | 10.23 |
CEC meq100 g−1 | 20.65 | 40.5 |
Nitrogen (mg kg−1) | 119.58 | 106.2 |
Phosphorus (mg kg−1) | 169.17 | 330.8 |
Potassium (mg kg−1) | 1827 | 1414 |
Calcium (mg kg−1) | 1946 | 3688 |
Magnesium (mg kg−1) | 689 | 1697 |
Sodium (mg kg−1) | 23.2 | 265 |
Iron (mg kg−1) | 64.8 | 56.9 |
Zinc (mg kg−1) | 11.81 | 78.7 |
Manganese (mg kg−1) | 42.4 | 39.23 |
Copper (mg kg−1) | 20.5 | 29.26 |
Isolates bacterial | 15 b 1 | 20 a |
Shannon Diversity Index | 1.75 (±0.24) b | 2.44 (±0.08) a |
Morphological Characteristics of the Bacterial Isolate | Bacterial Isolates from Conventional Management Orchard Soils | Bacterial Isolates from Organic Management Orchard Soils |
---|---|---|
Colony size | Punctate, small, medium and large | Punctate, small, medium and large |
Colony shape | Circular, fusiform, rhizoids and irregular | Circular, fusiform, rhizoids and irregular |
Colony edge | Entire, undulate and rhizoids | Entire, rhizoids, filamentous and lobed |
Colony transparency | Opaque and transparent | Opaque and transparent |
Colony luster | L and WL * | L and WL |
Colony color | White and yellow | White and yellow |
Colony texture | Lisas | Lisas |
Colony elevation | Convex, raised and flat | Raised and flat |
Consistency | Soft, mucoid and hard | Soft, mucoid and hard |
Positive Gram | 8 | 10 |
Negative Gram | 7 | 10 |
Microscopic morphology | Long bacilli with spores in initial, central and final positions | Long, short, wide, bacilli sporulated |
Agronomic Management | Key to the Bacterial Isolate | Phosphate Solubilization Index | P-Nitrophenylphosphate Acids (µgmL−1) | P-Nitrophenylphosphate Alkaline (µgmL−1) | Calcium Solubilization Index | Nitrogen Fixation NO3− ppm |
---|---|---|---|---|---|---|
IBC-1 | - | - | - | 2.77 b | 67 b | |
IBC-2 | - | - | - | - | 64 b | |
IBC-3 | 3.15 a * | 15.87 a | 8.48 b | - | 73 b | |
IBC-4 | - | - | - | - | 70 b | |
IBC-5 | - | - | - | - | 71 b | |
Conventional Management | IBC-6 | - | - | - | 3.05 a | 85.5 b |
IBC-7 | - | - | - | - | 96.75 b | |
IBC-8 | - | - | - | - | 73 b | |
IBC-9 | - | - | - | - | 74 b | |
IBC-10 | - | - | - | - | 39 b | |
IBC-11 | - | - | - | - | 63 b | |
IBC-12 | - | - | - | - | 66 b | |
IBC-13 | - | - | - | - | 73 b | |
IBC-14 | - | - | - | - | 42 b | |
IBC-15 | - | - | - | - | 70 b | |
IBO-1 | - | - | - | - | 115 b | |
IBO-2 | - | - | - | - | 57.7 b | |
IBO-3 | - | - | - | - | 104 b | |
IBO-4 | - | - | - | - | 157.5 a | |
IBO-5 | - | - | - | - | 139.3 a | |
IBO-6 | - | - | - | - | 139.3 a | |
IBO-7 | - | - | - | - | 136.5 a | |
IBO-8 | - | - | - | - | 72 b | |
IBO-9 | - | - | - | 6.33 a | 127.50 a | |
Organic | IBO-10 | 2.14 b | 11.15 a | 12.79 a | 1.96 b | 106.8 b |
Management | IBO-11 | - | - | - | - | 117.50 b |
IBO-12 | 2.41 b | 13.05 a | 11.57 a | - | 119.75 a | |
IBO-13 | 3.5 a | 15.88 a | 13.76 a | 2.83 b | 162.5 a | |
IBO-14 | 3.22 a | 10.22 a | 5.66 b | - | 114 b | |
IBO-15 | - | - | - | - | 123.8 a | |
IBO-16 | - | - | - | - | 106.3 b | |
IBO-17 | 4.31 a | 14.64 a | 11.91 a | 4.06 a | 125.5 a | |
IBO-18 | 2.74 b | 12.14 a | 14.68 a | 2.66 b | 134.8 a | |
IBO-19 | 2.95 b | 13.03 a | 6.56 b | 132.5 a | ||
IBO-20 | 2.91 b | 13.09 a | 12.58 a | 2.21 b | 107.3 b | |
Positive control | Bacillus thuringiensis | 2.46 b | 0.345 b | 3.01 b | 2.93 b | - |
Azotobacter vinelandii | - | - | - | - | 62.25 b |
Agronomic Management | Key to the Bacterial Isolate | PS | CS | NF | PH cm | RL cm | TFB g | TDB g |
---|---|---|---|---|---|---|---|---|
IBC-1 | - | - | - | 4.77 fg * | 6.64 ab | 0.238 c | 0.065 b | |
IBC-2 | - | - | - | 5.33 cd | 6.02 b | 0.150 d | 0.098 b | |
IBC-3 | + | - | - | 5.9 ab | 4.05 g | 0.270 cd | 0.055 b | |
IBC-4 | - | - | - | 4.42 h | 6.33 b | 0.271 c | 0.047 bc | |
IBC-5 | - | - | - | 4.78 fg | 5.08 d | 0.217 c | 0.024 ef | |
Conventional Management | IBC-6 | - | - | + | 5.15 e | 5.70 c | 0.385 b | 0.052 b |
IBC-7 | - | - | - | 5.09 ef | 5.22 cd | 0.250 c | 0.041 c | |
IBC-8 | - | - | - | 5.04 ef | 4.09 fg | 0.202 c | 0.027 e | |
IBC-9 | - | - | - | 5.05 ef | 5.19 cd | 0.174 cd | 0.027 e | |
IBC-10 | - | - | - | 5.65 b | 4.6 e | 0.234 c | 0.033 d | |
IBC-11 | - | - | - | 4.91 f | 3.86 gh | 0.229 c | 0.032 d | |
IBC-12 | - | - | - | 5.40 c | 5.70 c | 0.236 c | 0.041 c | |
IBC-13 | - | - | - | 4.59 gh | 4.25 f | 0.304 bc | 0.053 b | |
IBC-14 | - | - | - | 5.15 e | 4.60 e | 0.223 c | 0.034 d | |
IBC-15 | - | - | - | 6.33 ab | 5.08 d | 0.377 ab | 0.061 b | |
IBO-1 | - | - | - | 4.36 i | 5.34 c | 0.187 cd | 0.035 d | |
IBO-2 | - | - | - | 4.74 fg | 6.91 ab | 0.327 b | 0.040 c | |
IBO-3 | - | - | - | 5.13 e | 5.76 c | 0.218 c | 0.032 d | |
IBO-4 | - | - | + | 4.96 f | 4.75 d | 0.269 c | 0.043 c | |
IBO-5 | - | - | + | 4.79 fg | 4.42 ef | 0.272 c | 0.056 b | |
IBO-6 | - | - | + | 4.32 ij | 5.49 c | 0.275 c | 0.048 b | |
IBO-7 | - | - | + | 4.63 g | 6.56 b | 0.222 c | 0.025 e | |
IBO-8 | - | - | - | 4.75 fg | 6.34 b | 0.301 bc | 0.069 b | |
IBO-9 | - | + | + | 6.55 ab | 5.51 c | 0.316 b | 0.054 b | |
Organic | IBO-10 | + | + | - | 5.89 ab | 5.91 bc | 0.443 a | 0.062 b |
Management | IBO-11 | - | - | - | 6.99 a | 5.25 c | 0.402 a | 0.140 a |
IBO-12 | + | + | + | 6.6 a | 4.65 d | 0.344 b | 0.138 a | |
IBO-13 | + | + | + | 5.2 d | 4.64 de | 0.340 b | 0.045 c | |
IBO-14 | + | + | - | 5.44 b | 6.06 b | 0.224 c | 0.108 a | |
IBO-15 | - | - | + | 6.54 ab | 7.95 a | 0.324 b | 0.032 d | |
IBO-16 | - | - | - | 5.79 b | 6.65 b | 0.244 c | 0.028 e | |
IBO-17 | + | + | + | 5.70 b | 6.28 b | 0.402 a | 0.041 c | |
IBO-18 | + | + | + | 5.9 ab | 7.12 a | 0.348 b | 0.026 e | |
IBO-19 | + | - | + | 4.97 f | 4.09 fg | 0.246 c | 0.039 c | |
IBO-20 | + | + | + | 5.55 b | 4.91 d | 0.332 b | 0.038 cd | |
Control | Without inoculation | 3.65 j | 3.19 h | 0.141 d | 0.018 f |
Agronomic Management | Key to the Bacterial Isolate | Percentage Inhibition of Micellar Growth Fusarium sp. |
---|---|---|
IBC-1 | - | |
IBC-2 | 89.62 a * | |
IBC-3 | 68.80 a | |
IBC-4 | 88.97 a | |
IBC-5 | - | |
Conventional Management | IBC-6 | 86.28 a |
IBC-7 | - | |
IBC-8 | 92.35 a | |
IBC-9 | - | |
IBC-10 | 76.44 a | |
IBC-11 | - | |
IBC-12 | - | |
IBC-13 | 91.97 a | |
IBC-14 | 92.33 a | |
IBC-15 | - | |
IBO-1 | - | |
IBO-2 | - | |
IBO-3 | 93.69 a | |
IBO-4 | 51.29 b | |
IBO-5 | - | |
IBO-6 | - | |
IBO-7 | - | |
IBO-8 | 90.09 a | |
IBO-9 | 69.51 a | |
Organic | IBO-10 | - |
Management | IBO-11 | - |
IBO-12 | - | |
IBO-13 | 88.13 a | |
IBO-14 | - | |
IBO-15 | - | |
IBO-16 | - | |
IBO-17 | 86.63 a | |
IBO-18 | - | |
IBO-19 | - | |
IBO-20 | - | |
Positive Control | Bacillus subtilis | 79.06 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velázquez-Medina, A.; Quiñones-Aguilar, E.E.; Gutiérrez-Vázquez, E.; Gómez-Dorantes, N.; Rincón-Enríquez, G.; López-Pérez, L. Bacterial Isolates from Avocado Orchards with Different Agronomic Management Systems with Potential for Promoting Plant Growth in Tomate and Phytopathogen Control. Microorganisms 2025, 13, 1974. https://doi.org/10.3390/microorganisms13091974
Velázquez-Medina A, Quiñones-Aguilar EE, Gutiérrez-Vázquez E, Gómez-Dorantes N, Rincón-Enríquez G, López-Pérez L. Bacterial Isolates from Avocado Orchards with Different Agronomic Management Systems with Potential for Promoting Plant Growth in Tomate and Phytopathogen Control. Microorganisms. 2025; 13(9):1974. https://doi.org/10.3390/microorganisms13091974
Chicago/Turabian StyleVelázquez-Medina, Adilene, Evangelina Esmeralda Quiñones-Aguilar, Ernestina Gutiérrez-Vázquez, Nuria Gómez-Dorantes, Gabriel Rincón-Enríquez, and Luis López-Pérez. 2025. "Bacterial Isolates from Avocado Orchards with Different Agronomic Management Systems with Potential for Promoting Plant Growth in Tomate and Phytopathogen Control" Microorganisms 13, no. 9: 1974. https://doi.org/10.3390/microorganisms13091974
APA StyleVelázquez-Medina, A., Quiñones-Aguilar, E. E., Gutiérrez-Vázquez, E., Gómez-Dorantes, N., Rincón-Enríquez, G., & López-Pérez, L. (2025). Bacterial Isolates from Avocado Orchards with Different Agronomic Management Systems with Potential for Promoting Plant Growth in Tomate and Phytopathogen Control. Microorganisms, 13(9), 1974. https://doi.org/10.3390/microorganisms13091974