Active Chlorophyll Fluorescence Technologies in Precision Weed Management: Overview and Perspectives
Abstract
1. Introduction
2. Principles and Instrumentation of Active ChlF
2.1. Principles of Active ChlF
2.2. Instrumentation for Active ChlF Detection
2.2.1. Light Source for ChlF Excitation
2.2.2. Photodetection Unit of ChlF Sensor
2.3. Processing and Analysis of Active ChlF Data
3. Weed Detection Based on ChlF
3.1. Rapid Plant Detection
3.2. Crop/Weed Classification Based on Active ChlF
4. Evaluation of the Effectiveness of SSWM Based on ChlF
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results; UN DESA: New York, NY, USA, 2022; Available online: https://population.un.org/wpp/ (accessed on 18 August 2025).
- Ronay, I.; Nisim Lati, R.; Kizel, F. Spectral Mixture Analysis for Weed Traits Identification under Varying Resolutions and Growth Stages. Comput. Electron. Agric. 2024, 220, 108859. [Google Scholar] [CrossRef]
- Oerke, E.-C. Crop Losses to Pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Parven, A.; Meftaul, I.M.; Venkateswarlu, K.; Megharaj, M. Herbicides in Modern Sustainable Agriculture: Environmental Fate, Ecological Implications, and Human Health Concerns. Int. J. Environ. Sci. Technol. 2025, 22, 1181–1202. [Google Scholar] [CrossRef]
- Nørremark, M.; Griepentrog, H.W.; Nielsen, J.; Søgaard, H.T. The Development and Assessment of the Accuracy of an Autonomous GPS-Based System for Intra-Row Mechanical Weed Control in Row Crops. Biosyst. Eng. 2008, 101, 396–410. [Google Scholar] [CrossRef]
- Zheng, S.; Zhao, X.; Fu, H.; Tan, H.; Zhai, C.; Chen, L. Design and Experimental Evaluation of a Smart Intra-Row Weed Control System for Open-Field Cabbage. Agronomy 2025, 15, 112. [Google Scholar] [CrossRef]
- Jia, W.; Tai, K.; Wang, X.; Dong, X.; Ou, M. Design and Simulation of Intra-Row Obstacle Avoidance Shovel-Type Weeding Machine in Orchard. Agriculture 2024, 14, 1124. [Google Scholar] [CrossRef]
- Kuang, Y.; Yu, H.; Qi, F.; Zhou, X.; Li, X.; Zhou, H. Developing Herbicide-Resistant Crops through Genome Editing Technologies: A Review. Crop Prot. 2024, 183, 106745. [Google Scholar] [CrossRef]
- Gill, J.P.K.; Sethi, N.; Mohan, A.; Datta, S.; Girdhar, M. Glyphosate Toxicity for Animals. Environ. Chem. Lett. 2018, 16, 401–426. [Google Scholar] [CrossRef]
- Sharma, K.K.; Tripathy, V.; Gopal, M.; Walia, S. Good Agricultural Practices and Monitoring of Herbicide Residues in India. In Herbicide Residue Research in India. Environmental Chemistry for a Sustainable World; Springer: Singapore, 2019; pp. 443–465. [Google Scholar]
- Zhang, H.-Y.; Goncalves, P.; Copeland, E.; Qi, S.-S.; Dai, Z.-C.; Li, G.-L.; Wang, C.-Y.; Du, D.-L.; Thomas, T. Invasion by the Weed Conyza Canadensis Alters Soil Nutrient Supply and Shifts Microbiota Structure. Soil Biol. Biochem. 2020, 143, 107739. [Google Scholar] [CrossRef]
- Andreu, V.; Picó, Y. Determination of Pesticides and Their Degradation Products in Soil: Critical Review and Comparison of Methods. TrAC Trends Anal. Chem. 2004, 23, 772–789. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, P.; Singh, J. Contaminants in Agriculture and Environment: Health Risks and Remediation. In Contaminants in Agriculture and Environment: Health Risks and Remediation; Agro Environ Media-Agriculture and Environmental Science Academy: Haridwar, India, 2019; pp. 1–301. [Google Scholar]
- European Commission. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 18 August 2025).
- Ministry of Agriculture, Forestry and Fisheries (MAFF). The Revised Pesticide Control Act; Government of Japan: Tokyo, Japan, 2018. Available online: https://www.maff.go.jp/e/ (accessed on 18 August 2025).
- U.S. Environmental Protection Agency (EPA). Summary of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA); US EPA: Washington, DC, USA, 2022. Available online: https://www.epa.gov/laws-regulations/summary-federal-insecticide-fungicide-and-rodenticide-act (accessed on 18 August 2025).
- Gutjahr, C.; Sökefeld, M.; Gerhards, R. Evaluation of Two Patch Spraying Systems in Winter Wheat and Maize. Weed Res. 2012, 52, 510–519. [Google Scholar] [CrossRef]
- Gerhards, R.; Oebel, H. Practical Experiences with a System for Site-specific Weed Control in Arable Crops Using Real-time Image Analysis and GPS-controlled Patch Spraying. Weed Res. 2006, 46, 185–193. [Google Scholar] [CrossRef]
- Biller, R.H. Reduced Input of Herbicides by Use of Optoelectronic Sensors. J. Agric. Eng. Res. 1998, 71, 357–362. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, D.; Zhou, W.; Currie, K. Laser and Optical Radiation Weed Control: A Critical Review. Precis. Agric. 2024, 25, 2033–2057. [Google Scholar] [CrossRef]
- Brodie, G. The Use of Physics in Weed Control. In Non-Chemical Weed Control; Elsevier: Amsterdam, The Netherlands, 2018; pp. 33–59. [Google Scholar]
- Slaughter, D.C.; Giles, D.K.; Downey, D. Autonomous Robotic Weed Control Systems: A Review. Comput. Electron. Agric. 2008, 61, 63–78. [Google Scholar] [CrossRef]
- Memon, M.S.; Chen, S.; Shen, B.; Liang, R.; Tang, Z.; Wang, S.; Zhou, W.; Memon, N. Automatic Visual Recognition, Detection and Classification of Weeds in Cotton Fields Based on Machine Vision. Crop Prot. 2025, 187, 106966. [Google Scholar] [CrossRef]
- Akbarzadeh, S.; Paap, A.; Ahderom, S.; Apopei, B.; Alameh, K. Plant Discrimination by Support Vector Machine Classifier Based on Spectral Reflectance. Comput. Electron. Agric. 2018, 148, 250–258. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, W.; Wei, X. A Review on Weed Detection Using Ground-Based Machine Vision and Image Processing Techniques. Comput. Electron. Agric. 2019, 158, 226–240. [Google Scholar] [CrossRef]
- AlSuwaidi, A.; Veys, C.; Hussey, M.; Grieve, B.; Yin, H. Hyperspectral Selection Based Algorithm for Plant Classification. In Proceedings of the 2016 IEEE International Conference on Imaging Systems and Techniques (IST), Chania, Greece, 4–6 October 2016; pp. 395–400. [Google Scholar]
- López-Granados, F. Weed Detection for Site-specific Weed Management: Mapping and Real-time Approaches. Weed Res. 2011, 51, 1–11. [Google Scholar] [CrossRef]
- Peteinatos, G.G.; Weis, M.; Andújar, D.; Rueda Ayala, V.; Gerhards, R. Potential Use of Ground-Based Sensor Technologies for Weed Detection. Pest Manag. Sci. 2014, 70, 190–199. [Google Scholar] [CrossRef]
- Tao, T.; Wei, X. STBNA-YOLOv5: An Improved YOLOv5 Network for Weed Detection in Rapeseed Field. Agriculture 2024, 15, 22. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Ma, G.; Du, X.; Shaheen, N.; Mao, H. Recognition of Weeds at Asparagus Fields Using Multi-Feature Fusion and Backpropagation Neural Network. Int. J. Agric. Biol. Eng. 2021, 14, 190–198. [Google Scholar] [CrossRef]
- Gamon, J.A.; Serrano, L.; Surfus, J.S. The Photochemical Reflectance Index: An Optical Indicator of Photosynthetic Radiation Use Efficiency across Species, Functional Types, and Nutrient Levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef]
- Chen, S.; Memon, M.S.; Shen, B.; Guo, J.; Du, Z.; Tang, Z.; Guo, X.; Memon, H. Identification of Weeds in Cotton Fields at Various Growth Stages Using Color Feature Techniques. Ital. J. Agron. 2024, 19, 100021. [Google Scholar] [CrossRef]
- Falkowski, P.; Kolber, Z. Variations in Chlorophyll Fluorescence Yields in Phytoplankton in the World Oceans. Funct. Plant Biol. 1995, 22, 341. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll Fluorescence—A Practical Guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Thorp, K.R.; Tian, L.F. Performance Study of Variable-Rate Herbicide Applications Based on Remote Sensing Imagery. Biosyst. Eng. 2004, 88, 35–47. [Google Scholar] [CrossRef]
- Liu, J.; Abbas, I.; Noor, R.S. Development of Deep Learning-Based Variable Rate Agrochemical Spraying System for Targeted Weeds Control in Strawberry Crop. Agronomy 2021, 11, 1480. [Google Scholar] [CrossRef]
- Guanter, L.; Zhang, Y.; Jung, M.; Joiner, J.; Voigt, M.; Berry, J.A.; Frankenberg, C.; Huete, A.R.; Zarco-Tejada, P.; Lee, J.-E.; et al. Global and Time-Resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescence. Proc. Natl. Acad. Sci. USA 2014, 111, E1327–E1333. [Google Scholar] [CrossRef]
- Frankenberg, C.; O’Dell, C.; Guanter, L.; McDuffie, J. Remote Sensing of Near-Infrared Chlorophyll Fluorescence from Space in Scattering Atmospheres: Implications for Its Retrieval and Interferences with Atmospheric CO2 Retrievals. Atmos. Meas. Tech. 2012, 5, 2081–2094. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.; Zhang, Y.; Wolf, S.; Zhou, S.; Joiner, J.; Guanter, L.; Verma, M.; Sun, Y.; Yang, X.; et al. On the Relationship between Sub-Daily Instantaneous and Daily Total Gross Primary Production: Implications for Interpreting Satellite-Based SIF Retrievals. Remote Sens. Env. 2018, 205, 276–289. [Google Scholar] [CrossRef]
- Porcar-Castell, A.; Tyystjärvi, E.; Atherton, J.; van der Tol, C.; Flexas, J.; Pfündel, E.E.; Moreno, J.; Frankenberg, C.; Berry, J.A. Linking Chlorophyll a Fluorescence to Photosynthesis for Remote Sensing Applications: Mechanisms and Challenges. J. Exp. Bot. 2014, 65, 4065–4095. [Google Scholar] [CrossRef]
- Mohammed, G.H.; Colombo, R.; Middleton, E.M.; Rascher, U.; van der Tol, C.; Nedbal, L.; Goulas, Y.; Pérez-Priego, O.; Damm, A.; Meroni, M.; et al. Remote Sensing of Solar-Induced Chlorophyll Fluorescence (SIF) in Vegetation: 50 years of Progress. Remote Sens. Env. 2019, 231, 111177. [Google Scholar] [CrossRef]
- Konanz, S.; Kocsányi, L.; Buschmann, C. Advanced Multi-Color Fluorescence Imaging System for Detection of Biotic and Abiotic Stresses in Leaves. Agriculture 2014, 4, 79–95. [Google Scholar] [CrossRef]
- Nedbal, L.; Soukupová, J.; Kaftan, D.; Whitmarsh, J.; Trtílek, M. Kinetic Imaging of Chlorophyll Fluorescence Using Modulated Light. Photosynth. Res. 2000, 66, 3–12. [Google Scholar] [CrossRef]
- Schreiber, U.; Bilger, W.; Neubauer, C. Chlorophyll Fluorescence as a Nonintrusive Indicator for Rapid Assessment of In Vivo Photosynthesis. In Ecophysiology of Photosynthesis; Springer: Berlin/Heidelberg, Germany, 1995; pp. 49–70. [Google Scholar]
- Baker, N.R. Applications of Chlorophyll Fluorescence Can Improve Crop Production Strategies: An Examination of Future Possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef]
- Lazár, D. Chlorophyll a Fluorescence Induction1Dedicated to Docent Jan Nauš on the Occasion of His 50th Birthday.1. Biochim. Et Biophys. Acta (BBA)-Bioenerg. 1999, 1412, 1–28. [Google Scholar] [CrossRef]
- Buschmann, C.; Lichtenthaler, H.K. Principles and Characteristics of Multi-Colour Fluorescence Imaging of Plants. J. Plant Physiol. 1998, 152, 297–314. [Google Scholar] [CrossRef]
- Chaerle, L.; Van Der Straeten, D. Imaging Techniques and the Early Detection of Plant Stress. Trends Plant Sci. 2000, 5, 495–501. [Google Scholar] [CrossRef]
- Murchie, E.H.; Lawson, T. Chlorophyll Fluorescence Analysis: A Guide to Good Practice and Understanding Some New Applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef]
- Chaerle, L.; Leinonen, I.; Jones, H.G.; Van Der Straeten, D. Monitoring and Screening Plant Populations with Combined Thermal and Chlorophyll Fluorescence Imaging. J. Exp. Bot. 2007, 58, 773–784. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C.; Knapp, M. How to Correctly Determine the Different Chlorophyll Fluorescence Parameters and the Chlorophyll Fluorescence Decrease RFd of Leaves with the PAM Fluorometer. Photosynthetica 2005, 43, 379–393. [Google Scholar] [CrossRef]
- Havaux, M. Stress Tolerance of Photosystem II in Vivo. Plant Physiol. 1992, 100, 424–432. [Google Scholar] [CrossRef]
- Pfündel, E.E. Simultaneously Measuring Pulse-Amplitude-Modulated (PAM) Chlorophyll Fluorescence of Leaves at Wavelengths Shorter and Longer than 700 Nm. Photosynth. Res. 2021, 147, 345–358. [Google Scholar] [CrossRef]
- Vlaovic, J.; Balen, J.; Grgic, K.; Zagar, D.; Galic, V.; Simic, D. An Overview of Chlorophyll Fluorescence Measurement Process, Meters and Methods. In Proceedings of the 2020 International Conference on Smart Systems and Technologies (SST), Osijek, Croatia, 14 October 2020; pp. 245–250. [Google Scholar]
- Fernandez-Jaramillo, A.A.; Duarte-Galvan, C.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Romero-Troncoso, R.d.J.; Guevara-Gonzalez, R.G.; Millan-Almaraz, J.R. Instrumentation in Developing Chlorophyll Fluorescence Biosensing: A Review. Sensors 2012, 12, 11853–11869. [Google Scholar] [CrossRef]
- Che, X.; Fang, W.; Dong, X.; Yang, Y.; Guan, X.; Tian, Z. Research on a Small-Volume Portable Non-Contact Chlorophyll-b Measurement Instrument Based on Laser Spectroscopy. In Proceedings of the Conference on Spectral Technology and Applications (CSTA 2024), Dalian, China, 4 December 2024; Wang, Z., Ding, H., Eds.; SPIE: Bellingham, WA, USA, 2024; p. 135. [Google Scholar]
- Li, Z.; Ji, J.; Xu, M. Designation of Rapid Detection System for Chlorophyll Fluorescence Parameters Based on LED Irradiation. In Proceedings of the 2012 International Conference on Graphic and Image Processing, Singapore, 6–7 October 2012; Zhu, Z., Ed.; Proceedings of SPIE; SPIE—International Society for Optics and Photonics: Bellingham, WA, USA, 2013; Volume 8768, p. 87682I. [Google Scholar] [CrossRef]
- Ma, Z.-Y.; Jing, M.; Chen, M.-L.; Yang, F.; Ding, M.; Zhang, Q. Simulation Study of Detection System on LED Stimulated Plant Chlorophyll Fluorescence. In Proceedings of the Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, Nanjing, China, 12 March 2021; Chu, J., Yu, Q., Jiang, H., Su, J., Eds.; SPIE: Bellingham, WA, USA, 2021; p. 40. [Google Scholar]
- Moiseev, M.A.; Doskolovich, L.L.; Kazanskiy, N.L. Design of High-Efficient Freeform LED Lens for Illumination of Elongated Rectangular Regions. Opt. Express 2011, 19, A225. [Google Scholar] [CrossRef]
- Wei, S.; Zhu, Z.; Ma, D. Efficient and Compact Freeform Optics Design for Customized LED Lighting. Opt. Laser Technol. 2023, 167, 109775. [Google Scholar] [CrossRef]
- Wu, R.; Zheng, Z.; Li, H.; Liu, X. Optimization Design of Irradiance Array for LED Uniform Rectangular Illumination. Appl. Opt. 2012, 51, 2257. [Google Scholar] [CrossRef]
- Wang, A.; Li, W.; Men, X.; Gao, B.; Xu, Y.; Wei, X. Vegetation Detection Based on Spectral Information and Development of a Low-cost Vegetation Sensor for Selective Spraying. Pest Manag. Sci. 2022, 78, 2467–2476. [Google Scholar] [CrossRef]
- Agati, G. Response of the in Vivo Chlorophyll Fluorescence Spectrum to Environmental Factors and Laser Excitation Wavelength. Pure Appl. Opt. J. Eur. Opt. Soc. Part A 1998, 7, 797–807. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Langsdorf, G.; Lenk, S.; Buschmann, C. Chlorophyll Fluorescence Imaging of Photosynthetic Activity with the Flash-Lamp Fluorescence Imaging System. Photosynthetica 2005, 43, 355–369. [Google Scholar] [CrossRef]
- Ryer, A. Light Measurement Handbook; International Light: Newburyport, MA, USA, 1997. [Google Scholar]
- Vrindts, E.; De Baerdemaeker, J.; Ramon, H. Weed Detection Using Canopy Reflection. Precis. Agric. 2002, 3, 63–80. [Google Scholar] [CrossRef]
- Strasser, R.J.; Govindjee. The Fo and the O-J-I-P Fluorescence Rise in Higher Plants and Algae. In Regulation of Chloroplast Biogenesis; Springer: Boston, MA, USA, 1992; pp. 423–426. [Google Scholar]
- Bates, H.; Zavafer, A.; Szabó, M.; Ralph, P.J. A Guide to Open-JIP, a Low-Cost Open-Source Chlorophyll Fluorometer. Photosynth. Res. 2019, 142, 361–368. [Google Scholar] [CrossRef]
- Leeuw, T.; Boss, E.; Wright, D. In Situ Measurements of Phytoplankton Fluorescence Using Low Cost Electronics. Sensors 2013, 13, 7872–7883. [Google Scholar] [CrossRef]
- Haidekker, M.A.; Dong, K.; Mattos, E.; van Iersel, M.W. A Very Low-Cost Pulse-Amplitude Modulated Chlorophyll Fluorometer. Comput. Electron. Agric. 2022, 203, 107438. [Google Scholar] [CrossRef]
- Bürling, K.; Hunsche, M.; Noga, G. Use of Blue–Green and Chlorophyll Fluorescence Measurements for Differentiation between Nitrogen Deficiency and Pathogen Infection in Winter Wheat. J. Plant Physiol. 2011, 168, 1641–1648. [Google Scholar] [CrossRef]
- Hunsche, M.; Bürling, K.; Noga, G. Spectral and Time-Resolved Fluorescence Signature of Four Weed Species as Affected by Selected Herbicides. Pestic. Biochem. Physiol. 2011, 101, 39–47. [Google Scholar] [CrossRef]
- Gorbe, E.; Calatayud, A. Applications of Chlorophyll Fluorescence Imaging Technique in Horticultural Research: A Review. Sci. Hortic. 2012, 138, 24–35. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep Learning in Agriculture: A Survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Behmann, J.; Mahlein, A.-K.; Rumpf, T.; Römer, C.; Plümer, L. A Review of Advanced Machine Learning Methods for the Detection of Biotic Stress in Precision Crop Protection. Precis. Agric. 2015, 16, 239–260. [Google Scholar] [CrossRef]
- Hall, D.; Dayoub, F.; Kulk, J.; McCool, C. Towards Unsupervised Weed Scouting for Agricultural Robotics. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 13–17 May 2017; pp. 5223–5230. [Google Scholar]
- Johnson, S.C. Hierarchical Clustering Schemes. Psychometrika 1967, 32, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Frey, B.J.; Dueck, D. Clustering by Passing Messages Between Data Points. Science 2007, 315, 972–976. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. Machine Learning for High-Throughput Stress Phenotyping in Plants. Trends Plant Sci. 2016, 21, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Huete, A.R.; Jackson, R.D.; Post, D.F. Spectral Response of a Plant Canopy with Different Soil Backgrounds. Remote Sens. Env. 1985, 17, 37–53. [Google Scholar] [CrossRef]
- Hanks, J.E.; Beck, J.L. Sensor-Controlled Hooded Sprayer for Row Crops. Weed Technol. 1998, 12, 308–314. [Google Scholar] [CrossRef]
- Deng, W.; Zhao, C.-J.; He, X.-K.; Chen, L.-P.; Zhang, L.-D.; Wu, G.-W.; Mueller, J.; Zhai, C.-Y. Study on Spectral Detection of Green Plant Target. Spectrosc. Spectr. Anal. 2010, 30, 2179–2183. [Google Scholar] [CrossRef]
- Longchamps, L.; Panneton, B.; Samson, G.; Leroux, G.D.; Thériault, R. Discrimination of Corn, Grasses and Dicot Weeds by Their UV-Induced Fluorescence Spectral Signature. Precis. Agric. 2010, 11, 181–197. [Google Scholar] [CrossRef]
- Panneton, B.; Guillaume, S.; Samson, G.; Roger, J.-M. Discrimination of Corn from Monocotyledonous Weeds with Ultraviolet (UV) Induced Fluorescence. Appl. Spectrosc. 2011, 65, 10–19. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Gamon, J.A. Assessment of Photosynthetic Radiation-use Efficiency with Spectral Reflectance. N. Phytol. 1995, 131, 291–296. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Savé, R. The Reflectance at the 950–970 Nm Region as an Indicator of Plant Water Status. Int. J. Remote Sens. 1993, 14, 1887–1905. [Google Scholar] [CrossRef]
- He, Q.; Zhan, J.; Liu, X.; Dong, C.; Tian, D.; Fu, Q. Multispectral Polarimetric Bidirectional Reflectance Research of Plant Canopy. Opt. Lasers Eng. 2025, 184, 108688. [Google Scholar] [CrossRef]
- Yang, J.; Gong, W.; Shi, S.; Du, L.; Sun, J.; Zhu, B.; Ma, Y.; Song, S. Vegetation Identification Based on Characteristics of Fluorescence Spectral Spatial Distribution. RSC Adv. 2015, 5, 56932–56935. [Google Scholar] [CrossRef]
- Tyystjärvi, E.; Keränen, M.; Koski, A.; Nevalainen, O.; Aro, E.-M. Chlorophyll Fluorescence Can Be Used to Identify Plant Species Automatically. In Photosynthesis: Mechanisms and Effects; Springer: Dordrecht, The Netherlands, 1998; pp. 3857–3860. [Google Scholar]
- Codrea, C.M.; Aittokallio, T.; Keränen, M.; Tyystjärvi, E.; Nevalainen, O.S. Feature Learning with a Genetic Algorithm for Fluorescence Fingerprinting of Plant Species. Pattern Recognit. Lett. 2003, 24, 2663–2673. [Google Scholar] [CrossRef]
- Keränen, M.; Aro, E.-M.; Tyystjärvi, E.; Nevalainen, O. Automatic Plant Identification with Chlorophyll Fluorescence Fingerprinting. Precis. Agric. 2003, 4, 53–67. [Google Scholar] [CrossRef]
- Keränen, M.; Aro, E.-M.; Nevalainen, O.; Tyystjärvi, E. Toxic and Non-Toxic Nodularia Strains Can Be Distinguished from Each Other and from Eukaryotic Algae with Chlorophyll Fluorescence Fingerprinting. Harmful Algae 2009, 8, 817–822. [Google Scholar] [CrossRef]
- Tyystjärvi, E.; Nørremark, M.; Mattila, H.; Keränen, M.; Hakala-Yatkin, M.; Ottosen, C.-O.; Rosenqvist, E. Automatic Identification of Crop and Weed Species with Chlorophyll Fluorescence Induction Curves. Precis. Agric. 2011, 12, 546–563. [Google Scholar] [CrossRef]
- Mishra, A.; Matouš, K.; Mishra, K.B.; Nedbal, L. Towards Discrimination of Plant Species by Machine Vision: Advanced Statistical Analysis of Chlorophyll Fluorescence Transients. J. Fluoresc. 2009, 19, 905–913. [Google Scholar] [CrossRef]
- Mattila, H.; Valli, P.; Pahikkala, T.; Teuhola, J.; Nevalainen, O.S.; Tyystjärvi, E. Comparison of Chlorophyll Fluorescence Curves and Texture Analysis for Automatic Plant Identification. Precis. Agric. 2013, 14, 621–636. [Google Scholar] [CrossRef]
- Herritt, M.; Dhanapal, A.P.; Purcell, L.C.; Fritschi, F.B. Identification of Genomic Loci Associated with 21chlorophyll Fluorescence Phenotypes by Genome-Wide Association Analysis in Soybean. BMC Plant Biol. 2018, 18, 312. [Google Scholar] [CrossRef]
- Rapacz, M.; Wójcik-Jagła, M.; Fiust, A.; Kalaji, H.M.; Kościelniak, J. Genome-Wide Associations of Chlorophyll Fluorescence OJIP Transient Parameters Connected With Soil Drought Response in Barley. Front. Plant Sci. 2019, 10, 78. [Google Scholar] [CrossRef]
- Codrea, M.C.; Hakala-Yatkin, M.; Kårlund-Marttila, A.; Nedbal, L.; Aittokallio, T.; Nevalainen, O.S.; Tyystjärvi, E. Mahalanobis Distance Screening of Arabidopsis Mutants with Chlorophyll Fluorescence. Photosynth. Res. 2010, 105, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Sonoike, K. Screening of Mutants Using Chlorophyll Fluorescence. J. Plant Res. 2021, 134, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Shtaya, M.J.Y. Screening for Genetic Variation in the Circadian Clock in Barley Landraces from Palestine. J. Plant Growth Regul. 2024, 44, 3236–3242. [Google Scholar] [CrossRef]
- Basavaraj, P.; Jangid, K.K.; Babar, R.; Rane, J.; Boraiah, K.; Harisha, C.; Halli, H.; Pradhan, A.; Tripathi, K.; Sammi Reddy, K.; et al. Non-Invasive Measurements to Identify Mungbean Genotypes for Waterlogging Tolerance. PeerJ 2024, 12, e16872. [Google Scholar] [CrossRef]
- Mishra, A.; Heyer, A.G.; Mishra, K.B. Chlorophyll Fluorescence Emission Can Screen Cold Tolerance of Cold Acclimated Arabidopsis Thaliana Accessions. Plant Methods 2014, 10, 38. [Google Scholar] [CrossRef]
- Qin, X.; Xing, D.; Wu, Y.; Wang, W.; Li, M.; Solangi, K. Diurnal Variation in Transport and Use of Intracellular Leaf Water and Related Photosynthesis in Three Karst Plants. Agronomy 2022, 12, 2758. [Google Scholar] [CrossRef]
- Qiu, X.; Wu, M.; Mukai, K.; Shimasaki, Y.; Oshima, Y. Effects of Elevated Irradiance, Temperature, and Rapid Shifts of Salinity on the Chlorophyll a Fluorescence (OJIP) Transient of Chattonella Marina Var. Antiqua. J. Fac. Agric. Kyushu Univ. 2019, 64, 293–300. [Google Scholar] [CrossRef]
- Clay, S.A. Near-term Challenges for Global Agriculture: Herbicide-resistant Weeds. Agron. J. 2021, 113, 4463–4472. [Google Scholar] [CrossRef]
- Prather, T.S.; DiTomaso, J.M.; Holt, J.S. History, Mechanisms, and Strategies for Prevention and Management of Herbi-cide Resistant Weeds. Proc. Calif. Weed Sci. Soc. 2000, 52, 155–160. [Google Scholar]
- Gaines, T.A.; Busi, R.; Küpper, A. Can New Herbicide Discovery Allow Weed Management to Outpace Resistance Evolution? Pest Manag. Sci. 2021, 77, 3036–3041. [Google Scholar] [CrossRef]
- Roland, B.; Andrea, F.; Lothar, L.; Martin, H.; Bernd, L.; Juan Pedro, R.-S.A.; Harry, S. Weed Resistance Diagnostic Technologies to Detect Herbicide Resistance in Cereal-Growing Areas. A Review. In Proceedings of the Tagungsband/25. Deutsche Arbeitsbesprechung über Fragen der Unkrautbiologie und -bekämpfung, Braunschweig, Germany, 13–15 March 2012; Julius Kühn-Institut: Braunschweig, Germany, 2012; pp. 75–80. [Google Scholar]
- Burgos, N.R.; Tranel, P.J.; Streibig, J.C.; Davis, V.M.; Shaner, D.; Norsworthy, J.K.; Ritz, C. Review: Confirmation of Resistance to Herbicides and Evaluation of Resistance Levels. Weed Sci. 2013, 61, 4–20. [Google Scholar] [CrossRef]
- Streibig, J.C. Herbicide Bioassay. Weed Res. 1988, 28, 479–484. [Google Scholar] [CrossRef]
- Barbagallo, M. Role of Magnesium in Insulin Action, Diabetes and Cardio-Metabolic Syndrome X. Mol. Asp. Med. 2003, 24, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Riethmuller-Haage, I.; Bastiaans, L.; Kropff, M.J.; Harbinson, J.; Kempenaar, C. Can Photosynthesis-Related Parameters Be Used to Establish the Activity of Acetolactate Synthase–Inhibiting Herbicides on Weeds? Weed Sci. 2006, 54, 974–982. [Google Scholar] [CrossRef]
- Wang, P.; Peteinatos, G.G.; Gerhards, R. In Field Identification of Herbicide Resistant Apera Spica-Venti Using Chlorophyll Fluorescence. Adv. Anim. Biosci. 2017, 8, 283–287. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.; Gerhards, R. Chlorophyll Fluorescence Response to Herbicide Stress in Alopecurus Myosuroides. In Proceedings of the 27th German Conference on Weed Biology and Weed Control, Braunschweig, Germany, 23–25 February 2016. [Google Scholar]
- Rosenqvist, E.; van Kooten, O. Chlorophyll Fluorescence: A General Description and Nomenclature. In Practical Applications of Chlorophyll Fluorescence in Plant Biology; Springer: Boston, MA, USA, 2003; pp. 31–77. [Google Scholar]
- Deng, Y.; Xin, N.; Zhao, L.; Shi, H.; Deng, L.; Han, Z.; Wu, G. Precision Detection of Salt Stress in Soybean Seedlings Based on Deep Learning and Chlorophyll Fluorescence Imaging. Plants 2024, 13, 2089. [Google Scholar] [CrossRef]
- Sapoukhina, N.; Boureau, T.; Rousseau, D. Plant Disease Symptom Segmentation in Chlorophyll Fluorescence Imaging with a Synthetic Dataset. Front. Plant Sci. 2022, 13, 969205. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, L.; Xiao, Q.; Bai, X.; Wu, B.; Wu, N.; Zhao, Y.; Wang, J.; Feng, L. End-to-End Fusion of Hyperspectral and Chlorophyll Fluorescence Imaging to Identify Rice Stresses. Plant Phenomics 2022, 2022, 9851096. [Google Scholar] [CrossRef]
- Sun, D.; Zhu, Y.; Xu, H.; He, Y.; Cen, H. Time-Series Chlorophyll Fluorescence Imaging Reveals Dynamic Photosynthetic Fingerprints of Sos Mutants to Drought Stress. Sensors 2019, 19, 2649. [Google Scholar] [CrossRef]
- Dong, Z.; Zhao, J.; Ji, W.; Wei, W.; Men, Y. Classification of Tomato Seedling Chilling Injury Based on Chlorophyll Fluorescence Imaging and DBO-BiLSTM. Front. Plant Sci. 2024, 15, 1409200. [Google Scholar] [CrossRef]
- Gong, L.; Gao, B.; Sun, Y.; Zhang, W.; Lin, G.; Zhang, Z.; Li, Y.; Liu, C. PreciseSLAM: Robust, Real-Time, LiDAR–Inertial–Ultrasonic Tightly-Coupled SLAM With Ultraprecise Positioning for Plant Factories. IEEE Trans. Ind. Inform. 2024, 20, 8818–8827. [Google Scholar] [CrossRef]
Parameter | Definition | Calculation Formula |
---|---|---|
F0 | Minimum fluorescence intensity | |
Fm | Maximum fluorescence intensity | |
Fs | Steady-state fluorescence intensity | |
Fv | Variable fluorescence | |
Fv/Fm | Maximum photochemical efficiency | |
Fv/F0 | Relative maximum photochemical efficiency | |
ΦPSII | Photochemical quantum efficiency | |
qP | Photochemical quenching efficiency | |
NPQ | Non-photochemical quenchin |
Parameter | WeedSeeker (Gen 1) | WeedSeeker 2 (Gen 2) | Weed-IT |
---|---|---|---|
Detection principle | Red + NIR reflectance | ChlF | |
Detection area | 0.18/0.23 m2 (12″/15″) | 0.50 m2 (50 cm × 1 m) | 1.10 m2 (100 cm × 110 cm) |
Response time | N/S; adequate ≤ 16 kph | ms-level | ≤10 ms |
Min. detectable target | 0.28 cm2 (≈19 mm Ø) | 1 cm2 (10 mm × 10 mm) | 1 cm2 |
Operating speed | ≤16 kph | ≤20 km/hdetect; ≤40 km/h max operating speed. | ≤25 km/h; ≤50 km/h track |
Auto-calibration | Manual | Auto; env. adaptive | Auto filter; robust env. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Xie, Y.; Ban, X.; Zhang, L.; Zhou, Z.; Zhang, Z.; Wang, A.; Waine, T. Active Chlorophyll Fluorescence Technologies in Precision Weed Management: Overview and Perspectives. Agriculture 2025, 15, 1787. https://doi.org/10.3390/agriculture15161787
Hu J, Xie Y, Ban X, Zhang L, Zhou Z, Zhang Z, Wang A, Waine T. Active Chlorophyll Fluorescence Technologies in Precision Weed Management: Overview and Perspectives. Agriculture. 2025; 15(16):1787. https://doi.org/10.3390/agriculture15161787
Chicago/Turabian StyleHu, Jin, Yuwen Xie, Xingyu Ban, Liyuan Zhang, Zhenjiang Zhou, Zhao Zhang, Aichen Wang, and Toby Waine. 2025. "Active Chlorophyll Fluorescence Technologies in Precision Weed Management: Overview and Perspectives" Agriculture 15, no. 16: 1787. https://doi.org/10.3390/agriculture15161787
APA StyleHu, J., Xie, Y., Ban, X., Zhang, L., Zhou, Z., Zhang, Z., Wang, A., & Waine, T. (2025). Active Chlorophyll Fluorescence Technologies in Precision Weed Management: Overview and Perspectives. Agriculture, 15(16), 1787. https://doi.org/10.3390/agriculture15161787